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Abstract: To develop appropriate measures to prevent soil contamination in abandoned mining
areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in
the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis,
which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant
hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should
also be surrounded by other features with high values. Using relatively cost- and time-effective
portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan
abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively
low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic
emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine
are classified into four groups according to their normalized content and z-scores: high content with
a high z-score (HH), high content with a low z-score (HL), low content with a high z-score (LH),
and low content with a low z-score (LL). The HL and LH cases may be due to measurement errors.
Additional or complementary surveys are required for the areas surrounding these suspect samples
or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure
in which the hot spot analysis and proposed group classification method are employed to support
the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are
investigated and analyzed in phases 1–4, respectively. The method implemented in this case study
may be utilized in the field for the assessment of statistically significant soil contamination and the
identification of areas for which an additional survey is required.

Keywords: hot spot analysis; Getis-Ord Gi*; portable X-ray fluorescence; soil contamination; GIS

1. Introduction

Mining is a global industry that can be hazardous to public health and safety, and that can
cause damage to the surrounding environment, including the land, soil, water, and forest [1]. Soil
contamination is a significant problem among the various mining hazards, because mine waste
generally contains a higher content of potentially toxic trace elements (PTEs) than regular industrial
waste [2]. Elevated PTE levels may be found in and around mines because of the dispersion of
mine waste down-slope due to surface runoff, wind action, and effluent drainage into nearby soil
and open water systems [3]. An anomalous PTE concentration may affect the soil environment and
quality, ultimately posing a serious risk to crops, livestock, and human health through food chain
accumulation [4]. Therefore, the spatial variation of PTEs in both operating and abandoned mining
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areas should be investigated, so as to identify the appropriate isolation or treatment measures to
prevent soil contamination [5,6].

Many studies on PTE spatial variation have been conducted worldwide, in which this variation
has been explored and mapped using geostatistical interpolation methods in geographic information
systems (GIS) [7–12]. These methods are valuable tools for understanding PTE spatial variation and
generating soil contamination maps. In these techniques, the spatial autocorrelation of the studied
phenomenon is considered in order to create spatial correlation structures and to estimate the unknown
values at unsampled locations [13]. With the development of a portable X-ray fluorescence (PXRF)
instrument, which is relatively more cost and time effective than inductively coupled plasma atomic
emission spectrometry (ICP-AES), the type and content of PTEs in soil can be investigated at a higher
number of sampling points. The utilization of larger datasets can be a significant advantage for spatial
variation estimations. PXRF analysis data have been used as input data to explore PTE spatial variation
using geostatistical methods in previous studies [14–16]. However, the generation of high-quality soil
contamination maps remains difficult because of the relatively low accuracy of PXRF analysis data.
Therefore, Lee et al. [2] have attempted to use both ICP-AES and PXRF analysis data for geostatistical
interpolation, so as to compensate for any disadvantages of these instruments while incorporating
their advantageous features. Although such geostatistical interpolation results are useful for predicting
PTE concentrations in mining areas for which sampling was not conducted, these methods cannot
provide information on whether the samples are statistically significant. For instance, kriging, which is
a widely used geostatistical interpolation method, uses the data covariance to predict unknown values
and quantifies the uncertainty in the estimation of those values [17]. However, the kriging variance
is zero at the observations and the predicted values of the observations are exactly the same as the
observed values. Thus, this method cannot aid in the assessment of the sampling reliability because it
regards the observations as accurate.

To overcome this limitation, hot spot analysis, which identifies a statistically significant hot spot
sample by calculating z-scores based on the Getis-Ord Gi* statistic [18], is used in this study. In this
system, a feature with a high value is interesting; however, it may not correspond to a statistically
significant hot spot. For a feature to be recognized as a statistically significant hot spot, it must have
a high value and must also be surrounded by other high-value features. The Getis-Ord Gi* statistic
is calculated by comparing the sum of a point and its nearest neighbors to the sum of all points in a
given study area. This approach has been widely used in applied geographic research to identify the
clustering of species populations [19], disease [20], crime incidence [21], medical care availability [22],
and food retailers [23]. However, few studies applying hot spot analysis to PTE distributions have
been conducted.

Among those studies, McClintock [24] recently utilized hot spot analysis to evaluate the risk
of lead contamination in post-industrial landscapes in Oakland, California. Getis-Ord Gi* analysis
revealed that the lead contamination in that region is related to the land-use history on the city and
neighborhood scales. However, although the McClintock study [24] identified contaminated hot spot
areas by analyzing the statistical significance of various soil samples, the results were only utilized
to obtain the result of the soil survey, and could not provide information to support the ongoing
soil survey process. In addition, Griffith et al. [25] have considered the impact of location errors on
local spatial autocorrelation by simulating significant heavy metal clusters using local Moran’s I and
Getis-Ord Gi* statistics. That study confirmed that more severe deviations from the true results are
observed if the samples contain larger location errors. This result elucidates the importance of spatial
location accuracy in hot spot analysis. However, as previously mentioned, soil survey planning could
not be supported by the hot spot analysis results in the Griffith et al. study [25].

The aim of the present study is to assess statistically significant soil contamination in a given
region and to support soil survey planning by determining areas for which an additional survey
is required during the sampling process. Getis-Ord Gi* hot spot analysis is employed and a group
classification method is proposed to identify suspect samples requiring a complementary survey.
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Element analysis data from PXRF instruments located at the abandoned Busan mine in Korea are
used for analysis. As PXRF instruments can investigate a considerably greater number of sampling
points more rapidly than the alternatives, they are useful for rapid planning in a soil survey process.
To calibrate the PXRF data, which tend to overestimate the PTE concentrations in the study area,
the PXRF analysis data are transformed using the ICP-AES data. However, a geochemical investigation
includes inevitable errors in the data analysis, which stem from a variety of sources. Therefore, it
is important to identify problems in the geochemical data to obtain higher-accuracy results, which
in turn facilitate a better understanding of the soil contamination in the examined area. The results
indicate that information on the statistical significance of each sample can be obtained via hot spot
analysis. Hence, critical areas in soil sampling can be identified and the next soil sampling process can
be planned.

2. Materials and Methods

2.1. Study Area and Soil Sampling

The currently abandoned Busan mine located at Saha-gu, Busan, South Korea, was selected as the
target area (Figure 1). The Busan mine was in operation until 1986 and produced a total of 2246 tons of
iron [26]. Although high PTE concentrations have been found around the waste rock pile and pit heads,
no formal environmental treatment of their surroundings has been implemented [26]. In addition,
the dispersion of mine waste rocks and tailings via surface erosion has caused soil contamination [2].
The extent of the target area was defined as 280 m × 200 m considering the location and dispersion
of pollution sources based on the topography. Soil sampling was planned for a total of 100 points
according to a four-phase procedure. To support the sampling-point planning for each phase, hot spot
analysis and the proposed group classification method were employed. The sampling-point density
was relevant for the purpose of this study, and a sample was taken in each 560 m2 area.
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A dataset obtained via on-site analysis of the copper content was used for hot spot analysis in this
study. The dataset was acquired using a PXRF instrument (Innov-X DELTA Handheld XRF analyzer;
Olympus, Japan) equipped with a gold anode as the excitation source and a silicon drift detector.
This PXRF instrument operates at 40 kV and 0.1 mA. Using a hand auger, surface soil samples were
taken down to 10 cm in depth at various sampling points. The samples were comprised of a composite
of nine subsamples taken within a 5 m × 5 m area. After the soil samples were disaggregated and
sieved to <2 mm as loose powders in the field, they were analyzed using PXRF. The element analysis
results yielded by the PXRF instrument can vary depending on the water content of the soil [27,28].
Tolner et al. [28] determined that approximate reductions of 1–3%, 23–30%, and 30–39% in the detected
metallic elements are obtained when the water content is 10%, 15%, and 20%, respectively, compared
to the results obtained for completely dry soil. Therefore, in this study, the PXRF element analysis
was conducted when the soil-sample water content was less than 10% [8,9]. The water content was
measured using a portable soil moisture meter (PMS-714; Lutron, Taiwan). The PXRF instrument
employs the fundamental parameters (FP) method to support quantitative analysis. The FP method
has associated stored libraries and allows elemental analysis to be performed without standards or
calibration curves. The accuracy of the results can be improved if well-prepared samples are available
for calibration.

For the purpose of calibration, the correlation between the PXRF and ICP-AES (VISTA-PRO;
Varian, Palo Alto, CA, USA) analysis data was examined based on the data obtained at 12 sampling
points, for which both PXRF and ICP-AES analyses were performed. The ratio of the validation data to
the sampling data was 12% in this study, considering the expense budget. This ratio is similar to that
(12.5%) of a previous study [16] in which the PXRF (training set) and ICP-AES data (validation set)
were compared. For the ICP-AES analysis, after air-drying at 25 ◦C in the laboratory for 5 d, the soil
samples were disaggregated and sieved to particles of less than 2 mm in size, before being ground to a
fine powder (<2 µm). According to the Korean standard test (KST) method for the chemical analysis of
soils [29,30], the soil samples were digested with 0.1 N of HCl solution, with 10 g of soil in 50 mL of
the solution. At an approximate ratio of 3:1, concentrated HCl (21 mL) and HNO3 (7 mL) (aqua regia)
were added to 2-g soil samples. The samples were then heated at 60 ◦C for 30 min and subsequently
at 140 ◦C for 90 min. After cooling and filtration, the solutions were diluted to 100 mL with distilled
water. The copper was quantified via ICP-AES using the measured intensity of the atomic emission at
a wavelength of 324.75 nm and a calibration curve according to the KST method. A blank test was
conducted for the calibration.

2.2. Hot Spot Analysis

Spatial correlation and autocorrelation are very important in spatial modeling, and various
methods for testing and measuring spatial autocorrelation have been developed. Moran’s I is one of
the best-known spatial autocorrelation measures used by geographers, while the semi-variance is the
most popular tool used by geologists and remote sensing analysts [31]. For spatial econometricians,
the typical approach involves an estimation of the spatial autocorrelation coefficients of regression
equations [32], which are applied globally to the entire study area. However, it is often necessary to
examine a pattern at a local scale, particularly if the process is spatially nonstationary. Thus, Getis
and Ord [18] focused upon local effects to develop a spatial association measure called the “Getis-Ord
Gi* statistic.”
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In this study, the Getis-Ord Gi* statistic was calculated for each feature in a given dataset using
the Hot Spot Analysis (Getis-Ord Gi*) tool in GIS software ArcMap 10.1 (Environmental Systems
Research Institute, Inc., Redlands, CA, USA). To constitute a statistically significant hot spot, a feature
with a high value should also be surrounded by other features with high values, as noted above.
The Getis-Ord Gi* statistic is calculated by comparing the local sum of the value for the feature in
question and those of its neighbors to the sum of all feature values, such that:

G∗
i =

∑n
j=1 wi,jxj − X ∑n

j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−

(
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]
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(1)

where xj is the attribute value for feature j, wi,j is the spatial weight between features i and j, n is the
total feature number, and:

X =
∑n

j=1 xj

n
(2)
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√
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j=1 x2
j

n
−
(
X
)2 (3)

The resultant Gi* statistic is a z-score. For statistically significant positive z-scores, the larger the
z-score, the more intense the clustering of high values (i.e., a hot spot is obtained). For statistically
significant negative z-scores, the smaller the z-score, the more intense the clustering of low values
(i.e., a cold spot is obtained). When the local sum is very different from the expected local sum and
that difference is too large to be the result of random chance, the z-score is statistically significant.

2.3. Methods of Applying Hot Spot Analysis to Copper-Concentration Sampling and Assessment

To assess statistically significant soil contamination and to determine the areas in which
an additional survey is required, the PXRF data for the Busan abandoned mine study area were
classified into four groups according to the concentrations and the z-scores yielded by the Gi* statistics.
The four groups were as follows: a high concentration value with a high z-score (HH; class 1); a low
concentration value with a high z-score (LH; class 2); a low concentration value with a low z-score
(LL; class 3); and a high concentration value with a low z-score (HL; class 4). To classify the dataset
elements into these four groups, a scatter plot was created in which the concentration value normalized
by the standard deviation (std. dev.) and the Gi* z-score were utilized as the x and y variables,
respectively. In statistics, the normalized copper concentration value and Gi* z-score correspond to
the signed number of standard deviations with a dimensionless quantity. The dataset elements are
classified into four groups based on the value of 0 as a criterion for both the x and y variables. Note
that the classification of samples as HL and LH may result from measurement errors, and these regions
require a complementary survey.

The soil sampling was conducted according to a four-phase procedure in which the hot spot
analysis and proposed group classification method were employed to support the development of
a sampling plan for the following phase. For each phase, soil samples were obtained and analyzed
by the PXRF instrument. The entire study area was considered and covered in all four phases.
Overall, 30, 50, 80, and 100 sampling points were utilized in phases 1–4, respectively. The group
classification method was applied to the samples obtained in each phase so as to identify the areas
requiring a complementary survey in the next phase. Furthermore, the hot spot analysis results
indicated the areas of significant soil contamination. Such hot spot areas require careful consideration
in the context of both the soil sampling plan and the reclamation plan. To achieve the aim of applying
the proposed method, a total of 100 sampling points were investigated as an initial plan in this study.
It seems that the results of these 100 sampling points are relevant for a contamination assessment of
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the study area. That is, if significant indications of contamination are obtained in the final results,
continuous soil sampling can be conducted until no noteworthy results are found.

To confirm the appropriate method of spatial relationship conceptualization for the hot spot
analysis, four methods were used to examine the copper concentrations: the inverse distance method,
the inverse distance squared method, the fixed distance band method, and the zone of indifference
method [33].

3. Results and Discussion

3.1. Soil Sampling Results

Figure 2a,b shows the spatial distributions of the copper concentration as determined by
the ICP-AES and PXRF instruments, respectively. Samples with copper concentrations of more
than 50 mg/kg were obtained in most areas, and high concentrations were detected near the pollution
sources. It has been reported that different living organisms experience severe toxicity effects in
response to copper concentrations of approximately 50 mg/kg, and no biomass is produced at levels of
approximately 600 mg/kg [34]. A very strong correlation was obtained between the datasets yielded
by the PXRF and ICP-AES, with an R2 value of 0.99, as shown in Figure 2c. The copper concentrations
at the 12 sampling points analyzed using both the ICP-AES and PXRF instruments are listed in Table 1.
Because the ICP-AES analysis data have a relatively high accuracy, the PXRF analysis data were
transformed by calculating the trend equations of these two datasets. These transformed PXRF results
are also listed in Table 1. It should be noted that the transformation overestimates the values with
low concentrations, although the PXRF values were properly transformed for concentrations of more
than 80 mg/kg. The transformed PXRF analysis data based on the correlation were used to implement
the hot spot analysis and to generate copper contamination maps.
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Table 1. Copper concentration results determined using ICP-AES and PXRF for 12 sampling points.

No. Cu (mg/kg)
(ICP-AES)

Cu (mg/kg)
(PXRF)

Cu (mg/kg)
(Transformed PXRF) Remark

1 17 29 45

12 sampling points at which
both ICP-AES and PXRF
analyses were performed

2 29 40 52
3 33 58 64
4 48 78 77
5 57 94 88
6 344 499 355
7 636 1044 715
8 1080 1470 997
9 1338 1731 1169

10 1535 2316 1555
11 4041 5853 3891
12 4437 6930 4602

3.2. Spatial Autocorrelation Results

Prior to the implementation of the hot spot analysis, the spatial autocorrelation results for the
net samples based on the feature locations and attribute values were obtained, as shown in Figure 3.
These results were derived from the Global Moran’s I statistic of the Spatial Autocorrelation tool
provided in ArcMap 10.1. The Spatial Autocorrelation tool evaluates whether the feature pattern is
clustered, dispersed, or random. Positive and negative Moran’s I index values indicate a tendency
toward clustering and dispersion, respectively. The z-scores and p-values were calculated as Global
Moran’s I statistics to indicate whether or not the null hypothesis could be rejected. In this study, the
null hypothesis was complete spatial randomness, in which case the feature values would be randomly
distributed across the study area. This null hypothesis must be rejected if statistically significant
clustering is to be obtained, which evidences the underlying spatial precondition employed in the hot
spot analysis. In this study, the z-score was found to be 7.52 and there was a less than 1% likelihood
that this clustered pattern could be the result of random chance (Figure 3).

Figure 4 shows scatter plots of the results obtained from the final 100 samples considered in
phase 4 of the PXRF analysis (discussed in more detail in Section 3.3) according to the different spatial
relationship conceptualization methods. Here, the x and y variables are the copper concentration value
normalized by the std. dev. and the Gi* z-score, respectively. The normalized copper concentration of
each sample was calculated by dividing the difference between the sample and mean values by the std.
dev. This is a widely used method for the standardization of a raw value in statistics. As shown in
Figure 4, the Gi* z-scores yielded by the inverse distance method and the inverse distance squared
method are almost identical to the normalized concentration values (Figure 4a,b). This indicates that
the hot spot analysis results based on these methods cannot provide much additional information
beyond that yielded by the concentration value. On the other hand, the z-scores of the fixed distance
band method and the zone of indifference method provide information beyond that given by the
concentration value (Figure 4c,d). It is generally accepted that the fixed distance band method is an
excellent tool for conceptualizing spatial relationships [33]. In this method, the analysis scale does not
change across the study area, because a critical fixed distance is used to select the neighbors included
in the analysis. Therefore, the fixed distance band method was utilized in this study to assess the
statistically significant soil contamination and to determine areas requiring an additional survey.
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3.3. PXRF Analysis and Classification

As the first phase of the PXRF analysis and classification process, soil sampling was randomly
conducted for 30 sampling points located in the study area. The samples were then analyzed using
PXRF. The copper concentration histogram obtained for these 30 samples is presented in Figure 5a,
in which the distribution is positively skewed. Note that hot spot analysis can be applied to skewed
data provided that each feature is associated with several neighbors, and under the assumption that the
distribution is asymptotically normal [35]. Figure 6a shows the spatial distribution of the Gi* z-scores
resulting from the hot spot analysis. In the first phase, although one sample near the pollution sources
exhibits a slightly high Gi* z-score, the hot spot is not remarkable; this lack of distinction results from a
lack of data. The statistical summary of the first phase is as follows. The transformed PXRF analysis
data yielded minimum, maximum, mean, and std. dev. values of 45, 4602, 961.6, and 1121.5 mg/kg
for the copper concentration, respectively. For the Gi* z-scores, minimum, maximum, mean, and std.
dev. values of −1.36, 1.78, 0.18, and 0.86 were obtained via hot spot analysis, respectively. The results
are listed in Table 2. Figure 7a shows the scatter plot of the normalized copper concentrations and Gi*
z-scores of the first phase. The normalized copper content was determined by dividing the difference
between each sample value and mean value by the std. dev. Hence, the 30 samples of the first phase
were classified into four groups (classes 1–4, as defined above). The x- and y-axes were used to split
the criteria. In other words, the samples were classified based on four distinct quadrants. Classes 1
and 3, corresponding to HH and LL, respectively, were regarded as containing explicit hot and cold
spots, respectively. Class 2 (LH) was regarded as containing probable hot spots, despite the relatively
low content values of these samples. Similarly, Class 4 (HL) was regarded as containing probable
cold spots, despite the relatively high content values of these samples. However, the classification of
samples into classes 2 and 4 may result from some error in the investigation, as noted above. Figure 8a
illustrates the distribution of the classified samples over the study area for phase 1. The class-1 samples
are clustered near the pollution sources, whereas the class-2 samples are distributed around the class-1
samples. It is noteworthy that the sample marked A in this figure, which is only classified as class 4,
is located far from the pollution source. Because 30 sampling points are insufficient to determine the
characteristics of the study area, additional surveys were conducted for the second phase. This phase
focused on the areas near classes 1 and 2 and sample A.
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Table 2. Descriptive statistics of the transformed copper concentration and Gi* z-score results according
to the four-phase procedure.

Item Phase The Number
of Samples Minimum Maximum Mean Std. Dev.

Transformed
copper

concentrations

1 30 45 4602 961.6 1121.5
2 50 45 4602 902.8 958.0
3 80 40 5477 895.6 1102.2
4 100 40 5477 771.8 1027.4

Gi* z-score

1 30 −1.36 1.78 0.18 0.86
2 50 −2.16 3.38 0.29 1.42
3 80 −2.26 3.56 0.41 1.61
4 100 −2.05 3.76 0.50 1.73
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As the second phase, soil sampling was conducted on 20 additional sampling points, with the
samples again being analyzed using PXRF. In addition, a re-analysis of the sample-A sampling point
was conducted, which confirmed that there was an error in the first measurement. The first and second
copper concentration measurements for sample A, which was reclassified as class 3, are listed in
Table 3. In other words, sample A, for which a measurement error was suspected, was re-analyzed and
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identified as an explicit cold spot. The copper concentration histogram obtained for the 50 samples
examined in phase 2 is shown in Figure 5b. As in the first phase, the distribution is positively skewed.
Figure 6b shows the spatial distribution of the Gi* z-scores obtained via hot spot analysis. Here, the
hot and cold spots are more remarkable compared to the first-phase results. The statistical summary
of the second phase results is as follows. The transformed PXRF analysis data yielded minimum,
maximum, mean, and std. dev. values of 45, 4602, 902.8, and 958.0 mg/kg for the copper concentration,
respectively. The Gi* z-scores yielded minimum, maximum, mean, and std. dev. values of −2.16,
3.38, 0.29, and 1.42, respectively, via hot spot analysis (Table 2). Figure 7b shows a scatter plot of
the normalized copper concentrations and Gi* z-scores of the second phase. As seen previously,
the 50 samples of the second phase were classified into four groups. The classification is more obvious
than in the first phase, because the Gi* z-scores are more widely spread as a result of the larger dataset.
Figure 8b shows the distribution of the classified samples in the study area. Here, class-1 samples are
clustered near the pollution sources and spread to the west and south of these sources. Additional
surveys for the third phase were mostly conducted in the western and central parts of the study area,
for convenience and considering the topography.

Table 3. Re-investigation results for sampling points suspected to be influenced by error.

Sampling
Point

Initial
Analysis

Phase (Phase)

Initial Cu
Value

(mg/kg)

Initial
Classification

(Class)

Second
Analysis Phase

(Phase)

Second Cu
Value

(mg/kg)

Second
Classification

(Class)

A 1 1505 4 2 112 3
B 3 1320 4 4 1333 4
C 3 353 2 4 1555 1
D 3 865 2 4 838 1

As the third phase, 30 additional sampling points were analyzed using PXRF. The copper
concentration histogram for the 80 samples is shown in Figure 5c, and a positive skew is again
apparent for this distribution, as in the previous phases. Figure 6c shows the spatial distribution
of the Gi* z-scores resulting from the hot spot analysis. The hot spots around the pollution sources
are clearly distinguishable. In particular, the area west of the pollution sources holds a remarkable
hot spot zone. The transformed PXRF analysis data yielded minimum, maximum, mean, and std.
dev. values of 40, 5477, 895.6, and 1102.2 mg/kg for the copper concentration, respectively. The
Gi* z-scores yielded minimum, maximum, mean, and std. dev. values of −2.26, 3.56, 0.41, and 1.61,
respectively, as obtained via hot spot analysis (Table 2). Figure 7c shows a scatter plot of the 80 samples
classified into the four groups. It is notable that four samples are classified as class 4. However, three
of these four samples (excluding the sample labeled B in the figure) are located near the x- or y-axes.
Thus, although these samples are classified as class 4, they may not be important because they can
be classified to another class by slight variations of variables. As shown in Figure 8c, these class-4
samples are located on the boundary between the class-1 (explicit hot spot) and class-3 (explicit cold
spot) regions. Further, samples C and D, which are classified as class 2, are surrounded by class-1
samples (Figure 8c). In addition, samples C and D have relatively high Gi* z-scores compared to
the concentrations (Figure 7c). Therefore, for the fourth phase, a re-analysis of samples B, C, and
D was planned.

In the fourth phase, 20 additional sampling points were analyzed using PXRF. Most of these points
were located in the southeastern part of the study area. The sampling points of samples B, C, and D
were re-investigated and the results are listed in Table 3. As a result of this re-analysis, samples B and
D were found to have similar concentrations to those obtained in the third phase. On the other hand,
sampling point C was found to have a higher concentration compared to the previous value. Thus, it
seems that some error affected the first measurement of sample C. The histogram for the 100 samples
obtained in this case is again positively skewed, similar to those of the previous phases (Figure 5d).
Figure 6d illustrates the spatial distribution of the Gi* z-scores. The samples are evenly distributed
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overall, except for those in the southwest region of the study area. This region was not regarded as
significant (being a cold spot region), based on the hot spot analysis and group classification of each
phase. The statistical summary of the transformed PXRF data for the 100 sampling points yielded
minimum, maximum, mean, and std. dev. values of 40, 5477, 771.8, and 1027.4 mg/kg for the copper
concentration, respectively. The Gi* z-scores yielded minimum, maximum, mean, and std. dev. values
of −2.05, 3.76, 0.50, and 1.73 via hot spot analysis, respectively (Table 2). Figure 7d shows the scatter
plot of the 100 samples classified into the four groups. Despite the re-investigation of sampling point
B, sample B was again classified as class 4, as for the third-phase result. On the other hand, the other
three class-4 samples identified in the third phase, which were located near the y-axis (Figure 7c), were
re-classified as class 1 or 3 based on the slightly altered Gi* z-scores and normalized concentrations by
additional surveys. Sample C was reclassified from class 2 to class 1 according to the re-investigation
result. Further, although similar concentration values were obtained for sample D in the first and
second investigations (phases 3 and 4; Table 3), this sample was also reclassified from class 2 to 1.
This change was made because the normalized concentration value of sample D increased slightly, as
the concentration mean decreased from 895.6 to 771.8 mg/kg. The spatial distribution of the group
classification is shown in Figure 8d. If additional surveys are planned, an investigation of the area
west of sample B is one suggestion for the next phase.

As demonstrated by the above results, the group classification method suggested in this study
can be utilized to plan a soil survey procedure and to identify samples that require a complementary
investigation. In phases 1 and 3, more samples (30) were investigated to expand the survey area.
In phases 2 and 4, fewer samples (20) were investigated, as the aim was to re-investigate the
pre-surveyed area. A simple and intuitive method using four quadrants can be applied to classify the
samples, as detailed above. However, the classes of the samples located near the scatter-plot borders
can be easily changed by slight variations. This may be a common phenomenon for samples near
the scatter-plot origin in particular. Thus, other methods that consider the gradient or the distance
from the origin in the scatter plot may be employed in the classification stage in future applications.
Nevertheless, the method presented herein can provide very useful and intuitive information on
samples. In this study, a small number of class-4 samples were obtained, and some of these samples
were even reclassified as other classes following an additional survey. Therefore, samples of this type
requiring a complementary investigation can be found easily. In addition, class-2 samples can be
further categorized into one of two types: those at the spatial boundary of a class-1 cluster (an explicit
hot spot) and those underestimated because of certain errors, as exemplified by sample C above.
Because the former is a much more common case and as these two sample types are not segregated in
the scatter plot, the spatial distribution map of the group classification should be examined to locate
samples misclassified because of some error.

4. Conclusions

In this study, Getis-Ord Gi* hot spot analysis and a proposed group classification method
were employed to map copper-contamination hot spots in a given study area, and to support the
development of soil sampling plans. Element analysis data obtained via PXRF instruments and
validated by ICP-AES were used. With the development of the PXRF instrument, which is relatively
cost and time effective, a considerably greater number of sampling points can be investigated instantly.
Therefore, it is possible to plan the next investigation step rapidly based on an analysis of the acquired
data. However, the relatively low accuracy of PXRF data or investigation errors can be a source of error
in the data. Herein, hot spot analysis and the proposed group classification method were applied to
each soil sampling phase, not only to identify the hot spot areas, but also to identify samples suspected
to have an error.

Comprehensive site investigation work, including movement, soil sample analysis, data
transmission, hot spot analysis, group classification, and subsequent soil sampling planning, was
conducted for 2 d, from 9 am. to 5:30 pm. Overall, 170 min were required to analyze the copper
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concentrations at the 30 sampling points of phase 1, and approximately 80 min were required to
analyze the data and plan the next phase, including the breaks. A roughly 120-min period was spent
analyzing the copper concentrations at the 20 sampling points of phase 2. Again, approximately 80
min were required to analyze the data and plan the next phase. Phases 1 and 2 were conducted on
the first day and phases 3 and 4 were conducted on the second day. The durations of the second-day
tasks were similar to those of the first day. Note that the soil investigation and mapping conducted
solely via ICP-AES, which is the conventional method used in the geochemistry field, may require a
period of at least 7 d [29]. Therefore, the developed method using PXRF can not only help plan the soil
sampling, but also substantially reduce the implementation time.

Although numerous previous studies utilizing geostatistical interpolation to predict PTE
spatial variation in soil have been reported, the methods used in those studies cannot provide
information on the statistical significance of each sample and the potential measurement errors.
Geostatistical interpolation methods are very useful for assessing the spatial distribution of
contamination by predicting the unknown values for any location. However, difficulties arise when
these methods are used to find a defective sample before contamination mapping. Hot spot analysis
is not used to predict unknown values; however, this approach can be used to acquire better-quality
samples before contamination mapping by assessing the statistical significance of each sample in the
field. The results of this study confirm that hot spot analysis can provide information on the statistical
significance of each sample. This information is important for sample assessments and for the planning
of the next soil sampling process. The application of hot spot analysis and the proposed classification
approach can constitute a valuable filter for the identification of critical areas in soil sampling. If the
method proposed in this study is used in conjunction with geostatistical interpolation, it may contribute
to a remarkable improvement in soil contamination mapping from the perspective of reliability.

The spatial variation of PTEs in soil can be heavily affected by topography and surface erosion
due to runoff, unless appropriate isolation or treatment measures are implemented [36–39]. Therefore,
in future research, a consideration of the surface flow when specifying the distance from each feature
to neighboring features may be worthwhile. If software is developed to allow the application of
the method presented in this study and embedded in the PXRF instrument, the latter can become a
very useful tool for the development of sampling plans in the field. In addition, it is expected that
hot spot analysis can be applied to 3D geochemical data for mineral exploration or the detection of
underground pollution.

Acknowledgments: This work was supported by (1) Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01061290) and (2) Korea
Energy and Mineral Resources Engineering Program funded by the Ministry of Trade, Industry and Energy.
The authors thank anonymous reviewers for their critical comments and suggestions, which greatly improved the
quality of our manuscript.

Author Contributions: Yosoon Choi conceived and designed the experiments; Sung-Min Kim performed the
experiments and analyzed the data; Yosoon Choi contributed reagents/materials/analysis tools; Sung-Min Kim
and Yosoon Choi wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PXRF Portable X-ray fluorescence
ICP–AES Inductively coupled plasma atomic emission spectrometry
PTEs Potentially toxic trace elements
GIS Geographic information systems
HH A high concentration value with a high z-score
LH A low concentration value with a high z-score
LL A low concentration value with a low z-score
HL A high concentration value with a low z-score
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