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Abstract: Mercury has a strong environmental impact since both its organic and inorganic forms
are toxic, and it represents a pollutant of global concern. Liquid Hg is highly volatile and can be
released during natural and anthropogenic processes in the hydrosphere, biosphere and atmosphere.
In this study, the distribution of Gaseous Elemental Mercury (GEM) and the total and leached
mercury concentrations on paint, plaster, roof tiles, concrete, metals, dust and wood structures were
determined in the main buildings and structures of the former Hg-mining area of Abbadia San
Salvatore (Siena, Central Italy). The mining complex (divided into seven units) covers a surface of
about 65 ha and contains mining structures and managers’ and workers’ buildings. Nine surveys
of GEM measurements were carried out from July 2011 to August 2015 for the buildings and
structures located in Units 2, 3 and 6, the latter being the area where liquid mercury was produced.
Measurements were also performed in February, April, July, September and December 2016 in the
edifices and mining structures of Unit 6. GEM concentrations showed a strong variability in time
and space mostly depending on ambient temperature and the operational activities that were carried
out in each building. The Unit 2 surveys carried out in the hotter period (from June to September)
showed GEM concentrations up to 27,500 ng·m−3, while in Unit 6, they were on average much higher,
and occasionally, they saturated the GEM measurement device (>50,000 ng·m−3). Concentrations of
total (in mg·kg−1) and leached (in µg·L−1) mercury measured in different building materials (up to
46,580 mg·kg−1 and 4470 mg·L−1, respectively) were highly variable, being related to the edifice or
mining structure from which they were collected. The results obtained in this study are of relevant
interest for operational cleanings to be carried out during reclamation activities.

Keywords: gaseous elemental mercury; Hg-mining areas; Abbadia San Salvatore; Central Italy; total
and leached mercury; building material; remediation

1. Introduction

Total Gaseous Mercury (TGM) refers to the sum of Gaseous Elemental Mercury (GEM), Gaseous
Oxidized Mercury (GOM) and Particulate Bounded Mercury (PBM), e.g., [1], the latter two being
usually indicated as RM (Reactive Mercury; e.g., [2]). GEM (or Hg0) is by far the most abundant
form of Hg in the atmosphere (>95%) since it has high stability and volatility and low solubility
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with a residence time between 0.6 and two years [3,4]. On the contrary, GOM and PBM (defined by
Hg+2 compounds that consist of mercuric halides, mercuric sulfate, mercuric nitrite and mercuric
hydroxide [5]) are removed in a relatively short time, i.e., days or weeks [6].

According to [7], TGM emitted from anthropogenic activities to the atmosphere is about three
times higher than that emitted by natural sources. Coal combustion, waste incineration and cement
production are the most important TGM anthropogenic sources (about 2200 Mg·y−1; e.g., [8,9]),
whereas those related to natural emissions are mainly due to volcanic and hydrothermal systems
(up to 830 Mg·y−1; e.g., [10–13]). Recently, [14] computed that TGM contributions from both natural
(primary emissions + re-emissions) and man-made sources are equal to 7527 Mg·y−1.

The U.S. Government Agency for Toxic Substances and Disease Registry has ranked mercury
as the third most toxic substance on the planet after arsenic and lead [15,16], and it is distributed
in the hydrological, pedological and atmospheric geochemical spheres. Mercury affects cellular,
cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive
and embryonic systems of humans, e.g., [17]. According to [18], atmospheric mercury poses two
specific risks: (i) a direct one, which involves the inhalation of gaseous mercury, causing different
problems to human physiology, e.g., [18,19], and (ii) a collateral one, which refers to the transformation
of the Hg-species, i.e., from either GEM into GOM or GOM into methyl-Hg, the latter being the most
toxic form of mercury, e.g., [20–24]. Many international projects have provided detailed information
on the distribution of GEM on a global scale, e.g., [25,26]. Moreover, actions to ban the opening of new
Hg-mines, the closure of those already existing and the elimination of any Hg-bearing products from
daily life are presently undertaken (The United Nation’s Minamata Convention [27]).

Serious health problems are caused by human exposure to inorganic mercury during the
exploitation of ore containing mercury, especially when Hg-bearing rocks are roasted to produce
Hg◦, e.g., [28–35], or other occupational activities where mercury is used, e.g., [36–39].

In this paper, we present new original data on the spatial and temporal distribution of GEM in
the main buildings and structures of the former Hg-mining area of Abbadia San Salvatore (Siena,
Central Italy) and total and leached concentrations of mercury determined on different building
materials in order to: (i) assess to what extent GEM contamination occurs; (ii) characterize the amount
of mercury deposited and adsorbed in the building materials of the most important edifices (including
the furnace-bearing structures); and (iii) provide indications for minimizing the impact to the workers
who are about to initiate the first phase of remediation. The main actions will consist of the removal of
paint, plaster, roof tiles and dust. Operational activities are also expected to occur in the structures
that are still hosting the Gould and Nesa furnaces, where the highest concentrations of GEM were
recorded [40].

2. The Study Site

The world-class Hg-mining district of Abbadia San Salvatore is located in Southern Tuscany
(Central Italy; Figure 1), and it is related to the volcanic activity of the Mt. Amiata silicic complex [41,42],
whose products, mainly consisting of trachytic to olivine latitic lava flows and domes, were emplaced
between 305 and 231 ka [43,44].

The very first exploration studies at Abbadia San Salvatore date back to 1846. Mercury production
started in 1899 when the Cermak Spirek furnaces were ignited for the first time. The old mining area
also included a large deposit of wood for the furnaces, some driers and a small water pool that was
used to cool down the gaseous mercury as it was passing through the condensers. In the following
years, horizontal (Gould) and vertical (Nesa) furnaces, new dryers and transportation belt systems
and slug deposits were installed. The production activity at Abbadia San Salvatore terminated in
1976, since the exploitation of mercury was not economically sustainable, and the use of mercury
declined due to its noxious and toxic effects. In 2008, an agreement between the Municipality of
Abbadia San Salvatore and the former owner of the mining concession (E.N.I., National Agency for
Hydrocarbons, AGIP Division) was signed to transfer the ownership of the reclamation to the public
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institution. In the agreement, remediation actions were addressed to an environmental rehabilitation
of the mining areas and buildings for museum purposes and public greens [40,45]. It was estimated
that more than 100,000 tons of liquid mercury were produced during the activity of the Abbadia San
Salvatore mining district [46,47], whilst about 10% of the total production was released as Hg fumes
into the atmosphere [45,48].
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Figure 1. Location of the Hg-mining district of Abbadia San Salvatore (Central Italy) and subdivision
into seven units according to the expected different concentrations of mercury present as both GEM and
total and leached mercury in the building materials of the edifices hosted in the former mining area.

After the closure of the mining activity, E.N.I.-AGIP Division produced numerous documents
where operational activities to remediate the Hg extraction and processing areas were reported,
although cessation of the mining activities, which occurred without a scheduled basis, left the
decontamination issue open. In fact, liquid mercury and tailing mounds are still occurring in the
study area.

In 1998, the Tuscany regional authorities (Regional Decree No. 1447) produced specific guidelines
(named “Norma Amiata”) for the remediation of the metallurgic activity related to the Hg-mining
production areas. The most important points were, as follows: (1) outdoor and indoor concentrations
of GEM have to be <300 and <500 ng·m−3, respectively; and (2) concentrations of Hg in leached soils,
terrain and building materials have to be <1 µg·L−1 after leaching with CO2-saturated water.
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On the whole, the mining complex has a surface of about 65 ha and contains mining structures
and managers’ and workers’ buildings (Figure 2). Previous studies, e.g., [32,40,47,49], evidenced the
relatively high concentrations, though heterogeneously distributed, of GEM and total mercury in
the mining structures and related building materials, respectively. Accordingly, the Municipality of
Abbadia San Salvatore divided the mining complex area into seven different units (Figure 1) [50],
Unit 6 containing the most heavily contaminated structures (Figure 2) [40], as follows.
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Figure 2. Photos from an ultralight vehicle of the main edifices and mining structures from Units 2, 3
and 6 (see Figure 1) with a description of their use when the mining district was active.

Unit 0: This sector is dominated by large green areas mainly consisting of chestnut trees
and Mediterranean scrub and located far from any mining structure. No remediation actions are
expected [49].

Unit 1: It is located in the eastern entrance of the mining site, and only a small portion is included
in the remediation area. No Hg contamination was recorded, being situated far from the sites where
liquid mercury was produced [49].

Unit 2: It includes several edifices, such as the mining headquarter building, the workers’
dressing room and showers and mining structures, e.g., grounding area, mineral conveyor belts,
the Garibaldi well.

Unit 3: It consists of several edifices, among which are: the electrical cabin, the mechanical
workshops and an old edifice where furnaces, dryers and condensers were present.

Unit 4: This area (named “Le Lame”) is located to the north of the mining area where most mining
wastes were accumulated.

Unit 5: It is the smallest unit and hosts the armory and the guardian’s house. No Hg contamination
was recorded [49,50].
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Unit 6: It is situated to the south of the former mining area close to the urban center of Abbadia
San Salvatore. The Gould and Nesa furnaces, condensers and dryers and the main material storing
areas are located in this unit.

In this paper, we focused our attention on those edifices and mining structures belonging to Units
2, 3 and 6, which urge a prompt remediation, being characterized by the highest concentrations of
mercury [40,49]. GEM measurements and chemical analyses of man-made materials were carried out
in the edifices indicated in Figure 2.

3. Materials and Methods

Nine surveys of GEM measurements were carried out from July 2011 to August 2015 for those
buildings and structures located in Units 2, 3 and 6 (Figures 1 and 2). In addition, GEM measurements
were also performed in February, April, July, September and December 2016 in 77 selected spots inside
and outside edifices and mining structures of Unit 6 (Figure 3).
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spots (and relative description) where GEM surveys by Lumex 915+ were carried out in February, April,
July, September and December 2016. GEM data and mean, minimum and maximum temperatures
during the surveys are in Supplementary Material S2.

Real-time GEM measurements in air were carried out using a portable Lumex (915+) analyzer.
This device is based on Zeeman Atomic Absorption Spectrometry using High Frequency Modulation of
Light Polarization (ZAAS-HFM; [51]). Application of Zeeman background correction and a multipath
analytical cell provides high selectivity and sensitivity. The accuracy of the method is 20% [52].
The detection limit is governed by shot noise and equals CaDL (Characteristic Absolute Detection
Limit) = 2 ng·m−3 (average measuring time = 5 s) and CaDL = 0.3 ng·m−3 (average measuring time =
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30 s) at a flow rate of 20 L min−1 for GEM determination in ambient air and industrial and natural
gases. The dynamic range covers four orders of magnitude (2–50,000 ng·m−3).

The GEM portable instrument was maintained at a height of 150 cm from the ground, while
the operator was slowly moving around each room. Each measurement consisted of the acquisition
of the GEM data every one second and calculating the mean values every 30, 60, 90, 120, 150 and
180 s. The GEM data were thus reported as the mean value calculated after 180 s of measurements.
During the in-door measurements, the recorded data for each room were varying by ±10%. A similar
procedure was adopted when measuring GEM outside of most edifices and structures and carried out
at a distance of about 1 m from the walls.

Mean, minimum and maximum temperatures were obtained by two meteorological stations
located at about two hundred meters from the former Hg-mining district and available at [53,54].

All of the samples for the analysis of total and leached mercury were collected by using gloves; to
remove paint, plaster, rust, concrete and wood, a hammer, chisel and spatula, cleaned with HCl and
acetone, were used. Two soil samples, collected at about 10 m from the edifice containing the Gould
furnaces (Figure 2), were dried at room temperature and then sieved at 2 mm. The <2-mm fraction
was used for the determination of total and leached mercury.

Paint, plaster, roof tiles, dust and wood were collected from Units 2, 3 and 6 and analyzed at the
Laboratories of Gruppo CSA Ricerche (Rimini) by DMA (Direct Mercury Analyzer)-80, according to
the procedure reported in [55]. All samples were ground and homogenized. According to the expected
Hg concentrations, a few tens to hundreds of milligrams of each sample (analyzed in triplicate) were
weighed in a sample boat, thermically decomposed in an oxygen flow at 650 ◦C and transferred to
a Mn3O4-CaO catalyst, which removed possible interference substances, e.g., halogens and molecular
nitrogen and sulfur oxides. The Hg◦-rich vapors were interacting with an Au-amalgamator that acted
as a selective trap for mercury. Then, mercury was promptly released by increasing the temperature
up to 900 ◦C and transferred by the O2 flow to the measurement system that consisted of atomic
absorption. Absorbance was measured at 253.65 nm, obtained by an interferential filter that acted on
the radiation emitted by an Hg cold vapor lamp at low pressure. A calibration curve was built with
appropriate Hg◦ standards. The analytical error was <10%.

Metallic material (e.g., furniture and rust) and the two soils were digested with aqua regia
according to the method UNI EN 13657:2004 at the Laboratories of Gruppo CSA Ricerche (Rimini)
and analyzed by ICP-AES (Agilent 720ES) following the recommendations reported in UNI EN ISO
11885:2009. The analytical error was <10%.

Leaching tests consisted of weighing about 10 g of fine-grained material into a 100-mL beaker to
which 50 mL of CO2-saturated MilliQ water were added. CO2-saturated MilliQ water was obtained
by bubbling pure CO2 into a Pyrex® bubbler, which was previously cleaned with ultrapure HCl (1:1),
for 15 min until a pH of 4.5 was reached. The suspension was periodically swirled for about 3 h and
allowed to decant overnight. The supernatant was filtered at 0.45 µm with cellulose nitrate filters.
Mercury was then analyzed by ICP-AES at the Laboratories of Gruppo CSA Ricerche (Rimini).

4. Results

4.1. Hg◦ Measurements in the Main Edifices and Mining Structures

The GEM data measured in the nine surveys carried out from July 2011 to August 2015 in the
edifices and structures of the Abbadia San Salvatore mining district and belonging to Units 2, 3 and 6
are reported in Supplementary Material S1 along with the respective planimetry and mean, minimum
and maximum temperatures when the GEM measurements were carried out, whilst those related to
the same period and those determined (Figure 3) in February, April, July, September and December
2016 in Unit 6 are listed in Supplementary Material S2. Gaseous mercury background values for
Mt. Amiata are 3–5 ng·m−3 [40], while in the urban area of Abbadia San Salvatore, the recorded values
were <10 ng·m−3 [56].
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Remarkable variations were observed during the GEM surveys, mostly related to seasonal
variations. It is worth mentioning that doors and windows from edifices from Units 2 and 3 had been
closed for many years after the closure of the mining activity. They contained old furniture, metallic
spare parts, wood, rock samples, and so forth. Later on, these materials were removed and analyzed
for total and leached Hg before their disposal (see below). Consequently, the air quality of most rooms
was improved. For the sake of clarity, below, we summarize the most relevant results obtained during
the nine (Units 2 and 3) and fourteen (Unit 6) GEM surveys, whilst the full set of data, including mean,
minimum and maximum temperatures, are reported in Supplementary Materials S1 and S2.

Edifices belonging to Unit 2 and the respective GEM concentrations (in ng·m−3) were, as follows:
Edifice 1 (headquarters): It consists of five and 14 rooms located at the ground and first floor,

respectively. GEM concentrations were from 20 to 182 ng·m−3 (ground floor) and from 5 to 602 ng·m−3

(first floor). GEM measurements carried out along the perimeter of the edifice were between 8 and
56 ng·m−3.

Edifice 2 (thermal heating area): It has one room that showed GEM values always <50 ng·m−3.
Edifice 3 (workers dressing building, Figure 4a): It is formed by three floors: the ground and

first floors and a mezzanine, the latter being almost completely destroyed since the roof partly
collapsed. The ground floor has six rooms where GEM reached values up to 932 ng·m−3, although in
September 2014, 1686 ng·m−3 were measured in Room A (Supplementary Material S1). In the first
floor, GEM values were <144 ng·m−3, while in the mezzanine, they were up to 113 ng·m−3.

Edifice 4 (residential): It consists of two floors. This building is seriously damaged, and
consequently, GEM measurements (up to 111 ng·m−3) were carried out only sporadically due to
possible collapses.

Edifice 5 (granulation area): It is characterized by a ground floor and three basements; in
July 2011, the highest GEM values were recorded in the basement floors: 1100, 1250 and 13,600 ng·m−3,
respectively. GEM values at the ground floor never exceeded 280 ng m−3.

Edifice 6 (Garibaldi well; Figure 4b): GEM measurements were carried out close to the main
entrance of the well, now closed for safety reason, with values ≤267 ng.m−3.

Edifices 10 and 11 (air compressor and winch areas, respectively): They contain power supply
machines to run the elevator of the Garibaldi well. GEM values were <100 ng.m−3, whilst along the
perimeter of the building, they were <66 ng·m−3. In 2015, before the collapse of the roof, GEM values
up to 85 ng·m−3 were measured in the westernmost room.

The edifices belonging to Unit 3 and the respective GEM (in ng.m−3) values were, as follows:
Edifice 25 (mechanical workshop): It has a surface of about 1000 m2 and hosts a mezzanine and

three small rooms (about 10 m2 each). GEM measurements were carried out in three distinct sectors of
the building (Supplementary Material S1), where the highest concentrations were up to 3608 (close to
the main entrance), 3968 (in the middle of the building) and 2131 (close to the rear entrance) ng·m−3.
In the mezzanine, GEM values up to 2350 ng m−3 were recorded. Eventually, GEM concentrations
in the three rooms were <2350 ng·m−3, whilst 368 ng.m−3 were measured along the perimeter of
the building.

Edifice 26 (services for the workers of the mechanical workshop and pigment production area):
It is divided into nine sectors where GEM concentrations up to 4453 ng·m−3 were measured. Perimetral
values were up to 497 ng m−3.

Edifice 30 (powerhouse): It consists of two floors where relatively variable GEM concentrations
were measured and comprised between 950 and 58 ng·m−3.

Edifice 31 (electrical workshop): It has four rooms, and the GEM concentrations were up
1551 ng·m−3.

Edifice 32 (house of the supervisor in charge of the powerhouse): It has a small basement
(about 15 m2) and two floors. GEM values were relatively high and mostly varied between 333 and
2358 ng·m−3 (ground floor) and 168 and 6896 ng·m−3 (first floor).
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Unit 6 contains the main structures that were used to produce liquid mercury, and GEM
concentrations were measured with two different approaches. From July 2011–August 2016, Lumex
measurements were carried out in order to recognize where the highest GEM values were located.
Then, from February–December 2016, 77 sites situated in different edifices were systematically and
repeatedly measured. A description of each measured site is reported in Figure 3. The complete set of
data related to gaseous mercury is fully listed in Supplementary Material S2.

Old dryers and condensers, mud deposits and old furnaces (Figure 2; points marked from 1–11
in Figure 3 and Supplementary Material S2): These old buildings partly collapsed (Figure 4c,d).
GEM concentrations were highly variable in terms of space and time. The highest values were
measured at Points 6 (2480, up to ng·m−3), 9 (up to 3660 ng.m−3) and 10bis (up to 1133 ng·m−3).

Main conveyor belt station and cleaning fume area (Figure 2; points marked from 12–14 in Figure 3
and Supplementary Material S2): GEM contents were >200 ng·m−3; the highest concentrations was
1630 ng·m−3.

New dryers (Figure 2; points marked from 17–22 in Figure 3 and Supplementary Material S2):
GEM concentrations were spatially and temporally highly variable, since, for example, at Points 16 and
17, they were spanning from 47–6606 and from 161–4910 ng·m−3, whereas the lowest values (up to
625 ng·m−3) were measured at Points 15, 16, 21 and 22, the latter two being located in the conveyor
belt area.
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The Nesa furnace, condensers, silo platforms and warehouse (Figure 2; points marked from
23–35bis in Figure 3 and Supplementary Material S2): The Nesa furnace is hosted in an about 30-m high
edifice (Figure 4e). It was built in the 1960s and was functioning for a very short time due to stability
problems. Some mining material is still present in both the furnace and silo. GEM measurements in the
platforms of the silo were only performed in 2016. With the exception of the GEM measurements carried
out in the upper platforms of the condensers (Points 30 and 31), the other sites were characterized
by values >1000 ng·m−3 at least during one of the surveys. The highest GEM concentrations (up to
10,096 ng·m−3) were measured at Points 32–35.

Belt transportation tower (Figure 2; points marked from 36–41ter in Figure 3 and Supplementary
Material S2): This building consists of five floors and a >50-m long horizontal conveyor belt, which
was divided into three parts for this study. GEM concentrations were highly variable and ranged from
57–3192 ng·m−3, with the exception of Point 37, where a value of 10,835 ng·m−3 was measured in
September 2016.

Gould furnaces building (Figure 2; points marked from 42–71 in Figure 3 and Supplementary
Material S2): This is the edifice where liquid mercury was produced and consists of four Gould
furnaces (Figure 4f), condensers, condensation pools, cyclones to force the fumes from the furnaces
into the condensers, an exhaust pipeline, several silos used for the storage of the mining material
before roasting and conveyor belts. In this area, liquid mercury is still condensing, and occasionally,
small liquid mercury pools are observed [45]. As expected, this building is to be regarded as the
most contaminated site among all of the edifices and mining structures of the former mining area of
Abbadia Sal Salvatore. In some of the investigated sites, GEM concentrations were >50,000 ng·m−3.
More than 200 points (Supplementary Material S2) were measured during the 14 surveys, and in
almost 90% of them, GEM concentrations were >1100 ng·m−3; >60% were >3000 ng·m−3; and >30%
were >10,000 ng·m−3.

4.2. Total and Leached Mercury

Concentrations of total (in mg·kg−1) and leached (in µg·L−1) mercury from different building
materials and rock fragments still present in the transportation belts are listed in Table 1. Total mercury
showed for the same type of material highly variable values depending on the edifice or mining
structure from which it was collected. Roof tiles were characterized by the lowest total Hg contents,
being comprised between 0.8 and 17.5 mg·kg−1 for those edifices located relatively far from the liquid
mercury production area, whereas those collected in the mining structure hosting the old driers and
Gould furnaces, total Hg concentrations were of 36.2 and 485 mg·kg−1, respectively, both showing
relatively high contents of leached Hg (0.2 and 485 µg·L−1, respectively). We remark that roof tile
samples collected from the building hosting the Gould furnaces showed a relatively low concentration
of total Hg (4.1 mg·kg−1), although leached Hg was >1 µg·L−1. Concrete samples also showed a
relatively wide concentration range for both total and leached mercury (from 2.2–46,580 mg·kg−1 and
<0.1 and 4,470 µg·L−1), the highest values being related to concrete samples collected from the building
hosting the Nesa and Gould furnaces.

Total Hg concentrations in ordinary and tuff bricks ranged from 4.8–11,535 mg·kg−1, while leached
Hg was between 0.3 and 2250 µg·L−1, the highest values being found in the mining structures of Unit 6.
Notice that tuff bricks showed, on average, a higher content of leached Hg, being relatively more
porous than ordinary bricks. Both total and leached Hg values measured in drilled cores of various tuff
bricks from Edifice 25 (Figure 2) were systematically higher than those measured at the brick surface
(Table 1). Similarly, paint was characterized by higher concentrations of total and leached mercury
(from 5.5–281 mg·kg−1 and from <0.1–37.6 µg·L−1, respectively) when compared to the underlying
plaster (from 10.8–708 mg·kg−1 and from <0.1–392 µg·L−1, respectively). Unfortunately, where the
highest concentrations of total mercury in plaster were found, paint was scanty or even absent.

All of the abandoned machineries and instrumentations were partially covered by rust; thus,
several samples from different edifices and mining structures were also analyzed for total and leached
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mercury, the former varying from 1.3 (railing rust, Edifice 3) to 3390 (rust from the Nesa furnace)
mg·kg−1. Leached mercury from rust collected from the Nesa and Gould furnaces was measured only
on two samples (351 and 717 µg·L−1, respectively).

Three dust samples from the old and new driers were analyzed for total and leached mercury
with values up to 13,680 mg·kg−1 and 1020 µg·L−1, respectively.

Mineral wool from the Nesa furnace had total mercury of 420 mg·kg−1, whereas leached mercury
was 833 µg·L−1.

Wood pylons, wooden beams and tables showed concentrations of total mercury up to
57.2 mg·kg−1. The wooden beam from the edifice hosting mud deposit and old furnaces had leached
mercury of 0.4 µg·L−1.

Table 1. Concentrations of total (mg·kg−1) and leached (µg·L−1) mercury analyzed in different
materials collected from the former mining area of Abbadia San Salvatore; n.d. not determined.

SAMPLING SITE Total Hg Leached Hg SAMPLING SITE Total Hg Leached Hg

mg·kg−1 µg·L−1 mg·kg−1 µg·L−1

EDIFICE 1 EDIFICE 31

Basement (room A): Painting 29.6 n.d. Ground floor (room C): Plaster 50.0 <0.1

Ground floor (room C): Painting 28.3 <0.1 Ground floor (room C): Painting 67.0 2.2

Ground floor (room N): Painting 57.1 <0.1 Roof tile 0.8 <0.1

First floor (room H): Painting 11.5 <0.1 EDIFICE 32

Roof tile 6.8 n.d. Basement (room A): plaster 34.0 <0.1

EDIFICE 2 Ground floor (room G): plaster 51.9 4.2

Ground floor: plaster 12.8 <0.1 Ground floor (room G): painting 184 5.1

Mineral wool 18.5 n.d. Ground floor (room D): plaster 25.4 0.1

Rust 2.2 n.d. Ground floor (room D): painting 63.8 1.0

EDIFICE 3 Stairs (room E): painting 69.3 2.1

Ground floor (room C): Painting 165 <0.1 First floor (room G): painting 95.6 <0.1

Ground floor (room D): Painting 14.3 n.d. First floor (room G): plaster 74.9 <0.1

Ground floor (room E): Painting 20.5 n.d. Roof tile 3.3 <0.1

First floor (room C): Painting 13.8 <0.1 MATERIAL REMOVED AND
DISPOSED FROM EDIFICE 1 AND 3

First floor (room E): Painting 17.8 <0.1 Wood girders 1 1.9 <0.1

First floor (room F): Painting 15.3 <0.1 Wood girders 2 25.6 <0.1

First Floor (room C): Railing Rust 1.3 n.d. Wood girders 3 0.8 <0.1

First Floor (mezzanine):
Aerator Rust 24.3 n.d. Wood girders 4 8.4 <0.1

Roof tile 6.0 n.d. Wood furniture 1 3.9 0.2

Outer stair: Painting 19.0 <0.1 Wood furniture 2 9.17 <0.1

Main facade: Painting n.d. <0.1 Metal furniture 1 2.5 0.7

EDIFICE 4 Metal furniture 2 6.7 6.1

Ground floor (room A): Painting 5.5 n.d. Wood roof 1 98.5 3.3

Ground floor (room C): Painting 44.0 n.d. Wood roof 2 907 <0.1

Roof tile 17.5 n.d. Wood roof 3 34.6 <0.1

Main facade: Painting 86.5 <0.1 Wood roof 4 176 <0.1

EDIFICE 5 UNIT 6

Basement (first floor):
Hopper Rust 4.8 n.d. Rock wall (Old driers) 486 0.4

Basement (first floor): Vibrating
Screen Rust 16.0 n.d. Tuff bricks (Old driers) 37.6 29.2

Basement (first floor): Concrete 31.0 <0.1 Dust (Old driers) 5880 1.0

Concrete close to the
conveyor belt 471 <0.1 Bricks (Old driers) 76.6 0.2
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Table 1. Cont.

SAMPLING SITE Total Hg Leached Hg SAMPLING SITE Total Hg Leached Hg

mg·kg−1 µg·L−1 mg·kg−1 µg·L−1

Grinded rock on the conveyor belt 222 n.d. Plaster (Former grinding area in the
Old driers) 129 0.5

Gangue 10,800 n.d. Roof tile (Old driers) 36.2 0.2

Supporting pylons of the
conveyor belt: Rust 554 n.d. Plaster (Carpentry close to the

Old driers) 708 183

Supporting pylons of the
conveyor belt: Wood 57.2 n.d. Tuff bricks (water depuration area close

to the Old driers) 11,535 2160

Supporting pylons of the
conveyor belt: Wood 240 n.d. Concrete (Mud deposit and

old furnaces) 156 0.3

EDIFICE 6 Wood girders (Mud deposit and
old furnaces) 56.3 0.4

Ground floor: Stairs Rust 15.6 n.d. Bricks (Mud deposit and old furnaces) 9442 288

Ground floor: girder rust 13.7 n.d. Reinforced concrete (New driers) 14.3 <0.1

Ground floor: wood table in the
Garibaldi well cockpit 19.8 n.d. Dust (New driers) 1100 85.7

Ground floor: door rust of the
Garibaldi well cockpit 479 n.d. Concrete (New driers) 69.6 0.9

Ground floor: mining truck rust 30.6 n.d. Concrete (from the silo area in the
New driers) 3160 185

Ground floor: rocky retaining wall 1.2 <0.1 Dust (from the silo area in the
New driers) 13,680 1020

EDIFICE 10 Tuff bricks (New driers) 31.9 1.5

Ground floor (room A): painting 50.6 <0.1 Mineral wool (New driers) 58.7 2.8

Ground floor (room A): painting 21.2 n.d. Mineral wool (New driers) 63.4 1.4

Ground floor (room A): painting 40.7 n.d. Concrete (New driers) 23.6 0.2

EDIFICE 11 Concrete close to the transporting belt
(New driers) 76.8 9.8

Ground floor (room A): painting 281 <0.1 Concrete (support of the New driers) 90.9 0.2

Rails outside Edifice 10: rust 42.0 n.d. Concrete (condensation pools, Nesa) 64.4 1.4

EDIFICE 25 Crystalline isotactic polymer (Moplen)
condensers (Nesa furnace) 17.9 7.7

Ground floor (room B): tuff wall
(0–2 mm) 159 1.0 Mineral wool (Nesa furnace, first floor) 420 1.1

Ground floor (room B): tuff wall
(inner part) 6.4 n.d. Mineral wool (Nesa furnace, third floor) 336 833

Ground floor (room B): tuff wall
(outer part) 21.8 12.0 Rust (Nesa furnace) 3390 351

Ground floor (room A): tuff wall
(0–2 mm) 8.2 26.4 Reinforced concrete (Condensers at the

Nesa furnace) 46,580 4470

Ground floor (room B): tuff brick
at 10 cm depth 6.2 0.3 Mining material on the belt (conveyor

belt tower) 435 3.2

Ground floor (room B): tuff brick
at surface 19.7 0.8 Bricks (conveyor belt tower) 267 2550

Ground floor (room C): concrete
(surface) 469 52.6 Concrete (Gould furnaces edifice) 1045 1,470

Ground floor (room D): concrete
(inner pat) 2.2 n.d. Concrete (condensation pools, Gould

furnaces edifice) 257 14.7

Ground floor (room D): concrete
(outer part) 6.7 n.d. Concrete close to the silos (Gould

furnaces edifice) 109 6.8

Ground floor (room D): concrete 80.9 1.2 Plaster (Gould furnaces edifice) 353 34.4

EDIFICE 26 Concrete (close to the calcine deposit;
Gould furnaces edifice) 76.1 20.2

Ground floor (room E): painting 122 37.6 Rust (Gould furnaces) 2490 717

Ground floor (room E): painting 81.9 n.d. Brick (Gould furnace condensers) 6830 1690

Ground floor (room E): plaster 18.4 n.d. Concrete (exhaust pipe; Gould
furnaces edifice) 186 1.3

Ground floor (room F): painting 89.2 0.6 Bricks (liquid mercury bottling area) 4.8 10

Ground floor (room F): plaster 19.9 1.0 Lime (liquid mercury bottling area) 181 105
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Table 1. Cont.

SAMPLING SITE Total Hg Leached Hg SAMPLING SITE Total Hg Leached Hg

mg·kg−1 µg·L−1 mg·kg−1 µg·L−1

Main facade 42.8 n.d. Plaster (liquid mercury bottling area) 210 392

EDIFICE 30 Plaster (liquid mercury bottling area) 325 0.66

First floor (room B): plaster 10.8 <0.1 Crystalline isotactic polymer (Moplen)
condensers (Gould furnaces) 3020 660

First floor (room B): painting 25.8 <0.1 Roof tile (Gould furnaces edifice) 4.1 1.3

Roof tile 2.6 <0.1 Roof tile (Gould furnaces edifice) 485 140

Soil in front of the Gould furnaces 1 73,670 6640

Soil in front of the Gould furnaces 2 51,770 260

Condensers connected to the Nesa and Gould furnaces are made of crystalline isotactic polymer
(Moplen®). Significant differences in terms of total and leached mercury were recorded since fragments
from the condensers of the Gould furnaces showed higher concentrations than those related to the
Nesa furnace: 3020 mg·kg−1 and 660 µg·L−1 and 420 mg·kg−1 and 1.1 µg·L−1, respectively.

As previously mentioned, most (metal and wood) furniture, rock samples and wooden and roofs
(the latter related to collapsed parts of some buildings) were removed from Edifices 1, 2 and 3 and
stored outside and piled up. Wood and metal furniture and wooden beams and roofs were analyzed
for total and leached mercury by collecting fragments from each accumulation, which consisted of
about 1–2 tons each (Table 1). The highest total mercury contents were measured in the wooden
beams (34.6–907 mg·kg−1), while the lowest ones were found in the metal furniture (2.5–6.7 mg·kg−1),
although the latter had relatively high leached mercury (0.7–6.1 µg·L−1).

Eventually, two fine powdered samples from the ore deposit, still present in the transporting
belts, one lime sample located in the bottling area of liquid mercury and two soil samples, collected
outside of the building hosting the Gould furnaces, were also analyzed (Table 1). No leached mercury
was measured in the powdered rock samples. It is worthwhile to mention that in the two soils, waste
products (e.g., calcine, bricks, roof tiles, and so forth) were present [45]. High mercury concentrations
were recorded in the powdered samples (up to 10,800 mg·kg−1) and the soils (up to 73,670 mg·kg−1),
the latter also showing high contents of leached mercury (up to 6640 µg·L−1). The lime sample had
values of total and leached mercury of 181 mg·kg−1 and 105 µg·L−1, respectively.

5. Discussion

5.1. Spatial and Temporal Distribution of GEM

Mercury vapor is absorbed through inhalation, e.g., [57,58]; it bonds to S-bearing amino acids
and can reach the brain, e.g., [59]. Prolonged exposure to mercury vapor may induce neurological
dysfunction, and even low-level exposures are reported to produce weakness, anorexia, weight loss,
and so forth [60]. Changes in personality, loss of memory, depression and occasionally delirium were
reported as some of the symptoms when humans are exposed to high levels of mercury vapor [61].
The work in [32] evidenced that miners from Abbadia San Salvatore were less exposed to Hg◦ since
no native mercury was present in the ore deposit. Differently, workers involved in the smelting
process, cinnabar pigment production, soot purification, laboratory work and bottling showed high
concentrations of mercury in their blood and urine. The high GEM values measured in this study
for those buildings where native mercury was produced and treated can thus affect the operational
activity of the operators during remediation processes.

GEM concentrations in the edifices and mining structures from the former Hg-mining area of
Abbadia San Salvatore showed a strong variability in time and space (Supplementary Materials S1 and
S2 and Table 1), mostly depending on ambient temperature and operational activities carried out in each
building, respectively. To better evidence such differences, time variations (from July 2011–August 2015)
for selected buildings located in Units 2 and 3 are reported in Figure 5. Surveys carried out in the hotter
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period (from June–September) showed the highest GEM values, although in Edifice 1 and Edifice
3, the limit defined by the Tuscany Region (500 ng·m−3) was never exceeded. Values well above
500 ng·m−3 were recorded in the edifices where machinery used for the extraction of mercury is still
present (Edifice 5) or where workers and miners were operating (Edifice 31 and Edifice 32). Moreover,
the mercury production area of Unit 6 is relatively close to these edifices (Figure 2). The high GEM
concentrations measured in the buildings hosting the Gould and Nesa furnaces can be displaced to
Edifices 31 and 32 when wind is blowing from the south [40], increasing the GEM contents during
wintertime, as occasionally recorded (Figure 5).
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Figure 5. Gaseous Elemental Mercury (GEM) concentrations (in ng·m−3) versus time (from
July 2011–August 2015) for selected edifices located in Units 2 and 3; (a) Edifice 1: Basement;
(b) Edifice 3: First floor and Mezzanine; (c) Edifice 5; (d) Edifice 31: First floor; (e) Edifice 32: Ground
floor; (f) Edifice 32: First floor. The full set of GEM data is reported in Supplementary Material S1.

In Unit 6, GEM concentrations (Supplementary Material S2) were much higher than those
recorded in the edifices of Units 2 and 3 (Supplementary Material S1), being able to saturate the
GEM measurement device (>50,000 ng·m−3). The spatial and temporal GEM variability in Unit 6 is
shown by separately considering the five surveys carried out in 2016 (Supplementary Material S2),
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during which 77 spots were systematically analyzed in February (mean, min and max temperatures:
6.2, 3.0 and 8.0 ◦C, respectively), April (mean, min and max temperatures: 14.7, 10.5 and 17.1 ◦C,
respectively), July (mean, min and max temperatures: 22.0, 15.4 and 27.2 ◦C, respectively), September
(mean, min and max temperatures: 20.8, 13.7 and 25.7 ◦C, respectively) and December (mean, min
and max temperatures: 5.6, −0.1 and 10.8 ◦C, respectively). As shown in Figure 6, in summertime,
i.e., July 2016, GEM had the highest concentrations. Occasionally, relatively high concentrations
were also detected in September. During the colder months, GEM concentrations strongly decreased,
sporadically dropping down to <500 ng·m−3. It is worth mentioning that even those edifices that
had partly collapsed (e.g., buildings hosting mud deposits, old furnaces and old driers), hence being
more affected by meteorological events with respect to the partly closed structures (e.g., the mining
structures hosting the Nesa and Gould furnaces), showed GEM concentrations >500 ng·m−3.
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Figure 6. GEM concentrations (in ng·m−3) versus time (from February–December 2016) for selected
edifices and mining structures located in Unit 6. The numbering reported in each figure corresponds to
that reported in Figure 3. The full set of GEM data is reported in Supplementary Material S2.

The most important finding is that GEM concentrations almost systematically were higher than
the in-door threshold of 500 ng·m−3, although they were much lower than those recorded by [40] in
1982, when the mining activity shut down. GEM values up to 250,000 ng·m−3 were indeed measured.
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5.2. Total and Leached Mercury Concentrations in the Building and Stored Materials

To the best of our knowledge, no reference total and leached mercury concentrations are available
for building materials exposed to mercury contamination, and consequently, a comparison between
unaffected and contaminated concrete, wood furniture, rust, dust, and so forth, is not presently viable.
We remind that the highest concentration admitted of leached mercury for the disposal of any kind
of material in ordinary landfill is 1 µg·L−1. We also remind that: (i) >100 ktons of liquid mercury
were produced, and 10 ktons were lost in the atmosphere; (ii) the buildings hosting the Nesa and
Gould furnaces, the condensers and the old and new driers (Figure 2) are important GEM emitters
(Supplementary Material S2); and (iii) after the closure of the mining activity, GEM concentrations
were much higher [49] than those measured in this study. Thus, concentrations of total and leached
mercury mostly represent the amount of mercury absorbed during the mining and post-mining activity.
The spatial distribution of total mercury in the analyzed material collected from the edifices of the
former mining area (Figures 7 and 8) showed increasing concentrations approaching Unit 6 (Figure 2,
Supplementary Material S1 and Table 1). As previously evidenced, paints are more enriched in mercury
than plaster underneath, suggesting that mercury absorbed at the surface only partly diffuses inside the
analyzed wall. Tuff bricks, concrete and rust also appeared to be efficient mercury absorbers (Figure 7).
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Setting aside the materials from Edifice 5, those analyzed from Unit 6 showed total mercury
concentrations of one order of magnitude higher than those recorded in the edifices from Units 2 and 3,
independently of the type of analyzed material. Concrete, paint, mineral wool and crystalline isotactic
polymers of the condensers showed the highest concentrations of total mercury, likely because they
were exposed (and still they are) for a longer time to GEM-rich fumes.

We evidenced the persistence of gaseous mercury despite the fact that the mining activity at
Abbadia San Salvatore terminated in 1976, although high GEM concentrations were also measured in
other decommissioned mining districts (e.g., Almaden, Spain, and Idrija, Slovenia; [18]) or even in
apartments and studios built in Hoboken (NJ, USA), where a tool-and-dye company and, successively,
a factory of manufacturing mercury valor lamps operated in the past [62,63]. GEM concentrations
>1000 ng·m−3 were recorded [64]. Unfortunately, no data on paint and plaster are available, but
according to our findings, it is matter of fact that building materials are good absorbers of mercury.
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Studies on Hg mobility have been carried out in order to proceed with soil-remediation
techniques in mining areas, e.g., see [65] and the references therein. The work in [66] assessed
that adsorption/desorption processes control the behavior of Hg in the soil, suggesting that mercury
can occur in dissolved, non-specifically and/or specifically adsorbed, chelated or precipitated forms.
The work in [67] evidenced that Hg mobility depends on its chemical speciation, which can be dictated
by soil parameters, including pH and redox potential [62,68], and their interactions. In addition,
Hg transformations operated by microbial activity, via methylation and demethylation processes
(likely not applicable to building materials investigated in this paper), may further mobilize or stabilize
mercury, e.g., see [69] and the references therein.

In the absence of specific investigations aimed to understand how Hg is speciated, a binary
diagram of total (in mg·kg−1) versus leached mercury (in µg·L−1) is reported in Figure 9. The analyzed
materials were grouped according to their characteristics. A positive correlation (Pearson’s r = 0.7)
between total and leached mercury is observed, i.e., the higher the total mercury, the higher its removal
by leaching. With the exception of the two soil samples collected outside the building hosting the
Gould furnaces, the exposure to gaseous Hg favors the increment of mercury in the building materials.

The equation of the straight line depicted by total (THg) versus leached (LHg) mercury
(Figure 9) is:

LHg = −1.0472 + 0.90177 * THg (1)

Assuming that no leachable mercury is expected to occur in such material, we may speculate that
the value of 1.16 mg·kg−1 might be considered a sort of reference concentration for uncontaminated
building materials. The THg/LHg ratio is relatively variable and comprised between 105 and 588,0000,
suggesting that at high total Hg concentrations, leached Hg is relatively high (Figure 9), although as
a percentage, the latter represents a small fraction. This may indicate that most Hg is present in a stable
form, and leaching by water-saturated CO2 is able to remove a minimal quantity of Hg, though often
higher than the limit defined by the Norma Amiata (1 µg·L−1).
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6. Conclusions

GEM concentrations in the edifices and mining structures from the former Hg-mining area of
Abbadia San Salvatore (Tuscany, Central Italy) showed in most cases concentrations >500 ng·m−3.
The highest values were recorded in summer and dramatically decreased in winter when the ambient
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temperatures were approaching 0 ◦C. High concentrations of total and leached mercury were also
detected in the building materials (e.g., tuff bricks, roof tiles, concrete), suggesting that they act as
Hg-absorbers when affected by high GEM concentrations.

The reclamation project in the former mining area of Abbadia San Salvatore is still at the beginning,
and it has not yet involved the buildings of the workers and miners, nor the liquid mercury production
areas. Thus, the results obtained in this study are of relevant interest for the operational cleanings
to be carried out during the reclamation activities. Operators are expected to dress in appropriate
personal protective equipment and use machinery (e.g., hydro-blasters) to avoid the dispersion of
mercury in the environment during the removal of paint, plaster, dust, rust, and so forth. This is
highly recommended for both the operators’ safety and that of the inhabitants living nearby, the urban
center of Abbadia San Salvatore bordering the former mining area (Figure 1). To better monitor the
operational activities, continuous acquisition of GEM data is suggested, and samples of urine, blood
and hair for mercury concentrations should be collected in statistically-significant populations of
operators prior to and after the reclamation, since several months will likely be necessary to complete
the cleaning activity, particularly in the most contaminated sites.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/4/425/s1,
Supplementary Material 1 (SM 1), Supplementary Material 2 (SM 2).
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