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Abstract: The attention to sustainability-related issues has grown fast in recent decades.
The experience gained with these themes reveals the importance of considering this topic in the
construction industry, which represents an important sector throughout the world. This work consists
on conducting a multicriteria analysis of four cement powders, with the objective of calculating and
analysing the environmental, human health and socio-economic effects of their production processes.
The economic, technical, environmental and safety performances of the examined powders result
from official, both internal and public, documents prepared by the producers. The Analytic Hierarchy
Process permitted to consider several indicators (i.e., environmental, human health related and
socio-economic parameters) and to conduct comprehensive and unbiased analyses which gave the
best, most sustainable cement powder. As assumed in this study, the contribution of each considered
parameter to the overall sustainability has a different incidence, therefore the procedure could be
used to support on-going sustainability efforts under different conditions. The results also prove that
it is not appropriate to regard only one parameter to identify the ‘best’ cement powder, but several
impact categories should be considered and analysed if there is an interest for pursuing different,
often conflicting interests.
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1. Introduction

The current European Union (EU) regulatory framework concerning the contracting authorities
encourages policies inspired by social needs and environmental principles, which contribute to the
achievement of sustainable development. Protection and preservation of the natural environment are
characterized by three important stages:

1. The transition from development concepts exclusively linked to economic growth, to ones which
balance economic, environmental and social issues [1];

2. The definition of environmental protection as an EU constitutional principle [2]: in the last years
policies focused on promoting and encouraging the production of more environmentally friendly
goods have been adopted;

3. The introduction of the concept of “life cycle” of a product [3,4] and the introduction of
“green public procurement” (GPP) [5], applicable to all types of public bids, with the aim of
guiding public administrations towards purchasing goods and services less detrimental to the
environment [6].
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For this purpose, the European Member States have adopted National Action Plans (PANs) [7] to
implement GPP procedures in their bids. In Italy, Minimum or Rewarding Environmental Criteria,
(MEC or REC), respectively, have been defined: the first ones permit to get into a tender, the second ones
allow the competitors to have an additional score. The Italian approach pursues not only environmental
but also human health-related objectives: the damage-oriented approach considers damage to human
health, ecosystem quality and depletion of resources. This holistic approach is closely related to the
growing interest and diffusion of environmental labels which provides guidance on developing criteria,
compliance, systems, and operating procedures for awarding sustainability targets [8]. The ISO 14040
series [9–13] sets out three types of labeling scheme: type I is elaborated by a third party, type II is
elaborated by the producer, and type III which is based on a full life-cycle assessment, elaborated by
the producer and certified by a third party. All three consist of the sustainability performances of the
examined product [14], considering its consequences on the environment and human health. However,
there are not yet recognized or accredited methodologies to issue such labels: often the approach is
subjective and it does not allow a comprehensive analysis. The most frequent adopted methods are
based on the interrelation matrices, graphs and check lists, and multi-criteria decision theory [15].

Interrelation matrices permit one to identify and assess the interactions of a project with the
surrounding environment. The most known method is the Leopold matrix [16], whose elements
represent the environmental impact of each task by means of a couple of values (the coefficients of
importance and magnitude). It permits one to compare different alternatives, identifying the projects
with maximum positive or negative impact. The procedure does not consider the interaction between
effects, and does not give criteria to define the importance and magnitude coefficients, therefore it does
not ensure reliable results. Graphs (or networks) derive from interrelation matrices, but they do not
allow quantitative and comparative analyses. Check lists consist of qualitative environmental, social
and economic elements or quantitative reference lists to be considered in the calculation of impacts.
The Environmental Evaluation System, known also as the Battelle method [17,18], is the best known. This
method does not consider existing uncertainties between objective and subjective values of indicators
and their functions. Moreover, it does not consider the possibility of interaction with the community [19]
for defining parameters, especially in case of human and social factors. The models based on the
“multi-criteria decision” theory permit one to identify the best alternative, to get a ranking of alternatives,
to reduce the number of alternatives to be analyzed, and to distinguish between acceptable and not
acceptable alternatives. In this context, the Analytic Hierarchy Process (AHP) is particularly suitable
when most costs and benefits are intangible, and it is not possible to compare economic data.

This last methodology has been used in the paper, which compares the environmental, human
health and social effects [20] of cement, the most used material on the world [21] for structure
and infrastructure construction [22–26]. The study considers four powders whose “environmental”
performances have been certified by mean Environmental Product Declarations (EPD), which are
type III labels [27]. Workers’ safety and health, and economic data derive from internal documents
produced by the companies. The results permit to compare the sustainability of the cements, and
identifying the strengths and weaknesses of the examined powders.

The methodology herein adopted could be efficiently used and modified to analyze other products
or services: it is a versatile and unbiased tool to achieve the sustainable policies encouraged by the
European Community legislature.

2. Materials and Methods

The authors considered four gray cements prepared by four different Italian companies, which are
not named for reasons of confidentiality. All cements guarantee 32.5 MPa of 28-day characteristic
cubic compressive resistance (Rck). All powders are Portland-pozzolana cements, defined as CEM II
according to [28]: they have 65–89% of clinker, 21–35% of natural pozzolana, and 0–5% of other
constituents. Although each clinker content is not known by the authors, however the powders are
comparable because they represent specific, detailed and homogeneous chemical and mechanical
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characteristics. As regard to as the environmental and social criteria, the study considers the impact
categories listed in Table 1: their values refer to the production of 1 Mg of cement. According to the
standard EN 15804 [29], these categories describe environmental impacts, resource use, and waste
categories related to a production. They are therefore representative of environmental and human
health consequences of a manufacturing process.

Table 1. Impact categories examined in the study.

Impact Categories Unit of Measure Cement 1 Cement 2 Cement 3 Cement 4

Global Warming Potential, GWP kg CO2 eq. 737.59 664.6 785 611
Ozone Depletion Potential, ODP kg CFC-11 eq 3.39 × 10−5 3.41 × 10−5 5.16 × 10−5 1.00 × 10−5

Photochemical Ozone Creation Potential, POCP kg C2H4 eq 0.12 0.11 0.26 0.07
Eutrophication Potential, EP kg PO4 eq 0.45 0.43 0.28 0.18
Non-hazardous Waste, nHW kg 158 188 0.053 6.11

Hazardous Waste, HW kg 0.12 0.14 0.1 0.0307
Renewable resources with energy content, RRE MJ 199 192.77 275 256

Non-renewable resources with energy content, nRRE MJ 7185 6799.01 6525 3080
Electricity, E kWh 189.41 183.17 132 175

Water consumption, W m3 0.481 0.573 0.705 0.674

As regard to the human health protection criteria, the authors considered the most common risks
for construction industry workers [30]: noise, whole body vibrations (WBV), hand-arm vibrations
(HAV), exposure to allergizing substances, exposure to Cr(VI) (hexavalent chromium), and exposure
to free crystalline silica (FCS). All values are deduced from the (internal) Document of Risk Evaluation
prepared by each company, as required by the Italian standard about the safety of workers [31].
As regard as the content of Cr(VI), the Italian companies comply with the European Directive
2003/53/CE [32] and doubly test their cements to increase worker safety [33]. As regard to the
exposure to FCS, the weekly Permissible Exposure Limit considered in the study is compliant with
the American Conference of Governmental Industrial Hygienists standards [34]. Examined risks have
been classified according to the standardization proposed by the Italian Ministry of Labour [35].

For the economic issues, the authors considered the unit price of cements, listed on the pricelist of
each cement plant (not herein disclosed due to privacy reasons). Table 2 lists the human health and
economic data.

Table 2. Human health and economic data examined in the study.

Parameter Unit of Measure Cement 1 Cement 2 Cement 3 Cement 4

Exposure to Cr(VI) - Not relevant Not relevant Low Not relevant
Exposure to FCS - Not relevant Not relevant Low Not relevant

Exposure to allergising substances - Low Low Average Not relevant
Noise dB (A) 80 80.5 82 79
WBV m/s2 0.5 0.5 0.65 0.4
HAV m/s2 1 1 1.2 1.05

Unit price €/m3 136 148 150 112

FCS: free crystalline silica; WBV: whole body vibrations, HAV: hand-arm vibrations.

The impact categories listed in Tables 1 and 2 have been considered as decision criteria to choose
the most sustainable cement powder by mean the AHP method. It consists of decomposition of
decision problem (what is the best, or most sustainable, cement?) into hierarchy of easier sub-problems,
each independent from others. Each element of the hierarchy could be referred to any aspect of the
decision problem (e.g., both tangible and intangible, measured and estimated variables).

The method is composed of three phases:

1. Hierarchical decomposition, which includes:

• a first level, which represents the overall “goal” of the analysis;
• a final level, which represents the alternatives to be considered;
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• intermediary levels, which represent criteria and subcriteria for evaluating the alternatives
(named A1, A2, A3), as represented in Figure 1.
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Figure 1. Example of hierarchical decomposition.

Figure 1 represents four levels of analysis. The hierarchical decomposition consists of three criteria
(criterion A, B and C) and five sub-criteria (sub-criterion 1 to 5) to be applied to three alternatives.

2. Pairwise comparison: each element of each level is compared to other elements of its level respect
to each criterion of the higher level. The decision maker should answer questions such as: “how
much is the alternative i preferable with respect to the alternative j from the point of view of the k
criterion?” or “how much is the criterion l most important than the criterion m with respect to
the general objective?” The answer should be quantitative, therefore when it is not possible the
relative scale of importance by Saaty [36] could be used. This method determines the relative
importance of criteria by mean the pairwise comparison, using the numerical/semantic scale
represented in Table 3.

Table 3. Scale of importance by Saaty [36].

Intensity of Importance Definition of Importance Condition

1 Equal Both elements contribute equally to the goal

3 Moderate Experience and judgement moderately favour one of the elements

5 Strong Experience and judgement strongly favour one element over another

7 Very strong Judgement very strongly favour one element over another

9 Extreme One element is favoured very strongly over another, as confirmed
by evidence

2,4,6,8 Intermediate values between
odd adjacent values Compromise is necessary

The scale of importance shown in Table 3 allows the decider composing the matrices pairwise
comparisons (C), whose eij elements means the preference of i with respect to j and the eji are reciprocal
of eij (Table 4). As consequence of this, such matrices are square and have dimensions equal to the
number of variables (Oi) considered elements in the hierarchical level under consideration.

Table 4. Example of matrix C.

O1 O2 O3 O4

O1 1 m12 m13 m14
O2 1/m12 1 m23 m24
O3 1/m13 1/m23 1 m34
O4 1/m14 1/m24 m34 1

For each hierarchical level, the decision maker generates as many pairwise comparison matrices
as elements of the upper level. From each of these matrices, elements of the considered hierarchical
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level are ordered respect to each involved criterion of the upper level. A pairwise comparison matrix
is consistent if any three elements eij, eik, ejk satisfies Equation (1) [37]:

eik = eij ejk (1)

3. Hierarchical re-composition: from the vector of preferences of each lower level respect to its
upper level, it is possible to obtain the vector of overall ordering vector of alternatives in relation
to the goal. In presence of 3-level hierarchy, as represented in Figure 1, ordering vectors are those
of alternatives compared to each criterion and those of criteria compared to the goal.

Compared to benefit/cost analyses, the evaluation in the AHP process does not seek to find the
“optimum project”, but to find a satisfactory solution to several, often intangible, objectives considered
in the decisional process. According to the Pareto efficiency, the analysis is based on optimum
allocation of available resources [38]. The hierarchical analysis is mathematically more complex than
classic multi-criteria analysis [39], but it simplifies the work of decision maker, which responds to
simple and same type questions, the pairwise comparisons. Subjective elements, as the choice of the
relative importance scale, and the definition of the acceptable threshold inconsistency, are present
in the hierarchical analysis and they limit the action of decision maker, but the method ensures an
inclusive approach to multi-criteria problems. Indeed, it allows the evaluation of multiple aspects, as
happens in construction bids, where legislative, technical, economic and environmental issues should
be considered. On other hand, the method is decried as being arbitrary in the assignment of the relative
weights and influenced in the result by the number of considered alternatives. As regard as the first
weak point, the authors interviewed technicians from different backgrounds, experts in the fields of
environment, human health and economy (i.e., data listed in Tables 1 and 2). As regard as the latter
weak point, the analysis considers only ten impact categories instead of 26 defined by [29], and limits
human health and economic analysis to the most considered variables at international level [40].

3. Results

The study focused on the choice of the most sustainable cement powder to be used for cement
bound mixtures (e.g., grouts, mortars, concrete). The four cement powders are identified by the
nomenclature cement n, with n varying from 1 to 4, and they are produced by different plants
numbered according to the cement nomenclature (i.e., cement 1 is produced by plant 1 or company 1).
The hierarchy defined by the authors involves four level of analysis, as represented in Figure 2:

(1) The main goal, the choice of the best cement powder (level I);
(2) The objectives of (level II):

a. Minimizing environmental interferences,
b. Minimizing negative social-economic aspects,
c. Maximizing health of workers reducing their job risk;

(3) The objectives of (level III):

a. Minimizing impacts on the atmosphere, terrain and water resources (sub-objectives of
environment analysis),

b. Minimizing the effects of noise, chemical substances and mechanical vibrations
(sub-objectives of workers’ health analysis),

c. Minimizing the energy consumption and costs (sub-objectives of socio-economic analysis);

(4) The objectives of (level IV):

a. Minimizing global warming potential (GWP), ozone depletion potential (ODP), and
photochemical ozone creation potential (POCP) (sub-objectives of atmosphere analysis),
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b. Minimizing eutrophication potential (EP) (sub-objective of water environment analysis),
c. Minimizing non-hazardous and hazardous waste (sub-objectives of terrain analysis),
d. Minimizing exposure to free crystalline silica, Chromium VI and allergizing substances

(sub-objectives of chemical risk analysis for workers),
e. Minimizing exposure to whole body vibrations and hand-arm vibrations (sub-objectives of

mechanical risk analysis for workers),
f. Minimizing consumption of renewable resources with energy content, non-renewable

resources with energy content, electricity, and water.
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ODP: ozone depletion potential; POPC: photochemical ozone creation potential; EP: Eutrophication
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body vibrations; HAV: hand-arm vibrations; RRE: renewable resources with energy content; nRRE:
non-renewable resources with energy content; E: electricity; W: water consumption.
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As regard as the priorities relating to the three criteria of level II, pairwise comparisons gave the
results shown in Table 5. Thirty two (32) technicians have participated in the AHP analysis: eight
environmental engineers, eight chemical engineers, eight occupational physicians, and eight energy
managers. The geometric mean has been used to aggregate individual judgements and obtain pairwise
comparison matrices. Values of cij show little preference for workers’ health respect to environment
and society, consistently with the main goal of “sustainability”.

Table 5. Pairwise comparison matrix for level II (C,II).

Level II Environment Workers’ Health Society

Environment 1 0.5 2
Workers’ health 2 1 2

Society 0.5 0.5 1

Each element cij derives from application of the Saaty method [36]: it represents the importance
relationships between each pair of criteria.

Pairwise comparison matrix for level II (C,II) has been normalized. Each element xij of the
normalized pairwise comparison matrix for level II (N,II) is obtained by dividing each element cij by
the sum of each column of pairwise comparison matrix (Equation (2)):

xij =
Cij

∑n
j=1 Cij

(2)

Table 6 represents the normalized pairwise comparison matrix (N,II) for level II.

Table 6. Normalized pairwise comparison matrix for level II (N,II).

Level II Environment Workers’ Health Society

Environment 0.29 0.25 0.40
Workers’ health 0.57 0.50 0.40

Society 0.14 0.25 0.20

Table 6 allowed the calculation of weights to be related to each criterion of level II. Weights wij
have been obtained by Equation (3):

wij =
∑m

j=1 Xij

m
(3)

Weight vector of level II (W,II) is represented in Table 7.

Table 7. Weight vector for level II (W,II).

Level II Weights

Environment 0.312
Workers’ Health 0.490

Society 0.198

The analysis of consistency was composed of three phases:

• Analysis of consistency of each criterion and assessment of consistency vector;
• Measure of consistency by mean consistency index (CI) as deviation or degree of consistency

according to Equation (4):

CI =
lmax − n

n − 1
(4)
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where n is the size of the pairwise comparison matrix C and lmax is the largest eigenvalue of C
when w is the weight vector, lmax satisfies Equation (5):

C·w = lmax·w (5)

• Measure of the ratio consistency (RC) according to Equation (6):

RC =
CI

RCI
(6)

where RCI is the Random Consistency Index proposed by Saaty for different size of the comparison
matrix (Table 8).

Table 8. Random Consistency Index [36].

RCI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

n 1 2 3 4 5 6 7 8 9 10

RCI: random consistency index.

It is acceptable RC ≤ 1; other values require revision of the subjective judgements.
The analysis of consistency for level II gave the results listed in Table 9 (lmax is 3.05).

Table 9. Consistency analysis for level II.

CI 0.03

RCI 0.58
RC 0.05

CI: mean consistency index; RC: ratio consistency.

The results listed in Table 9 satisfy the condition proposed by Saaty [36]: the judgements are
within the limit of consistency. As regard as the priorities relating to criteria of level III, pairwise
comparisons for environment analysis gave the results shown in Table 10.

Table 10. Pairwise comparison matrix for level III, environment analysis (C,IIIe).

Level III, Environment Atmosphere Waste Water Environment

Atmosphere 1 0.33 1
Waste 3 1 3

Water environment 1 0.33 1

Table 11 shows the normalized pairwise comparison matrix for level III, environment
analysis (N,IIIe).

Table 11. Normalized pairwise comparison matrix for level III, environment analysis.

Level III, Environment Atmosphere Waste Water Environment

Atmosphere 0.20 0.20 0.20
Waste 0.60 0.60 0.60

Water environment 0.20 0.20 0.20

Weight vector of level III, environment analysis (W,IIIe) is represented in Table 12.
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Table 12. Weight vector for level III (W,IIIe).

Level III, Environment Weights

Atmosphere 0.200
Waste 0.600

Water environment 0.200

The analysis of consistency of level III, environment analysis gave the results listed in Table 13:
they satisfy the condition proposed by Saaty [36] (lmax is 3).

Table 13. Consistency analysis for level III, environment analysis.

CI 0

RCI 0.58
RC 0

Similar procedure has been applied to criteria “worker’s health” and “socio-economical” aspects.
For the first one the results are based on the pairwise comparison matrix for level II, shown below in
Table 14.

Table 14. Pairwise comparison matrix for level III, Workers’ health analysis (C,IIIW).

Level III, Workers’ Health Chemical Risk Noise Mechanical Vibrations

Chemical risk 1 5 6
Noise 0.2 1 3

Mechanical vibrations 0.17 0.33 1

Weight vector for level III, workers’ health analysis is represented in Table 15.

Table 15. Weight vector for level III (W,IIIw).

Level III, Workers’ Health Weights

Chemical risk 1
Noise 0.2

Mechanical vibrations 0.1

As regard as the priorities relating to criteria of level IV, pairwise comparisons for atmosphere
analysis gave the results shown in Table 16.

Table 16. Pairwise comparison matrix for level IV, atmosphere analysis (C,IVa).

Level IV, Atmosphere GWP ODP POCP

GWP 1 0.5 2
ODP 1 1 0.5

POCP 0.5 2 1

Table 17 shows the normalized pairwise comparison matrix for level IV, atmosphere
analysis (N,IVa).
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Table 17. Normalized pairwise comparison matrix for level IV, atmosphere analysis.

Level IV, Atmosphere GWP ODP POCP

GWP 0.40 0.14 0.57
ODP 0.40 0.29 0.14

POCP 0.20 0.57 0.29

Weight vector of level IV, atmosphere analysis (W,IVa) is represented in Table 18.

Table 18. Weight vector for level IV (W,IVa).

Level IV, Atmosphere Weights

GWP 0.371
ODP 0.276

POCP 0.352

The analysis of consistency of level IV, atmosphere analysis gave the results listed in Table 19:
they satisfy the condition proposed by Saaty [36] (lmax is 3.11).

Table 19. Consistency analysis for level III, environment analysis.

CI 0.06

RCI 0.58
RC 0.09

Similar procedure has been applied to sub-criteria waste, water environment, energy.
At the end of the hierarchical analysis involving all sub-criteria, the cements have been compared.

Table 20 shows the comparison matrix for environmental sub-criteria GWP.

Table 20. Pairwise comparison matrix for environmental sub-criteria GWP.

GWP Cement 1 Cement 2 Cement 3 Cement 4

Cement 1 1 0.33 3 0.20
Cement 2 3 1 5 0.33
Cement 3 0.33 0.20 1 0.17
Cement 4 5 3 6 1

Table 21 shows the normalized pairwise comparison matrix for environmental sub-criteria GWP.

Table 21. Normalized pairwise comparison matrix for environmental sub-criteria GWP.

GWP Cement 1 Cement 2 Cement 3 Cement 4

Cement 1 0.11 0.07 0.20 0.12
Cement 2 0.32 0.22 0.33 0.20
Cement 3 0.04 0.04 0.07 0.10
Cement 4 0.54 0.66 0.40 0.59

Weight vector of GWP for the examined alternatives is represented in Table 22.
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Table 22. Weight vector of GWP.

GWP Weights

Cement 1 0.125
Cement 2 0.268
Cement 3 0.061
Cement 4 0.546

The analysis of consistency of environmental sub-criterion GWP gave the results listed in Table 23:
they satisfy the condition proposed by Saaty [36] (lmax is 4.15).

Table 23. Consistency analysis for GWP.

CI 0.05

RCI 0.90
RC 0.08

Similar procedure has been applied to all considered sub-criteria of level IV. Considering the
level IV of the criterion “atmosphere”, the corresponding sorting matrix of alternatives with respect to
considered sub-criteria is composed of the vertical weight vectors calculated for each sub-criterion
considered in the level under criterion atmosphere (Table 24).

Table 24. Sorting matrix of alternatives, atmosphere.

Level IV GWP ODP POCP

Cement 1 0.125 0.138 0.142
Cement 2 0.268 0.138 0.142
Cement 3 0.061 0.050 0.062
Cement 4 0.546 0.673 0.654

Performances of cements respect to atmosphere are calculated by mean the hierarchical
re-composition of the analysis. In particular, the sorting matrix of alternatives, atmosphere shown in
Table 24 should be multiplied by:

• The sorting vertical vector calculated for level IV, atmosphere (Table 18);
• The weight of atmosphere in the vertical weight vector for level III (Table 15);
• The weight of environment in the vertical weight vector for level II (W,II) (Table 7).

The same procedure should be adopted for other environmental criteria of level IV. Figure 3
shows the results.

Int. J. Environ. Res. Public Health 2017, 14, 645  11 of 16 

 

 The weight of atmosphere in the vertical weight vector for level III (Table 15); 
 The weight of environment in the vertical weight vector for level II (W,II) (Table 7). 

The same procedure should be adopted for other environmental criteria of level IV. Figure 3 
shows the results. 

 
Figure 3. Level II: environmental results. 

Figure 3 highlights the waste production has a relevant role in environmental impact in all 
examined cements. Waste management is more efficient in plants which produce cement 3 and 4. The 
main waste products are paper and cardboard packaging, wooden and plastic packaging, mineral 
oils, electrical equipment and refractory materials out of order. In order to reduce their impact on the 
environment and allow their recovery, it is necessary to provide an advanced waste collection. In the 
Italian cement sector this practice covers 36% of total solid waste production [41]. 

Atmosphere emissions are related to implementation of Best Available Techniques (BAT) for 
cement industry, as reported in the European Reference document for the “Production of Cement, 
Lime and Magnesium Oxide” [42]. Particularly, the use of secondary fuels or raw materials (e.g., 
waste or by-products of mechanical and chemical industries) allows an integrated waste 
management approach, which saves natural and non-renewable resources and permits to recover 
waste in highly controlled conditions [43]. At this purpose, plant 4 has the best performance in terms 
of atmospheric emissions as consequence of: 

 Applying BAT (dry process kiln with multistage preheating and precalcination -in plant 4-, 
instead of Lepol kilns which causes higher values of emissions and fuel consumption -in plants 
1 to 3); 

 High percentages of caloric substitution by means of alternative fuels (average value 16.3% for 
plant 4, on average 8.2% for plants 1 to 3). 

As regard as the water environment, better performances of plant 4 respect to plants 1 to 3 are 
related to the environmental policies adopted by the company 4: it has practically zeroed the release 
of industrial water into the environment replacing open circuit system with closed loop systems. 

Figure 4 represents the results obtained about the workers’ health. 

 
Figure 4. Level II: workers’ health results. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cement 4
Cement 3
Cement 2
Cement 1

Score

Environment

Air Water Waste

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Cement 4
Cement 3
Cement 2
Cement 1

Score

Workers' health

Noise Chemical risk Vibrations

Figure 3. Level II: environmental results.



Int. J. Environ. Res. Public Health 2017, 14, 645 12 of 17

Figure 3 highlights the waste production has a relevant role in environmental impact in all
examined cements. Waste management is more efficient in plants which produce cement 3 and 4.
The main waste products are paper and cardboard packaging, wooden and plastic packaging, mineral
oils, electrical equipment and refractory materials out of order. In order to reduce their impact on the
environment and allow their recovery, it is necessary to provide an advanced waste collection. In the
Italian cement sector this practice covers 36% of total solid waste production [41].

Atmosphere emissions are related to implementation of Best Available Techniques (BAT) for
cement industry, as reported in the European Reference document for the “Production of Cement,
Lime and Magnesium Oxide” [42]. Particularly, the use of secondary fuels or raw materials (e.g.,
waste or by-products of mechanical and chemical industries) allows an integrated waste management
approach, which saves natural and non-renewable resources and permits to recover waste in highly
controlled conditions [43]. At this purpose, plant 4 has the best performance in terms of atmospheric
emissions as consequence of:

• Applying BAT (dry process kiln with multistage preheating and precalcination—in plant 4-,
instead of Lepol kilns which causes higher values of emissions and fuel consumption—in plants
1 to 3);

• High percentages of caloric substitution by means of alternative fuels (average value 16.3% for
plant 4, on average 8.2% for plants 1 to 3).

As regard as the water environment, better performances of plant 4 respect to plants 1 to 3 are
related to the environmental policies adopted by the company 4: it has practically zeroed the release of
industrial water into the environment replacing open circuit system with closed loop systems.

Figure 4 represents the results obtained about the workers’ health.
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The influence of mechanical vibrations (transmitted both to the whole body and to hand/arm) on
workers’ health has very low importance. The result is justified by the machines park of each company,
which belongs to the latest generation [42].

The chemical risk assumes an important role, as expected, since the operators come into contact
with substances which significantly affect their health. The purchase of new equipment and the use of
additives and chemicals not harmful to human health rewarded company 4. It is therefore confirmed
the need for adopting protective and preventive measures to reduce chemical risks, especially for
plant 3, which has the worst workers’ health performances. According to Figure 4, the noise in cement
plants represents the second factor of risk after the chemical one: mechanical equipment produces
high noise, especially if they are not compliant with noise regulations [44]. It is therefore important
to quieter equipment and machinery, and use hearing protection to reduce this risk [45,46]. Figure 5
represents the results obtained about the socio-economic issues.
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As regard as the energy consumption, the analysis considered water and electricity consumption.
Most of the observed differences are related to water consumption, since electricity consumption for
cements which have the same Rck is not appreciable [47]. The realization of closed rings circuits permits
to substantially reduce water consumption, during the cooling phase [48]. Plant 2 has the best results,
also related to the reuse of rainwater in the production cycle, while companies 3 and 4 have the worst
performances because they did not implement measures to recycle and reduce water consumption.

As regard as the unit price, cement 4 is the most convenient, the opposite of cement 3 which is the
most expensive.

The results shown in Figures from 3 to 5 have been summed for each criterion listed in level I.
This procedure allowed the selection of best cement, as represented in Table 25.

Table 25. Contribution of elements of level II to the main goal.
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Cement 4 is the most sustainable, and its performance is affected by the workers’ health criterion.
Indeed, this contribution is 0.409, more than 33.4% of the overall result, and considerably more than
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the workers’ health contribution for the other cements (Figure 4). The results highlight the importance
of considering more criteria in the analysis:

• Considering only environment (blue lines), cement 3 would be the best;
• Considering only socio-economic (green lines) results, cement 2 would be the best.

The AHP analysis ensured a good compromise between the three criteria (environment, workers’
health and society) applied on the cement production of four Italian companies, which are already
placed at a high level in terms of technological and procedural innovation [49].

As it can be observed from all previous analyses, the results obtained from the AHP analysis
could be useful to support the process of deciding the “best option”, because it allows a comprehensive,
critical and unbiased analysis, which could be efficiently replicated at different level [50] in public bids.

4. Conclusions

Within the framework of efforts to find a compromise between economic growth and need
to protect environment, the European Union has set targets for reducing greenhouse emissions,
increasing energy efficiency, promoting use of renewable resources and reducing waste production.
The environment is only one of the aspects to be considered in the decision phases, because the design
choices involve multiple aspects ranging from legislative to technical-structural issues, from purely
economic to human health criteria.

In this sense, the use of multi-criteria decision-making methods can overcome the limits of
traditional decision-making approaches that lead one to overlook certain performances or not to give
correct importance to others. These methods provide support to those who should make choices,
requiring simple tasks in order to reach an objectively valid and unbiased choice.

This paper presents an application of the Analytic Hierarchy Process on four different cement
powders produced by Italian companies. The method complies with objective of evaluating various
options according to multiple and often conflicting features: it consists of pairwise comparisons
between all considered parameters, which are sorted by non-dimensional values. The analysis consists
of four levels: (1) the level I, which coincides with overall “goal” of the study: the best cement; (2) the
level II, which considers environment, human health and socio-economic aspects; (3) the level III,
which includes eight sub-criteria of level 2; (4) the level IV, which consists of 15 numerical sub-criteria
of level 3.

The presented analysis allows comparing the overall sustainability of 1 Mg of 32.5 grade cement
produced at four different plants. The AHP study demonstrates that considering only environmental
issues, cement 3 would be the best; considering only socio-economical results, cement 2 would be
the best, while assessing the whole sustainability of each cement, cement 4 is the best. This shows
that it is incorrect to consider only one indicator to select the best material among several alternatives,
mostly when workers’ health is considered. This result is paramount because the growing attention
for sustainable construction issues needs for a comprehensive, simple and versatile methodology to be
applied at different level in public bids.
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