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Abstract: This study aimed to clarify the physiological effects of touching wood with the palm, in 
comparison with touching other materials on brain activity and autonomic nervous activity. 
Eighteen female university students (mean age, 21.7  ±  1.6 years) participated in the study. As an 
indicator of brain activity, oxyhemoglobin (oxy-Hb) concentrations were measured in the left/right 
prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) was 
used as an indicator of autonomic nervous activity. The high-frequency (HF) component of HRV, 
which reflected parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which 
reflected sympathetic nervous activity, were measured. Plates of uncoated white oak, marble, tile, 
and stainless steel were used as tactile stimuli. After sitting at rest with their eyes closed, participants 
touched the materials for 90 s. As a result, tactile stimulation with white oak significantly (1) 
decreased the oxy-Hb concentration in the left/right prefrontal cortex relative to marble, tile, and 
stainless steel and (2) increased ln(HF)-reflected parasympathetic nervous activity relative to marble 
and stainless steel. In conclusion, our study revealed that touching wood with the palm calms 
prefrontal cortex activity and induces parasympathetic nervous activity more than other materials, 
thereby inducing physiological relaxation. 

Keywords: wood; tactile; autonomic nervous activity; prefrontal cortex activity; heart rate 
variability; near-infrared spectroscopy; semantic differential method; profile of mood states; 
physiological relaxation; preventive medical effect 

 

1. Introduction 

Wood is a familiar natural material that has been used in houses and furniture for a long time, 
and it is empirically known to have a relaxing effect on humans. In Japan, a majority (55%) of new 
housing starts in 2014 are wooden, and among them, the percentage of wooden houses in detached 
houses is 88%, which is high [1]. According to an “awareness and intention survey on circulation 
utilization of forest resources” conducted by the Ministry of Agriculture, Forestry and Fisheries in 
2015 [2], approximately 80% of the respondents answered “wooden houses” to the question of “a 
house you would like to choose in the future when building or buying houses”. In recent years, the 
Forestry Agency has been encouraging the use of wood and is expanding its moku-iku (“moku” 
implies “wood” and “iku” implies “nurture”) initiative [1]. First coined in 2004 [2], moku-iku is an 
expression that has been defined in many ways; these include “an initiative to encourage all people, 
including children, to interact with wood, learn from wood, and live with wood (Wood Culture 
Promotion Project Team [2])” and “educational activities regarding the use of wood to teach about 
the merit of wood as a material and the significance of using wood (Forestry Agency [1])”. Since then, 
Miyazaki has proposed a new concept of moku-iku: how the “quality of life is improved by being 
brought up in the presence of wood” and that “contact with wood is physiologically relaxing and 
enhances immune function” [3]. 
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As described above, the interest in and expectations of the relaxing effect of wood on humans 
have increased in recent years, and data based on scientific evidence is awaited. The authors 
conducted a literature search to outline the current state of research regarding the physiological 
effects of wood-derived stimulation on humans [4]. The oldest report, published in 1992 [5], is on the 
physiological effect of Taiwan cypress oil by olfactory stimulation in human subjects, and albeit 
scarce, the reports have continued to accumulate until today, following the development of 
physiological measurement technology in recent years [4]. However, most of the previous studies 
about the physiological effects of wood or wood-derived stimulation on humans have used olfactory 
stimulation, and there are extremely few reports on tactile stimuli. Morikawa et al. [6] reported that 
touching artificial materials with the palm resulted in great fluctuations in the systolic blood pressure 
and pulse rate and induced a physiological stress state, whereas touching Japanese cypress and 
Japanese cedar wood plates caused little fluctuation. Sakuragawa et al. [7] examined differences in 
the effects of tactile stimulation on human physiology that resulted from materials at different 
temperatures (cool, room temperature, and warm). They found the following results: (1) touching an 
aluminum plate increased blood pressure, but the increase was inhibited when the aluminum was 
warmed; (2) touching an acrylic plastic plate increased blood pressure, with a greater rate of increase 
in blood pressure when the acrylic plastic plate was chilled; and (3) blood pressure did not change in 
response to touching objects made of Japanese cypress, Japanese cedar, or oak, and did not increase 
even when the oak material was chilled. Those reports are pioneering studies on the physiological effects 
of tactile stimulation with wood on humans; however, there are limitations in that they only used blood 
pressure, which is an index of autonomic nervous activity measurement of physiological responses. 

In this study, we investigated the physiological effects of touching wood in comparison with 
touching other materials on the left and right prefrontal cortex activity, assessed using near-infrared 
time-resolved spectroscopy (TRS), and on the autonomic nervous activity, assessed using heart rate 
variability (HRV). 

2. Materials and Methods 

2.1. Participants 

The study participants were 18 female university students (mean age, 21.7 ± 1.6 years). We 
excluded smokers, those currently in treatment for disease, and those with menstrual period during 
the study period. All participants were informed about the aim of the experiment and the procedures 
involved in it, and they provided written informed consent to participate. This study was performed 
in accordance with the regulations of the Ethics Committee of the Center for Environment, Health 
and Field Sciences, Chiba University, Japan (Project identification code number: 5). 

2.2. Study Protocol 

Physiological measurements were performed in a chamber with an artificial climate in the 
Center for Environment, Health and Field Sciences, Chiba University. This chamber was maintained 
at 25 °C, 50% relative humidity, and 230-lux illumination. In the waiting room, the participants 
received a description of the experiment and then moved into the chamber with an artificial climate. 
After sensors for physiological measurement were fit, participants received a description of the 
measurement procedure while sitting. After that, they practiced touching a material with their palm 
using a dummy sample (sheet flooring). The procedure was as follows. Participants rested with their 
eyes closed for 60 s (Figure 1 left). When receiving instructions from an experimenter, they moved 
their right forearm using their elbow as a fulcrum, and placed the palm on the material for 90 s  
(Figure 1 right). After touching the material for 90 s, they returned the hand to the previous position 
upon instruction of an experimenter (Figure 1 left). The experimenter placed the next material, hid 
the material with a cloth, and then instructed participants to open their eyes. Subsequently, the 
participants answered the subjective evaluation test. Figure 2 shows the experimental schedule. 
Materials were presented in a counterbalanced order to eliminate any effects due to the order of tactile 
stimulation. The physiological responses were measured continually. 
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Figure 1. Experimental scene. 

 
Figure 2. Experimental schedule. 
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2.3. Tactile Stimulation 

The wood type used was white oak (Quercus alba; Figure 3A). Five laminae without vertical 
joining (the size of one lamina was 300 × 60 × 15 mm) were mutually bonded along the width. To 
prevent bending, a second bonding was performed using Japanese cedar plywood (300 × 300 × 28 mm), 
and the thickness of the material was 43 mm. The surface touched by palm was brushed and  
non-coated. Hereinafter, this is referred to as “white oak”. 

As comparable materials, marble (Figure 3B) and ceramic tiles (Figure 3C), which are used as 
building material, were selected. In addition, stainless steel (Figure 3D) was used as one of the 
representative artificial materials. The size of all slabs was 300 × 300 mm. The thicknesses of the 
marble, tile, and stainless steel were 15 mm, 8 mm, and 5 mm, respectively. To render the thickness 
of all materials presented to the participants uniform at 43 mm, Japanese cedar plywood was adhered 
under each material. The surfaces of the marble, tile, and stainless steel were processed by buffing. 
In addition, wax was applied to the tile. 

All materials were kept at room temperature. The physical properties of the materials are shown 
in Table 1. 

 

Figure 3. Materials used for the tactile experiment. (A) White oak; (B) Marble; (C) Tile; and (D) 
Stainless steel. 

Table 1. Details of materials. 

Material h (mm) λ (W/(m-K)) 1 R (µm) 2 Conditioning 
White oak 15 (+JCP 28) 0.120 57.10 Brushing 

Marble 15 (+JCP 28) 0.146 0.09 Buffing 
Tile 8 (+JCP 35) 0.144 0.09 Buffing with wax coating 

Stainless steel 5 (+JCP 38) 0.336 0.02 Buffing 
1 A heat flow meter (HFM 436 Lambda; NETZSCH, Selb, Germany) tuned according to ASTM C518-10 [8] and 
ISO8310 [9], was used. The direction of heat flow was vertically downward. The temperatures of the high- and 
low-temperature heat plates were 35 °C and 15 °C, respectively. The thermal conductivity at an average material 
temperature of 25 °C was calculated. The test specimens were used with the cedar plywood attached; 2 A contact 
surface roughness profilometer (SE3500; Kosaka Laboratory Ltd., Tokyo, Japan) with a diamond needle was used. 
The evaluation length was 50 mm. The central portion of the samples was measured five times with a 50 mm 
spacing, and the average value was calculated; h: Thickness of material; λ: thermal conductivity; Ra: arithmetic 
average roughness; JCP: Japanese cedar plywood.  
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2.4. Physiological Measurement 

2.4.1. Near-Infrared Time-Resolved Spectroscopy 

As an indicator of brain activity, TRS, which is a near-infrared spectroscopy method, was used. 
The sensors were mounted at approximately Fp1 and Fp2 of the international 10-20 system (EEG) on 
the subject’s forehead, and oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) 
concentrations in the prefrontal cortex were measured (TRS-20 system; Hamamatsu Photonics K.K., 
Shizuoka, Japan) [10–12]. In previous studies [13,14], it has been demonstrated that nature-derived 
stimuli increased subjective feelings of relaxation and decreased oxy-Hb concentrations in the 
prefrontal cortex, indicating that these stimuli calmed prefrontal cortex activity. The oxy-Hb 
concentrations in the left and right prefrontal cortex were measured before the materials were 
touched (premeasurement condition) and during the 90 s of touching the materials 
(postmeasurement condition). The data measured by TRS-20 differ in sampling time for all data. In 
the present experiment, these data were measured at 1.07 to 1.16-s intervals. We transformed the data 
by linear interpolation every 1 s in order to show the time series data for oxy-Hb concentration in the 
left/right prefrontal cortex over a 90-s period. In addition, all data were calculated as the difference 
relative to a 10-s baseline period immediately before participants touched the test material. 

2.4.2. Heart Rate Variability 

As an indicator of autonomic nervous activity, HRV was analyzed for the periods between 
consecutive R waves (R–R intervals) on electrocardiograms measured with a portable 
electrocardiograph (Activtracer AC-301A; GMS, Tokyo, Japan) [15,16]. The power levels of the low-
frequency (LF: 0.04–0.15 Hz) and high-frequency (HF: 0.15–0.40 Hz) components of HRV were 
calculated using the maximum-entropy method (MemCalc/Win; GMS, Tokyo, Japan). The HF power 
reflected the parasympathetic nervous activity. The LF/HF ratio reflected sympathetic nervous 
activity [17,18]. To normalize HRV parameters across the participants, we used natural logarithmic 
transformed values for the analysis [19]. The values of ln(HF) and ln(LF/HF) were acquired changes 
in each 30 s and overall mean during the 90 s of touching the samples, respectively. In addition, all 
data were calculated as the difference relative to a 10-s baseline right before touching began. 

2.5. Psychological Measurement 

The modified semantic differential (SD) method [20] and the Profile of Mood State (POMS) [21–25] 
were used to evaluate the psychological effects of touching the materials. The SD method tests the 
subjective evaluations of participants through a questionnaire with opposing adjectives, each of which 
was evaluated on a 13-point scale. Six pairs of adjectives were assessed as “comfortable–uncomfortable”, 
“natural–artificial”, “relaxed–awakening”, “warm–cold”, “uneven–flat”, and “dry–moist.” The POMS 
scores were determined for the following six subscales: “tension–anxiety (T–A)”, “depression (D)”, 
“anger–hostility (A–H)”, “fatigue (F)”, “confusion (C)”, and “vigor (V)” [21–23]. The “total mood 
disturbance (TMD)” score is calculated by the formula [(T–A) + (D) + (A–H) + (F) + (C) – (V)] [24]. A 
lower score of TMD indicates a better emotional condition [25]. We used a short version of the POMS 
that included 30 questions to decrease the participants’ burden [23]. 

2.6. Statistical Analysis 

Statistical Package for Social Sciences software (v21.0, IBM Corp., Armonk, NY, USA) was used 
for all statistical analyses. A paired t-test with Holm correction was used to compare physiological 
responses to white oak and the other material (marble, tile and stainless steel). The Wilcoxon  
signed-rank test with Holm correction was applied to analyze the differences in psychological indices 
between white oak and the other materials (marble, tile and stainless steel). In all cases, the 
significance level was set at p < 0.05. One-sided tests were used for both comparisons because our 
hypothesis was that humans would be more relaxed after touching the wood than after touching the 
other materials. 
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3. Results 

3.1. Physiological Effects 

3.1.1. TRS 

Figure 4 shows the changes in the oxy-Hb concentration per second in the left/right prefrontal 
cortex while touching white oak and other materials. The mean baseline for the 10 s oxy-Hb 
concentration before touching in the left prefrontal cortex did not significantly differ among the four 
materials (white oak: 43.61 ± 0.81 µM (mean ± standard error), marble: 43.44 ± 0.87 µM, tile:  
43.24 ± 0.87 µM, stainless steel: 43.03 ± 0.83 µM; p > 0.05). There was also no significant difference in 
the baseline 10-s oxy-Hb concentration of the right prefrontal cortex (white oak: 43.29 ± 1.10 µM, 
marble: 42.97 ± 1.15 µM, tile: 43.32 ± 1.11 µM, stainless steel: 43.21 ± 1.09 µM; p > 0.05). 

 

Figure 4. Changes in every 1 s over 90 s oxy-Hb concentration in the left/right prefrontal cortex while 
touching white oak and other materials (marble, tile, and stainless steel). All data were calculated as 
the difference relative to a 10-s baseline period immediately before participants touched the test 
material. Data are expressed as the mean  ±  standard error, n = 18. 
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The oxy-Hb concentrations in the left/right prefrontal cortex immediately decreased after 
touching white oak with the palm and remained lower than the value before touching until the end 
of contact. With stainless steel, oxy-Hb concentrations gradually increased during the contact. With 
marble and tiles, they showed a change between the white oak and stainless steel. 

The comparison of the overall mean oxy-Hb concentration in the left/right prefrontal cortex 
while touching white oak and other materials is shown in Figure 5. Touching white oak significantly 
decreased the oxy-Hb concentration in the left prefrontal cortex compared with marble, tile, and 
stainless steel (white oak: −0.37 ± 0.10 µM, marble: −0.18 ± 0.07 µM, tile: −0.12 ± 0.11 µM, stainless 
steel: 0.11 ± 0.10 µM; white oak vs. marble: t(17) = −2.283, p = 0.018; white oak vs. tile: t(17) = −1.929,  
p = 0.032; white oak vs. stainless steel: t(17) = −4.242, p < 0.001; Figure 5 left). Similarly, in the right 
prefrontal cortex, the mean oxy-Hb concentration while touching white oak was −0.38 ± 0.10 µM, 
which was significantly lower than that while touching other materials (marble: −0.21 ± 0.08 µM, tile: 
−0.03 ± 0.11 µM, stainless steel: 0.19 ± 0.09 µM; white oak vs. marble: t(17) = −1.985, p = 0.032; white oak 
vs. tile: t(17) = −3.017, p = 0.004; white oak vs. stainless steel: t(17) = −8.341, p < 0.001; Figure 5 right). 

However, there was no significant difference in deoxy-Hb concentration in the left/right prefrontal 
cortex when participants touched white oak vs. other materials (marble, tile, and stainless steel). 

 

Figure 5. The overall mean oxy-Hb concentrations in the right and left prefrontal cortex while 
touching white oak and other materials (marble, tile, and stainless steel). Data are expressed as the mean 
± standard error. n = 18, * p < 0.05 as determined by the paired t-test; Holm correction was applied. 

3.1.2. HRV 

Figure 6A shows the changes in the ln(HF) value, which reflected parasympathetic nervous 
activity while touching white oak and other materials. The mean baseline value of ln(HF) at 30 s 
before touching did not significantly differ among the four materials (white oak: 5.56 ± 0.18 lnms2, 
marble: 5.67 ± 0.19 lnms2, tile: 5.56 ± 0.19 lnms2, stainless steel: 5.61 ± 0.21 lnms2; p > 0.05). 
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oak vs. marble: t(17) = 2.854, p = 0.005; white oak vs. stainless steel: t(17) = 3.415, p = 0.002; Figure 6B). 
However, there was no significant difference in the ln(LF/HF), which is an index of sympathetic nervous 
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activity between white oak and the other materials (white oak: −0.84 ± 0.24, marble: −0.47 ± 0.21, tile: 
−0.14 ± 0.25, stainless steel: 0.08 ± 0.22; p > 0.05). 

 

Figure 6. The 30 s averages and overall mean of the natural logarithm of the high-frequency 
component (HF) of heart rate variability (HRV) while touching white oak and other materials (marble, 
tile, and stainless steel). (A) Changes in each 30 s average HF value over 90 s. (B) Overall mean HF 
values. Data are expressed as the mean ± standard error, n = 18, * p < 0.05 as determined by the paired 
t-test; Holm correction was applied. 

3.2. Psychological Effects 

The results of subjective evaluation by the modified SD method are shown in Figure 7. In terms 
of the “comfortable feeling”, participants provided subjective reports of feeling “slightly 
comfortable” after contact with white oak; however, they provided reports of feeling “indifferent to 
slightly uncomfortable” after touching other materials. Therefore, touching the white oak was 
believed to induce significantly more comfort than touching other materials (white oak vs. marble:  
p = 0.001; white oak vs. tile: p = 0.002; white oak vs. stainless steel: p = 0.001; Figure 7A). Also in the 
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they reported feeling “indifferent to slight awakening” while touching a tile and “slight to moderate 
awakening” while touching marble and stainless steel. Thus, white oak induced significantly more 
relaxation than other materials (white oak vs. marble: p < 0.001; white oak vs. tile: p = 0.001; white oak 
vs. stainless steel: p < 0.001; Figure 7B). Regarding the “natural feeling”, white oak, which was 
perceived as “slightly natural”, was considered significantly more natural than the other materials, 
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Figure 8B). For the other subscales (“depression”, “anger−hostility”, “fatigue”, “confusion”, and 
“vigor”), no significant differences were observed. 

 

Figure 7. Subjective feeling measured by the modified semantic differential method after touching 
white oak and other materials (marble, tile, and stainless steel). (A) Comfortable feeling; (B) Relaxed 
feeling; (C) Natural feeling; (D) Warm–cold feeling; (E) Uneven–flat feeling; and (F) Dry–moist 
feeling. Data are expressed as the mean ± standard error, n = 18, * p < 0.05 as determined by the 
Wilcoxon signed-rank test; Holm correction was applied. 
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Figure 8. “Tension–anxiety (T–A)” and “total mood disturbance (TMD)” score on the Profile of Mood 
State (POMS) test after touching white oak and other materials (marble, tile and stainless steel). (A) T–
A scores of POMS; and (B) TMD scores of POMS. Data are expressed as the mean ± standard error, n 
= 18, * p < 0.05 as determined by the Wilcoxon signed-rank test; Holm correction was applied. 

4. Discussion 

This study aimed to clarify the effects of touching wood in comparison with touching other 
materials on the activity in the left and right prefrontal cortex, assessed using TRS, and on autonomic 
nervous activity, assessed using HRV. The results showed that in comparison with touching other 
materials, touching white oak significantly decreased the oxy-Hb concentration in the right prefrontal 
cortex and significantly increased parasympathetic nervous activity according to the 90-s overall 
mean values. 

Previous studies on the physiological effects brought about by forests, which are a typical 
natural environment, have demonstrated that looking at forests can decrease total oxy-Hb 
concentration in the prefrontal cortex [26], increase parasympathetic nervous activity [27–30], and 
decrease heart rate or pulse rate [27,31,32] compared with observing an urban area. Our findings 
concentrated on the tactile stimulating effect of wood are consistent with those of previous studies. 

In recent years, several studies have been performed on the physiological effects caused by 
olfactory stimulation using wood. The effect on prefrontal cortex activity of olfactory stimulation by 
wood chips of Japanese cypress, a coniferous tree, treated with different drying methods has been 
reported [33]. The physiological effects of olfactory stimulation with “air-dried wood”, which was 
produced through natural drying processes over 45 months, and with “high-temperature-dried 
wood”, which was produced using steam heating drying equipment at a high temperature and high 
speed, were compared. Olfactory stimulation using air-dried wood of Japanese cypress decreased the 
oxy-Hb concentration in the prefrontal cortex more than high-temperature-dried wood did [33]. The 
effects of olfactory stimulation with Japanese cypress leaf oil on the brain activity and autonomic 
nervous activity have also been investigated [34]. Olfactory stimulation with Japanese cypress leaf oil 
induced a reduction in oxy-Hb concentration in the right prefrontal cortex and increased 
parasympathetic nervous activity (the HF power of HRV) compared to the control condition (air), 
indicating that olfactory stimulation with Japanese cypress leaf oil can induce physiological 
relaxation [34]. Inhalation of α-pinene, which is a major odor component contained in Japanese cedar 
and Japanese cypress, increased parasympathetic nervous activity and decreased heart rate 
compared with control (air), indicating physiological relaxation [35]. Similarly, inhalation of  
D-limonene, one of the main volatile components of wood, increased HF power and decreased the 
heart rate compared with the control condition (air), suggesting that D-limonene induced 
physiological relaxation [36]. Regarding the influence of touching some kinds of wood with the palm 
of the hand, Sakuragawa et al. [7] examined differences in the effects of tactile stimulation on blood 
pressure. Participants touched the surface of each material for 60 s with their eyes closed. This 
produced the following results: (1) blood pressure rose transiently just after touching Japanese 
cypress, Japanese cedar, and oak, but the change did not persist; and (2) blood pressure was at a high 
value even after the transient rise while touching artificial materials (aluminum or acrylic plastic plate). 
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To explain this phenomenon, Miyazaki has advocated a “back to nature” theory [37,38]. In this 
theory, they claim human physiological functions are best adapted to a natural environment because 
over 99.99% of the course of human evolution since our ancestors started evolving from a subset of 
primates into our current form around 6–7 million years ago has been spent in a natural environment. 
Conversely, we have spent less than 0.01% of our species’ history in a modern environment, which 
only started with the beginning of urbanization in the Industrial Revolution. The highly urbanized 
and artificial environments that we currently inhabit are the root cause of the “stress state” in modern 
people. We therefore enter a relaxed state when exposed to the natural environment or to a nature-
derived stimulation, which brings us closer to our original natural state as human beings. Tactile 
stimulation by touching wood with the palm is considered to bring about physiological relaxation 
effects because wood is a familiar and representative natural material for humans. 

Regarding subjective evaluations, the participants felt more comfortable, relaxed, natural, warm, 
uneven, and dry after contact with white oak than with other materials. In this study, the 
physiological response of brain activity and autonomic nervous activity, the subjective evaluation of 
materials, and evaluations of their physical properties (e.g., surface roughness and heat flow rate) are 
shown to be consistent. The relationship between the subjective evaluation when touching wood and 
the physical property values of materials has been examined for a long time. In particular, there are 
many previous studies focusing on subjective thermal sensation and thermal properties of materials. 
Wang et al. [39] reported a significant correlation between the subjective thermal sensation and the 
heat penetration coefficient of materials. Sadoh and Nakato [40] clarified that the thermal 
conductivity of wood and the heat flux between wood and palm affect the subjective thermal 
sensation. Sakuragawa et al. [41] reported a significant correlation between heat flux between 
materials and the palm and the subjective thermal-comfort feeling using wood and other materials, 
such as aluminum. In addition, equality of the heat flux value at the base of the palm and the heat 
flux value between wood and palm is cited as a factor that increases subjective comfort upon touching 
wood with the palm compared to other materials. Furthermore, Sakuragawa et al. [7] examined the 
physiological effects of tactile stimulation of the palm with wood on blood pressure, using materials 
at different temperatures (cool, room temperature, and warm) to eliminate the influence of the heat 
flux of each material. As a result, systolic blood pressure did not increase even upon contact with 
chilled wood, and the subjective feeling of “coarse/natural” was maintained. Conversely, touching 
aluminum at room temperature increased blood pressure, and subjective feelings of 
“dangerous/uncomfortable” and “flat/artificial” were increased. These results revealed that even in 
a cooled state, touching wood did not cause physiological stress. 

In this study, we examined the physiological relaxation effect of touching wood in comparison 
with touching other materials with the palm of the hand. However, this study had three limitations. 
First, although this study used non-coated wood, it is necessary to clarify the influence of touching 
wood with various coatings on the physiological response because much of the wood used in 
everyday life is coated. Second, although we clarified the effect of touching wood with the palm here, 
the effect when touching with the sole of the foot should also be examined because wood is often 
used as flooring material. Third, this study measured the physiological effects of only placing the 
palm on the material. The influence of active contact, such as stroking the surface of the wood with 
the hand, on the physiological response should also be clarified. 

5. Conclusions 

In comparison with other materials (marble, tile and stainless steel), tactile stimulation of the 
palm with white oak significantly decreased the oxy-Hb concentration in the left/right prefrontal 
cortex, which is associated with prefrontal cortex activity, and significantly increased the ln(HF) 
component of HRV, which reflected parasympathetic nervous activity. These findings indicate that 
contact with wood induces physiological relaxation. 
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