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Abstract: Particle grain size is an important indicator for the variability in physical characteristics 
and pollutants composition of road-deposited sediments (RDS). Quantitative assessment of the 
grain-size variability in RDS amount, metal concentration, metal load and GSFLoad is essential to 
elimination of the uncertainty it causes in estimation of RDS emission load and formulation of 
control strategies. In this study, grain-size variability was explored and quantified using the 
coefficient of variation (Cv) of the particle size compositions, metal concentrations, metal loads, and 
GSFLoad values in RDS. Several trends in grain-size variability of RDS were identified: (i) the medium 
class (105–450 µm) variability in terms of particle size composition, metal loads, and GSFLoad values 
in RDS was smaller than the fine (<105 µm) and coarse (450–2000 µm) class; (ii) The grain-size 
variability in terms of metal concentrations increased as the particle size increased, while the metal 
concentrations decreased; (iii) When compared to the Lorenz coefficient (Lc), the Cv was similarly 
effective at describing the grain-size variability, whereas it is simpler to calculate because it did not 
require the data to be pre-processed. The results of this study will facilitate identification of the 
uncertainty in modelling RDS caused by grain-size class variability. 
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1. Introduction 

Road surfaces have different mixes of sources contributing to the solids loadings in urban 
environments, and road-deposited sediment (RDS) is an important environmental medium [1–3]. The 
diverse sources of RDS make it a complex and heterogeneous mixture of organic and inorganic 
components [4,5]. RDS behaviour (e.g., mobilities and amounts of particles present, sources and sinks 
of RDS, and pollutant concentrations and species that are present, including the types of particles to 
which the pollutants are attached) depends on the sizes of the particles present [6–8]. For example, 
many contaminants, including metals, are found at higher concentrations in finer particles than in 
coarser particles [9], and finer particles are more likely to be resuspended in the air or entrained in 
rainfall runoff than coarser particles [7,10,11]. Overall, RDS behaviour in terms of the particle sizes 
present is attracting increasing attention [12,13]. 

It is well known that the particle grain size is a very important indicator because it links many 
aspects of the RDS. To avoid the unpredictability resulting from grain-size variability, it is essential 
to elimination of the uncertainty it causes in estimation of RDS emission load and formulation of 
control strategies [14,15]. Many studies have shown that RDS of a given size will vary in surface 
morphology, degree of aggregation, ratio of inorganic to organic content, and overall particle density 
[8,16–18]. Although there is a good deal of research on RDS that can be used when discussing grain-
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size class variability, no coefficient of variation has been found to quantify the inter-class variability 
in terms of important details regarding the actual RDS composition. A ‘black box’ approach is based 
system theory and often applied to research the cause and the effect. Generally, the cause is with very 
little knowledge and the approach maybe is suitable to investigate the appearance of grain-size 
variability due to little knowledge of particle itself hidden characteristics. The ‘black box’ approach 
applied in this study can be viewed in terms of the relations between the appearance of grain-size 
variability in RDS amount, metal concentration, metal load and GSFLoad related to its other 
characteristics and behaviour within with very little knowledge of the particle sources, erosion and 
transport processes, mineral compositions, etc. Therefore, in this study, we used a ‘black-box’ 
approach to compare the inter-class variability, as measured by the coefficient of variation (Cv), in 
the amounts of particles present, particle sizes, and metal concentrations and loads in the particles. 
Moreover, the relationships between the variabilities in different particles size fractions and metal 
pollutants in RDS were identified. 

2. Materials and Methods 

2.1. Data Sources and Study Sites 

Beijing lies between 39°26′ N and 41°03′ N and between 115°25′ E and 117°30′ E with an area of 
16,808 km2. The region has 16 administrative sub-divisions, each of which is a county-level unit 
governed directly by the municipality. Six of the sub-divisions are urban districts, eight are suburban 
districts, and two are suburban counties. The Beijing region can be divided into urban, suburban, and 
rural areas, with counties containing suburban and rural areas each containing a group of towns, and 
each town consisting of a group of villages. We established five sampling areas along an urban–
suburban–rural gradient, including sites in the central urban area (UCA), an urban village area 
(UVA), a central suburban county area (CSA), a rural town area (RTA), and a rural village area (RVA). 

The metropolitan Beijing region is useful for studying variability in RDS and the metals 
associated with RDS on a regional scale because there are few point sources of heavy metals emissions 
in the region [19]. A total of 167 RDS samples were collected carefully along the urban–suburban–
rural gradient, 97 from areas with busy main roads and 70 from residential areas. We accounted for 
the dependence of variations (i.e., population density, average daily traffic, street cleaning method, 
frequency of sweeping, etc.) in the RDS characteristics on the presence of roads in the sampling areas 
by conducting field investigations before selecting an appropriate number of sampling sites in each 
area. The numbers of sampling sites in each area along the urban-suburban-rural gradient are shown 
in Table 1. 

Table 1. Numbers of sampling sites in each area along the urban-suburban-rural gradient. 

Study Site Central Urban 
Area (UCA)  

Central Suburban 
County Area (CSA) 

Rural Town 
Area (RTA) 

Rural Village 
Area (RVA) 

Urban Village 
Area (UVA) 

Areas containing main 
roads (R1) 

11 40 20 20 6 

Residential areas (R2) 8 18 20 20 4 

RDS samples were collected using a domestic vacuum cleaner (Philips FC8264; Philips, 
Amsterdam, The Netherlands) between 2 and 10 September 2009, after the weather had been dry for 
about 2 weeks. This vacuum cleaner had high efficiency with an air filtration system and a cyclonic 
dustbin that effectively captures microscopic particulates. An unspecified area at each site was 
vacuumed from the central road marking to the curb until a reasonable amount of RDS had been 
collected, after which the size of the area sampled was measured using a ruler. Each RDS sample was 
weighed using an electronic balance, and the sample masses ranged from 0.8 to 1.5 kg. The mass of 
RDS per unit area was calculated by dividing the RDS mass collected by the size of the sampling area, 
and the values ranged from 2 to 570 g/m2 for all samples. In general, more RDS was generally 
collected from sites in the RTA, RVA, and UVA than from sites in the UCA and CSA. RDS particles 
were dry-sieved using polyester test sieves. Bulk particles were passed through square-holed sieves 
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and fractionated into eight sub-samples <44, 44–62, 62–105, 105–149, 149–250, 250–450, 450–1000, and 
1000–2000 µm. To maintain consistency of the sieving process, these parameters (time, amplitude of 
shaking, and interval) were maintained consistent to the greatest extent possible. We categorized the 
grain size classes of RDS into fine (<105 µm), medium (105–450 µm) and coarse (450–2000 µm) in this 
study.  

2.2. Analytical Methods and Quality Control 

The total Cr, Cu, Ni, Pb, and Zn concentrations in each sample were measured after digesting 
the sample in a mixture of HF and HClO4 on a hotplate [20]. The quality assurance and quality control 
(QA/QC) procedures were conducted using the certified reference materials (CRMs), GSS-1 and GSS-
2 (Geochemical Standard Soil) [21]. There were no CRMs available for RDS. The CRMs of soil used 
for quality control for RDS were acceptable for some published references [2,21]. Recoveries of the 5 
observed metals were between 75–110% (75–95% for Cr, 90–108% for Cu, 90–104% for Ni, 90–110% 
for Pb, 98–107% for Zn). Detection limit of Cr, Cu, Ni and Zn ranged from 0.1 to 1 µg/L, and that of 
Pb ranged from 1 to 10 µg/L. Duplicates were analyzed on 2% of the RDS samples and the standard 
deviations were within ±10% of the mean. Reagent blanks were included with each batch of samples 
assayed. 

2.3. Estimation of the Heavy Metal Loads in the RDS Samples 

We determined the contributions of the metals in particles of different sizes to the overall metal 
concentrations in the RDS samples by calculating the load percentage for the metals in each RDS 
sample. The grain size fraction load (GSFLoad) was calculated using Equation (1) [2]: 

1

×100i

i i

i
Load n

i

C GSGSF
C GS

=

×=
×

 
(1) 

where, Ci is the heavy metal concentration in grain size fraction i in a RDS sample (mg/kg), GSi is the 
percentage by mass that size fraction i contributed to the RDS sample (%), and n is the number of 
grain size fractions. 

2.4. Quantification of Grain-Size Class Variability in RDS 

The Cv is a dimensionless quantitative description of the degree of variability relative to the 
mean. Before calculating the Cv, the normal distribution of data in the present study was verified 
using SPSS 19.0 (IBM, Armonk, NC, USA). The most commonly used method for calculating the Cv is 
shown in Equation (2) [22]: 

2σ
=


Cv

x  
(2) 

where, 
2σ  is the standard deviation and x  is the mean.  

Statistical analyses were conducted using the R for Windows software package (R Core Team, 
2012). The confidence intervals for the Cv values were determined using the Methods for Behavioral, 
Educational, and Social Sciences packagein the R for Windows software package [23]. The Gini index 
and Lorenz curve were determined using the tuxettechix (2012) 
(http://tuxette.nathalievilla.org/?p=508&lang=en) procedure in the R for Windows software package.  

3. Results 

In this section, the Cv was used to quantify the variability or variability of particles of different 
sizes in terms of the amounts present, the metal concentrations and loads, and the GSFLoad values. A 
larger Cv value indicates more variation in the parameter, which could reflect greater variability or 
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heterogeneity [22]. The confidence interval of a Cv will be used to illustrate the expected accuracy 
with which the Cv parameter was estimated. We used RDS in areas near main roads (R1) and 
residential areas (R2) in Beijing that were determined in our previous studies [9,24]. All of the study 
sites were within the metropolitan Beijing area.  

3.1. Grain-Size Class Variability in Terms of the Amounts or Mass Percentage Present 

The grain-size class variability in term of the contributions of individual particle sizes to the bulk 
particles (mass percentage, %) was measured using the Cv. As shown in Figure 1, the trends in the 
Cv values for the particles of different sizes were similar for the RDS samples from areas containing 
main roads (R1) and residential areas (R2). The individual particles mass percentage increased in the 
following order: <44 µm < 1000–2000 µm < 44–62 µm < 105–149 µm < 450–1000 µm < 250–450 µm < 
149–250 µm < 62–105 µm. The grain-size class variability (Cv values) in terms of mass percentage 
increased in the following order: 149–250 µm < 105–149 µm ≈ 250–450 µm < 62–105 µm < <44 µm < 
450–1000 µm < 44–62 µm < 1000–2000 µm. Overall, the medium class (105–149, 149–250, and 250–450 
µm) variability in terms of the contributions of individual particle sizes to the bulk particles was 
smaller than the fine (<44, 44–62, and 62–105 µm) and coarse (450–1000 and >1000 µm) class. 
Additionally, RDS with coarser grain size had clearly lower metal concentrations and greater 
variability. This could be attributed to a number of factors, including variations in the origins of 
particulate matter, land use, road surface conditions, and street cleaning methods [5,9]. Finally, the 
Cv values were higher in R1 than in R2 for each particle size fraction except for the 44–62 µm and 
450–1000 µm particles, for which there was no significant difference.  

 

Figure 1. Grain-size heterogeneity in terms of the amounts present. Each Cv value shown is the mean 
± the 95% confidence interval. R1 = areas in which there are main roads, R2 = residential areas. 

3.2. Grain-Size Class Variability in Terms of the Metal Concentrations Present 

Although the particle size distribution affected metal concentrations in RDS samples in our 
previous studies [9,24], few studies have investigated the variability of metal concentrations in 
individual grain size fractions. In the present study, the metal concentrations and their variabilities 



Int. J. Environ. Res. Public Health 2017, 14, 850  5 of 10 

 

were found to be similar in the R1 and R2 samples (Figure 2). In general, the variabilities in metal 
concentrations increased as particle size increased because that RDS with coarser particles have great 
heterogeneity [13], whereas the metal concentrations decreased as particle size increased. The 
variabilities in the concentrations of all metals increased strongly as the particle size increased for 
particles with diameters >250 µm, with increases in Cu, Pb, and Zn variabilities being particularly 
sharply. The Cr concentration varied less with particle size than did the concentrations of the other 
metals. RDS samples with coarser grains were more variable than other RDS samples, which 
explained the high levels of variability in metal concentrations in the coarser samples relative to the 
metal concentrations in the same samples. 

 
Figure 2. Grain-size heterogeneity in terms of metal concentrations present. Each Cv value shown is 
the mean ± the 95% confidence interval. R1 = areas in which there are main roads, R2 = residential 
areas; (a) grain-size variability in Cr concentrations; (b) grain-size variability in Cu concentrations; (c) 
grain-size variability in Ni concentrations; (d) grain-size variability in Pb concentrations; (e) grain-
size variability in Zn concentrations. 

3.3. Grain-Size Class Variability in Terms of the Metal Loads Present 

Variability in particles of different sizes also had a strong effect on variations in metal loads. The 
metal loads in each grain size fraction in the R1 and R2 samples were more variable than the metal 
concentrations because the metal loads aggregate the variabilities in the amounts of particles present 
and the metal concentrations. As shown in Figure 3, the trends in the metal loads and the variabilities 
in the metal loads in R1 and R2 samples were similar. In general, the variabilities in the metal loads 
increased as the particle size increased, with the highest being found in particles with diameters of 
62–105 µm. The loads of all metals except Cu increased greatly as particle size increased for particles 
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with diameters of >250 µm. The Cu concentrations in the particles of different sizes varied less than 
the concentrations of the other metals. The variabilities in the metal loads in the particles of different 
sizes followed similar trends as the variabilities in the metal concentrations, even though the metal 
load in each size fraction is a combination of the amount of particles present and the metal 
concentration in those particles. 

 

Figure 3. Grain-size heterogeneity in terms of metal load present. Each Cv value shown is the mean ± 
the 95% confidence interval. (a) grain-size variability in Cr loads; (b) grain-size variability in Cu loads; 
(c) grain-size variability in Ni loads; (d) grain-size variability in Pb loads; (e) grain-size variability in 
Zn loads. 

3.4. Grain-Size Class Variability in Terms of the GSFLoad Present 

The contributions of particles of different sizes to the overall levels of metal contamination in the 
R1 and R2 samples were estimated using the GSFLoad values. As shown in Figure 4, the Cv values in 
the R1 and R2 samples followed similar trends. In general, relatively high GSFLoad Cv values were 
found for particles with diameters of >250 µm and <62 µm, while low Cv values were found for 
particles with diameters of 62–105 µm. The GSFLoad Cv values increased greatly as the particle size 
increased for particles with diameters of >250 µm, similar to the case for the metal concentration and 
load variabilities. Particles with diameters of 62–105 µm made the largest contributions to the overall 
level of metal contamination in the RDS samples, but had the least variable GSFLoad values. In contrast, 
particles with diameters of 1000–2000 µm made the smallest contributions to the overall level of metal 
contamination in the RDS samples, but had the most variable GSFLoad values. 
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Figure 4. Grain-size heterogeneity in terms of GSFLoad (%). GSFLoad (%) is the contribution of the 
particles of a particular size to the overall level of metal contamination in a sample of sediment 
deposited on roads. Each Cv value shown is the mean ± the 95% confidence interval. (a) grain-size 
variability in Cr load; (b) grain-size variability in Cu GSFLoad (%); (c) grain-size variability in Ni GSFLoad 
(%); (d) grain-size variability in Pb GSFLoad (%); (e) grain-size variability in Zn GSFLoad (%). 

4. Discussion 

4.1. Impact of Grain-Size Class Variability on Quantification of RDS Washoff Loads 

Obtaining accurate estimates of the parameters of RDS emission should be of the utmost concern 
when quantifying RDS washoff loads. The particle size distribution is an important parameter 
because it determines the mobility of the RDS and the pollutant concentration as particles of 
particular sizes are transported in runoff [6,25,26]. Therefore, grain-size heterogeneity or variability 
could strongly influence the accuracy with which particulate pollutant mass loss can be estimated 
[27,28]. Variability based on individual size classes should be explored and quantified to eliminate 
the inherent uncertainty it causes [29]. It is well known that many factors (e.g., road lay-out, road 
surface conditions, surrounding land use, traffic characteristics) determine the grain-size class 
variability on particles amount, pollutant species, pollutants concentration and chemical forms [30–
32]. Most of the studies have shown that coarse particles had higher pollution levels (e.g., metals, 
PAHs, nutrients) than fine particles [2,21,33]. However, how to measure and quantify grain-size class 
heterogeneity is still unclear. In this study, we quantify the grain-size class variability measured by 
Cv from a ‘black box’ perspective. However, this approach masks some important details regarding 
the actual RDS composition. Therefore, further studies should be performed to better grasp the source 
apportionment, which will facilitate identification of appropriate management initiatives. 
Additionally, particular attention should be paid to variability in fine particles in RDS because they 
make large contributions to the RDS washoff load [7,21,34]. 
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4.2. Comparison of Different Measures Used to Quantify Grain-Size Class Variability 

A range of statistical techniques are available to characterise and quantify variability, but the 
appropriate statistical technique should be simple and easily applied to a dataset. The Lorenz 
coefficient (Lc) and the Cv were used in this study to help understand the effectiveness with which 
variabilities in particle sizes and RDS characteristics can be quantitatively estimated. The Lc and Cv 
values indicating the variabilities in the metal concentrations of particles of different sizes in the R1 
samples are shown in Table 2. The Lc and Cv values were similarly effective at describing the 
variabilities. Both Lc and Cv were able to describe the variability of a dataset as a single value, 
allowing different data types to be compared directly. However, the Cv was found to have a major 
advantage over the Lc in that the Cv is simpler to calculate, does not require the data to be pre-
processed, and can distinguish between extreme variations [23,35]. Nevertheless, the Lc can provide 
a simple graphical approach to visualizing and quantifying variability. Overall, the Cv could be used 
more easily than the Lc to quantitatively estimate the variabilities in particle sizes and RDS 
characteristics in this study.  

Table 2. A comparison of two methods (the coefficient of variation, Cv, and the Lorenz coefficient, Lc) 
to quantify the grain-size class heterogeneity in metal concentration in RDS. 

Particle Size (μm) 
Cr Cu Ni Pb Zn 

Cv Lc Cv Lc Cv Lc Cv Lc Cv Lc 
<44 33.3 0.183 53.8 0.286 33.3 0.178 36.5 0.197 47.6 0.252 

44–62 35.6 0.190 58.2 0.310 38.8 0.212 34.8 0.188 50.9 0.271 
62–105 40.1 0.218 69.8 0.356 51.1 0.267 35.0 0188 49.0 0.262 
105–149 40.1 0.221 81.8 0.412 52.4 0.268 32.9 0.180 50.1 0.277 
149–250 48.9 0.270 97.7 0.475 70.0 0.367 41.6 0.207 53.1 0.298 
250–450 61.8 0.320 106.9 0.442 76.0 0.396 39.1 0.211 81.8 0.380 

450–1000 86.8 0.375 59.3 0.320 95.0 0.465 92.8 0.370 122.0 0.468 
1000–2000 90.0 0.401 84.32 0.386 114.4 0.514 90.9 0.359 127.8 0.557 

5. Conclusions 

Based on a ‘black-box’ approach, the grain-size class variability in terms of mass percentage, 
metal concentration, metal load, and GSFLoad were measured by the coefficient of variation (Cv). The 
results indicated that the medium class variability in terms of the contributions of individual particle 
sizes to the bulk particles was smaller than the fine and coarse class. The grain-size class variability 
in terms of metal concentration increased as the particle size increased, whereas the metal 
concentrations decreased as the particle size increased. The grain-size class variability in metal load 
aggregate the variabilities in the amounts of particles present and the metal concentrations, and it 
also increased as particle size increased. Particles with diameters of >250 µm and <62 µm have higher 
GSFLoad Cv values, and the GSFLoad Cv values increased greatly as the particle size increased for 
particles with diameters of >250 µm. The results of this study will improve our ability to evaluate and 
control the discharge of RDS in rainfall runoff by elimination of the uncertainty caused by grain-size 
variability in physical characteristics and pollutants composition of RDS. 
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