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Abstract: High accuracy in water demand predictions is an important basis for the rational allocation
of city water resources and forms the basis for sustainable urban development. The shortage of water
resources in Chongqing, the youngest central municipality in Southwest China, has significantly
increased with the population growth and rapid economic development. In this paper, a new grey
water-forecasting model (GWFM) was built based on the data characteristics of water consumption.
The parameter estimation and error checking methods of the GWFM model were investigated. Then,
the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and
forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the
results show the GWFM model exhibits better simulation and prediction precisions than those of
the classical Grey Model with one variable and single order equation GM(1,1) for short and the
frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short.
Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding
control measures and recommendations were provided based on the prediction results to ensure a
viable water supply and promote the sustainable development of the Chongqing economy.

Keywords: water demand; grey water forecasting model (GWFM); simulation and prediction;
Chongqing economy

1. Introduction

Water is a basic source of life and a natural and strategic economic resource. The rational utilization
of water resources is an important basis for the sustainable development of the economy and society.
Chongqing, which is the largest industrial and commercial city in Southwest China, is facing a shortage
of water resources.

The average rainfall in the Chongqing area is about 1200 millimetres, which produces about
51.1 billion cubic metres of surface water. The per capita water resource is more than 1640 cubic metres,
which is only 33% of the national per capita level and 16% of the world per capita level. The existing
water conservancy facilities in Chongqing have a storage capacity of 3.9 billion cubic metres, which is
only 7.6% of the total surface water area. The main streams of the three rivers pass through the inland
river section of Chongqing. Although Chongqing is rich in water, it can only fetch about 0.6% of
surface water annually because of its small flow area, high water intake, and large utilization cost.
In 2015, about one million people in the rural areas of Chongqing faced a shortage in the drinking water
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supply, and the water shortage continued in Western Chongqing. The development and utilization of
surface and ground water in Chongqing are insufficient to cope with the rapid urban development,
and this means that the absolute amount of water consumption in Chongqing is very large for a long
time. At present, the problem of water shortage is attracting significant attention in the engineering
field. The shortage of water resources has become an important factor that restricts the sustainable
development of Chongqing’s economy, and requires scientific predictions of the water demand to
provide targeted control measures.

Presently, many mathematical methods have been employed to forecast the urban water
demand [1]. These methods include Artificial Neural Networks (ANNs) [2,3], Fuzzy and neuro-fuzzy
models [4,5], the Support Vector Machine [6,7], Markov process [8,9], Moving Window [10],
Metaheuristics [11], Regression forecasting model [12], Kalman filter [13], data assimilation
technique [14], and System dynamics [15,16]. Previous studies have applied various methods and
their hybrids to forecast the water demand. However, the above models were mainly based on Big
data, while the sample dates were insufficient to obtain an accurate forecasting result.

The validity and practicability of the grey prediction model have been widely verified in various
fields, such as agriculture, industry, society, economy, transportation, energy, and health care [17–21].
We inputted the subject terms ‘grey’ and ‘prediction/forecasting’ in the ‘Web of Science’ using
the time span from 2000 to 2016, and 163,553 papers were retrieved. These study findings in the
field of grey prediction models mainly focus on parameter optimization [22], objects expansion
modelling [23], structure improvement [24], and many other topics. As the first grey prediction
model created by Deng [25], the GM(1,1) model [17] has been one of the most important grey
models. However, the performance of the raw GM(1,1) model was not stable, and various methods,
such as the optimization of the initial and background values [26], smoothness improvement of
the raw sequence [27], perfection of the structure and modelling mechanism [28], and combination
between grey models and other models [29], have been employed to improve its simulation and
prediction accuracy.

In this study, we used the grey system method to build a new prediction model called GWFM
for forecasting the water demand in Chongqing, and checked the error of the new model. Then,
we used the new model to forecast the water demand between 2017 and 2022 in Chongqing. Finally,
we analysed the prediction results, and recommendations and control measures were provided to
promote the sustainable development of the Chongqing economy.

The remainder of the paper is organized as follows. In Section 2, we introduce the modelling
foundation of the grey prediction model. In Section 3, we establish the GWFM model for forecasting
the water demand and deducing its final restored formula. In Section 4, we discuss the method
to check the errors of the GWFM model. In Section 5, we use the GWFM model to simulate
Chongqing’s water requirement from 2009 to 2015, and forecast it for 2016 using real data. In Section 6,
some recommendations are provided. The paper concludes in Section 7.

2. The Foundation of Grey Prediction Model: Accumulating Generation Operator (AGO)

For cases with small samples or poor information, the size of the sample is insufficient to find
its distribution laws; therefore, the statistical approach cannot be applied to build the predictive
models. A grey prediction model (GPM) is a new prediction methodology that focuses on problems
involving a small amount of data and poor information. It addresses uncertain systems with partially
known information through generating, excavating, and extracting useful information from what is
available. The theory enables a correct description of a system’s running behaviour and its evolution
law, and thus generates quantitative predictions of future system changes. Incomplete and inaccurate
information is the basic characteristic of uncertainty systems [17].

The Grey prediction model (GPM) identifies the change laws of uncertain systems by mining
and organizing the limited available original data, which is called grey sequence generation.
The accumulating and inverse accumulating generation operators are two important methods of
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the grey sequence generation and play extremely important roles in GPM [30], which are defined
as follows.

Definition 1. Assumes that W(0) =
(

w(0)(1), w(0)(2), · · · , w(0)(n)
)

is an original sequence, and the

symbol D represents a kind of mathematical operational method. When D is applied once on W(0), we obtain
the following:

W(0)D(1) = W(1) =
(

w(1)(1), w(1)(2) , · · · , w(1)(n)
)

,

where

w(1)(k) =
k

∑
i=1

w(0)(i), k = 1, 2, · · · n

Then, D is called the first-order accumulating generation operator of w(0) [17], and is denoted by
1-AGO. If D is applied r times on W(0), we obtain the following:

W(0)D(r) = W(r) =
(

w(r)(1), w(r)(2) , · · · , w(r)(n)
)

,

where

w(r)(k) =
k

∑
i=1

w(r−1)(i), k = 1, 2, · · · n and r ∈ Z+

Then, D is called the r-order accumulating generation operator of X(0), and is denoted by r-AGO.
The accumulating generation operator D can weaken the randomness of original data.

For example, for a raw sequence where X(0) = (1, 2.5, 1.5, 3), its 1-AGO sequence is X(1) = (1, 3.5, 5, 8).
The curves of these sequences are illustrated in Figure 1. When comparing the two curves, it is clear
that the trend of sequence X(1) is more obvious than that of sequence X(0) in Figure 1.
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Figure 1. Curves with the raw sequence and its accumulating generation sequence.

Accumulating generation operation (AGO) is a method employed to whitenize a grey process.
It plays an extremely important role in grey system theory. Through AGO, one can potentially
uncover a development tendency existing in the process of accumulating grey quantities so that the
characteristics and laws of integration hidden in the chaotic original data can be sufficiently revealed.

Urban water demand is affected by a series of uncertain factors, such as the population,
economic development, and social conditions. Meanwhile, the statistical data on the urban water
demand in Chongqing is very limited since it became a municipality directly under the central
government in 1997. Therefore, the traditional statistical methods based on large sample data are
difficult to apply when simulating and forecasting the urban water demand.

Therefore, we will choose the grey prediction model to study the prediction issue of urban water
demand in Chongqing in this paper.
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3. Grey System Model for Forecasting of Water Demand

Definition 2. [17] assumes that W(0), W(1) are given by Definition 1, and Z(1) denotes the immediate mean
generation sequence of W(1) as follows:

Z(1) =
(

z(1)(2), z(1)(3), · · · , z(1)(n)
)

where z(1)(t) = 0.5×
[
w(1)(t) + w(1)(t− 1)

]
, t = 2, 3 · · · , n. Then,

w(0)(t) + az(1)(t) = 0.5(2t− 1)b + c (1)

is the basic form of the water demand prediction model.
The basic form of traditional grey prediction GM(1,1) is x(0)(t) + az(1)(t) = b, and its final time

response function is x̂(0)(t + 1) = (1− ea)
(

x(0)(1)− b/a
)

e−at, which can only simulate a homogenous
exponential sequence. However, in the real world, the sequence with the characteristic of homogeneous
exponential growth is only a special case in the ideal state; more systematic behavior sequences exhibit
approximately non-homogeneous exponential growth characteristics. In this case, the performance of
the traditional grey prediction model based on x(0)(t) + az(1)(t) = b is poor. Since the proposed model,
Equation (1), has a more complete structure and can achieve unbiased simulations and predictions for
both homogenous and non-homogenous exponential sequences and linear functions, it can be seen
that Equation (1) exhibits a better performance than that of traditional grey prediction models.

According to the inverse process of accumulating generation operator in Definition 1 [17],

w(0)(t) = w(1)(t)− w(1)(t− 1), t = 2, 3, · · · n (2)

Substituting z(1)(t) = 0.5 ×
[
w(1)(t) + w(1)(t− 1)

]
and Equation (2) into Equation (1) when

t = 2, 3, · · · n, we can obtain the following equation:

w(1)(t)− w(1)(t− 1) + 0.5aw(1)(t) + 0.5aw(1)(t− 1) = 0.5(2t− 1)b + c

that is
(1 + 0.5a)w(1)(t)− (1− 0.5a)w(1)(t− 1) = 0.5(2t− 1)b + c

w(1)(t) =
1− 0.5a
1 + 0.5a

w(1)(t− 1) +
b

1 + 0.5a
t− 0.5b− c

1 + 0.5a
(3)

Let
δ1 =

1− 0.5a
1 + 0.5a

, δ2 =
b

1 + 0.5a
, δ3 =

0.5b− c
1 + 0.5a

Then, Equation (3) can be transformed as follows:

w(1)(t) = δ1w(1)(t− 1) + δ2t + δ3, t = 2, 3, · · · , n (4)

Assume that x̂(1)(k) is the simulation of x(1)(k). To minimise the simulation error x(1)(k),
the following condition needs to be satisfied:

S = min
n

∑
t=2

[
w(1)(t)− ŵ(1)(t)

]2

= min
n

∑
k=2

[
w(1)(t)− δ̂1w(1)(t− 1)− δ̂2t− δ̂3

]2
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According to OLS (Ordinary Least Square), we minimise S with respect to parameters δ1, δ2, δ3 to
obtain the following equation:

∂S
∂δ̂1

= −2
n
∑

t=2

[
w(1)(t)− δ̂1w(1)(t− 1)− δ̂2t− δ̂3

]
w(1)(t− 1) = 0

∂S
∂δ̂2

= −2
n
∑

t=2

[
w(1)(t)− δ̂1w(1)(t− 1)− δ̂2t− δ̂3

]
t = 0

∂S
∂δ̂3

= −2
n
∑

t=2

[
w(1)(t)− δ̂1w(1)(t− 1)− δ̂2t− δ̂3

]
= 0

.

Then, 

δ̂1
n
∑

t=2

[
w(1)(t− 1)

]2
+ δ̂2

n
∑

t=2

[
tw(1)(t− 1)

]
+ δ̂3

n
∑

t=2
w(1)(t− 1)

=
n
∑

t=2

[
w(1)(t)w(1)(t− 1)

]
δ̂1

n
∑

t=2
tw(1)(t− 1) + δ̂2

n
∑

t=2
t2 + δ̂3

n
∑

t=2
t =

n
∑

t=2
tw(1)(t)

δ̂1
n
∑

t=2
w(1)(t− 1) + δ̂2

n
∑

t=2
k + δ̂3(n− 1) =

n
∑

t=2
w(1)(t)

. (5)

Next, the calculation of the unknown parameters δ̂1, δ̂2, δ̂3 in Equation (5) is presented.
According to Cramer’s rule, we can obtain the following results:

D =

∣∣∣∣∣∣∣∣∣∣∣

n
∑

t=2

[
w(1)(t− 1)

]2 n
∑

t=2
kw(1)(t− 1)

n
∑

t=2
w(1)(t− 1)

n
∑

t=2
tw(1)(t− 1)

n
∑

t=2
t2

n
∑

t=2
t

n
∑

t=2
w(1)(t− 1)

n
∑

t=2
t n− 1

∣∣∣∣∣∣∣∣∣∣∣

D1 =

∣∣∣∣∣∣∣∣∣∣∣

n
∑

t=2

[
w(1)(t)w(1)(t− 1)

] n
∑

t=2
kw(1)(t− 1)

n
∑

t=2
w(1)(t− 1)

n
∑

t=2
tw(1)(t)

n
∑

t=2
t2

n
∑

t=2
t

n
∑

t=2
w(1)(t)

n
∑

t=2
t n− 1

∣∣∣∣∣∣∣∣∣∣∣

D2 =

∣∣∣∣∣∣∣∣∣∣∣

n
∑

t=2

[
w(1)(t− 1)

]2 n
∑

t=2

[
w(1)(t)w(1)(t− 1)

] n
∑

t=2
w(1)(t− 1)

n
∑

t=2
tw(1)(t− 1)

n
∑

t=2
tw(1)(t)

n
∑

t=2
t

n
∑

t=2
w(1)(t− 1)

n
∑

t=2
w(1)(t) n− 1

∣∣∣∣∣∣∣∣∣∣∣

D3 =

∣∣∣∣∣∣∣∣∣∣∣

n
∑

t=2

[
w(1)(t− 1)

]2 n
∑

t=2
tw(1)(t− 1)

n
∑

t=2

[
w(1)(t)w(1)(t− 1)

]
n
∑

t=2
tw(1)(t− 1)

n
∑

t=2
t2

n
∑

t=2
tw(1)(t)

n
∑

t=2
w(1)(t− 1)

n
∑

t=2
t

n
∑

t=2
w(1)(t)

∣∣∣∣∣∣∣∣∣∣∣
If D 6= 0, based on Cramer’s rule, the parameters δ̂1, δ̂2, δ̂3 can be calculated as follows:

δ̂1 =
D1

D
, δ̂2 =

D2

D
, δ̂3 =

D3

D
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Since

δ̂1 =
1− 0.5â
1 + 0.5â

, δ̂2 =
b̂

1 + 0.5â
, δ̂3 =

0.5b̂− ĉ
1 + 0.5â

,

the parameters a, b, and c can be obtained as follows:

â =
2(1− δ̂1)

1 + δ̂1
, b̂ =

2δ̂2

1 + δ̂1
, ĉ =

2δ̂2 − 4δ̂3

1 + δ̂1

From Equation (3),

ŵ(1)(t) =
1− 0.5â
1 + 0.5â

ŵ(1)(t− 1) +
b̂

1 + 0.5â
t− 0.5b̂− ĉ

1 + 0.5â
(6)

and the restored expression is as ŵ(0)(t) = ŵ(1)(t)− ŵ(1)(t− 1).
In the grey prediction model, we often applied w(0)(1) = w(1)(1) = ŵ(1)(1) as the initial value

to deduce the time-response function of ŵ(1)(t) in Equation (6). The detailed deduction process is
as follows:
when t = 2,

ŵ(1)(2) =
(

1− 0.5â
1 + 0.5â

)
w(0)(1) +

(
2b̂

1 + 0.5â
− 0.5b̂− ĉ

1 + 0.5â

)
when t = 3,

ŵ(1)(3) =
(

1−0.5â
1+0.5â

)2
w(0)(1) + 1−0.5â

1+0.5â

(
2b̂

1+0.5â +
1−0.5â
1+0.5â

)
+
(

3b̂
1+0.5â +

0.5b̂−ĉ
1+0.5â

)
...

when t = k,

ŵ(1)(k) = w(0)(1)
(

1−0.5â
1+0.5â

)k−1
+
(

2·2b̂
1+0.5â +

0.5b̂−ĉ
1+0.5â

)(
1−0.5â
1+0.5â

)k−2
+↘

↖
(

3·2b̂
1+0.5â +

0.5b̂−ĉ
1+0.5â

)(
1−0.5â
1+0.5â

)k−3
+ · · ·+

(
k·2b̂

1+0.5â +
0.5b̂−ĉ
1+0.5â

)(
1−0.5â
1+0.5â

) (7)

Arranging Equation (7), we obtain the following equation:

ŵ(1)(k) = w(0)(1)
(

1− 0.5â
1 + 0.5â

)k−1
+

k−2

∑
i=0

[
(k− i)

b̂
1 + 0.5â

+
0.5b̂− ĉ
1 + 0.5â

](
1− 0.5â
1 + 0.5â

)i
(8)

Equation (8) can be simplified as follows:

ŵ(1)(k) = w(0)(1)δ̂k−1
1 +

k−2

∑
i=0

[
(k− i)δ̂2 + δ̂3

]
δ̂i

1 (9)

From Equation (9), when k = 2, 3, · · · , the final expression of ŵ(0)(k) = ŵ(1)(k)− ŵ(1)(k− 1) is
as follows:

ŵ(0)(k) =
[
w(0)(1)

(
δ̂1 − 1

)
+
(
2δ̂2 + δ̂3

)]
δ̂k−2

1 +
k−3

∑
i=0

δ̂2δ̂i
1 (10)

Equation (10) is called the GWFM model. Compared with the classical GM(1,1) model,
the proposed GWFM model can unbiasedly simulate a homogeneous exponential sequence,
a non-homogeneous exponential sequence, and a linear function sequence (detailed proofs are
presented elsewhere), which demonstrates its good performance.
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4. Method to Check for the GWFM Model Error

One model’s performance includes two aspects: simulation performance and prediction
performance. Normally, only the models that pass various tests can be meaningfully employed
to make predictions.

Definition 3. Assumes that a raw sequence is W(0)⊗, as follows:

W(0) =
(

w(0)(1), w(0)(2), · · · , w(0)(n), w(0)(n + 1), · · · , w(0)(n + t)
)

A subsequence which is composed of the first n elements of the sequence W(0) is used to build
the GWFM model and the simulation sequence is Ŝ(0), as follows:

Ŝ(0) =
(

ŵ(0)(1), ŵ(0)(2), · · · , ŵ(0)(n)
)

We use the GWFM model to forecast the latter p-step data, and the prediction sequence is F̂(0),
as follows:

F̂(0) =
(

ŵ(0)(n + 1), ŵ(0)(n + 2), · · · , ŵ(0)(n + t)
)

The error sequences of Ŝ(0) and F̂(0) are εs and εF, respectively, as follows:

εS = (εS(1), εS(2), · · · , εS(n))

εF = (εF(n + 1), εF(n + 2), · · · , εF(n + t))

where
εS(u) = w(0)(u)− ŵ(0)(u), u = 1, 2, · · · , n

εF(v) = w(0)(v)− ŵ(0)(v), v = n + 1, n + 2, · · · , n + t

The relative simulation percentage error (RSPE) of simulation sequence Ŝ(0) is ∆S, as follows:

∆S = (∆S(1), ∆S(2), · · · , ∆S(n))

where

∆S(u) =
∣∣∣∣ εS(u)
w(0)(u)

× 100%
∣∣∣∣, u = 1, 2, · · · , n

The mean relative simulation percentage error (MRSPE) of simulation sequence is ∆S, as follows:

∆S =
1
n

n

∑
u=1

∆S(u)

The relative prediction percentage error (RFPE) of forecast sequence is ∆F, as follows:

∆F = (∆F(n + 1), ∆F(n + 2), · · · , ∆F(n + t))

where

∆F(v) =
∣∣∣∣ εF(v)
w(0)(v)

× 100%
∣∣∣∣, v = n + 1, n + 2, · · · , n + t

The mean relative prediction percentage error (MRPPE) of prediction sequence is ∆F, as follows:

∆F =
1
t

n+t

∑
v=n+1

∆F(v)
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The comprehensive mean relative percentage error (CMRPE) of the GWFM mode is ∆, as follows:

∆ =
∆S + ∆F

2

For giving threshold values α and β (the threshold is set according to the specific situation of
the system), when ∆S < α and ∆F < β hold true, the GWFM model is said to be error-satisfactory.
However, when the size of the modeling data is small, the original sequence cannot be divided into
“simulation subsequence” and “prediction subsequence”. At this time, we only test the simulation
error of the model, and the test of prediction error will be omitted.

5. Forecasting the Water Demand in Chongqing Using GWFM

Urban water consumption is the gross water consumption of users, including water loss during
transport. It comprises live water, manufactured water, and ecological environment supplemental
water. The water consumption in Chongqing from 2009 to 2016 is presented in Table 1.

Table 1. Water consumption in Chongqing from 2009 to 2016 (Unit: hundred million cubic metres).

Year 2009 2010 2011 2012 2013 2014 2015 2016

k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Water
consumption 85.3032 86.3866 86.7976 82.9360 83.9066 80.4687 78.9802 77.4800

Source: Chongqing water resource communique from 2009 to 2016 [31].

In Section 4, we have discussed that a model can only be used to forecast when the simulation
and prediction performances of the model have passed the relevant tests. Hence, in this section,
the data from 2009 to 2015 will be used to build the GWFM model of the Chongqing water demand.
The remaining data will be employed to check the prediction performance of the GWFM model.

Table 1 shows the original sequence of W(0), as follows:

W(0) =
(

w(0)(1), w(0)(2), w(0)(3), w(0)(4), w(0)5, w(0)(6)
)

= (85.3032, 86.3866, 86.7976, 82.9360, 83.9066, 80.4687, 78.9802)

Then, we established the GWFM model of sequence W(0) and wrote the MATLAB program to
calculate the parameters δ1, δ2, δ3 and a, b, c. The results are shown in Table 2.

Table 2. Value of the parameters of the GWFM model with sequence W(0).

Parameter δ̂1 δ̂2 δ̂3 â b̂ ĉ

Value 1.05899 −6.538648 95.09049 −0.05730 −6.351328 −183.70365

We can build the GWFM model according to Equation (10), which can be used to forecast the
water demand in Chongqing, as follows:

ŵ(0)(k) =
[
w(0)(1)

(
δ̂1 − 1

)
+
(
2δ̂2 + δ̂3

)]
δ̂k−2

1 +
k−3

∑
i=0

δ̂2δ̂i
1

Substituting parameters in Table 2 into Equation (10), we can obtain:

ŵ(0)(t) = 87.04524× 1.05899t−2 − 6.53865
t−3

∑
i=0

1.05899i (11)



Int. J. Environ. Res. Public Health 2017, 14, 1386 9 of 12

In Equation (11), when t = 2, 3, · · · , n, ŵ(0)(t) is called simulation data; and when
t = n + 1, n + 2, · · · , ŵ(0)(t) is called prediction data. Hence, we can calculate the simulation data
ŵ(0)(t), the simulation residual error ε(t), the relative simulation percentage error ∆(t), and the mean
relative simulation percentage error ∆. To compare the simulation and prediction performances of
the GWFM, the classic GM(1,1) model and the frequently-used DGM(1,1) model were also applied
to simulate and forecast the water demand in Chongqing with the same data. All simulation and
prediction results of the above three models are shown in Table 3. Besides, the parameter values of the
GM(1,1) and DGM(1,1) models are shown in Table 4, as follows.

Table 3. Simulation/forecasted values and errors of GFWM, DGM(1,1), and GM(1,1).

Serial
Number

k

Raw
Data

w(0)(t)

Model GFWM Model DGM(1,1) Model GM(1,1)

ŵ(0)(t) ”S(k) ∆S(k) ŵ(0)(t) ”S(k) ∆S(k) ŵ(0)(t) ”S(k) ∆S(k)

In-sample

1 85.3032 85.3032 0.000 0.000% 85.3032 0.000 0.000% 85.3032 0.000 0.000%
2 86.3866 87.0452 −0.659 0.763% 85.3032 0.831 0.962% 87.2096 −0.823 0.953%
3 86.7976 85.6414 1.156 1.332% 87.2171 −1.209 1.393% 85.5835 1.214 1.399%
4 82.9360 84.1548 −1.219 1.470% 85.5888 1.055 1.272% 83.9877 −1.052 1.268%
5 83.9066 82.5804 1.326 1.580% 83.9908 −1.484 1.769% 82.4216 1.485 1.770%
6 80.4687 80.9132 −0.445 0.553% 82.4227 0.415 0.516% 80.8847 −0.416 0.517%
7 78.9802 79.1476 −0.167 0.211% 80.8839 0.394 0.499% 79.3765 −0.396 0.502%

Out-of-sample

8 77.4800 77.2784 0.202 0.260% 77.8919 0.412 0.532% 77.8965 −0.417 0.539%
CMRPE (∆) 0.621% 0.802% 0.804%

Table 4. Values of the parameters of the DGM(1,1) model and GM(1,1).

Model DGM(1,1) GM(1,1)

Parameter value β1 = 0.98133;
β2 = 0.98133 a = 0.01882; b = 89.63857

Table 3 shows that the GWFM model has the best comprehensive mean relative percentage error
(CMRPE) among the above three models, closely followed by the DGM(1,1) and GM(1,1) models.
The grey model error level reference table [17] shows that the comprehensive grade of the GWFM
model is Grade I, which can be used for predictions. We used the GWFM model to forecast the water
demand in Chongqing from 2017 to 2022, and the results are shown in Table 5.

Table 5. Prediction data of the water demand in Chongqing from 2017 to 2022.

Year 2017 2018 2019 2020 2021 2022

Water
demand 75.298 73.201 70.981 68.629 66.139 63.502

Unit: hundred million cubic metres.

Table 5 shows that the water demand in Chongqing had a slow downward pattern from 2017
to 2022. This is mainly because of the strict water management system introduced by Chongqing,
which resulted in the following benefits: an annual decrease of the water consumption per million yuan
of industrial added value, significant improvement in the effective utilization coefficient of farmland
irrigation water, and significant improvement of the water quality in the water areas of important
rivers and lakes in the Chongqing area.
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6. Recommendations for Sustainable Development of Urban Water Consumption in Chongqing

As seen in Table 5, the absolute quantity of the water demand is still very large. Therefore,
some recommendations should be provided to ensure the effective supply of water resources to
promote the sustainable development of Chongqing’s economy and society.

Firstly, the economic development scale and configuration of a reasonable water resource should
be adjusted. The economic development scale, speed, and pattern must be adjusted according to
the water-resource bearing capacity and rational configuration of Chongqing. The water resource,
population, cultivated land, and mineral exploitation must be configured for optimal benefit. In the
drought areas, urban development and scale must be limited. Water project construction must be
accelerated based on a rational plan, and the optimal allocation of a water resources system must
be implemented.

Secondly, the utilization efficiency of water resources in Chongqing should be improved.
Chongqing is an industrial city dominated by manufacturing and the industrial water consumption
is an important part of Chongqing water consumption. Hence, reducing the water consumption
of industrial added value of ten thousand yuan in Chongqing is a key measure for controlling the
water consumption scale in Chongqing. Besides, the water-saving consciousness of Chongqing
citizens should be cultivated, and it can employ the appropriate use of price leverage to strive for
water conservation.

Thirdly, a strict water management system and unified water resources management operation
mechanism should be established. The solution to the water problem, which involves all aspects
of nature and human society, involves huge system engineering. Water saving, efficient water
consumption, unified management, and the optimal allocation of water resources form the core
of system engineering to relieve the contradiction between the supply and demand of water resources.
A public-management function must be established, and using the market economy, the development
and utilization of water resources must be controlled. Furthermore, a water resources management
operation mechanism must be formulated to promote the utilization and protection of sustainable
water environments.

7. Conclusions

Scientific and accurate forecasting of urban water demand is the basis of the sustainable
development of urban water consumption. Chongqing is an urban area facing a shortage of
water resources. Recently, the rapid economic development and population growth highlighted
the contradiction between the supply and demand of water resources. In this study, we built a GWFM
model of urban water demand based on the grey system model, deduced the parameter estimation,
and eventually restored the formula and checked the model error testing method. In summary,
the GWFM model successfully forecasted the urban water demand in Chongqing from 2017 to
2025, and corresponding control measures and recommendations were provided based on the
forecasting result.

Acknowledgments: Our work was supported by National Natural Science Foundation of China (71771033,
71271226), Chongqing Municipal Social Science Planning Commission Project of China (2016WT37). We would
like to thank the anonymous referees for their constructive comments that helped to improve the clarity and
completeness of this paper.

Author Contributions: Hua’an Wu conceived and designed the study. Bo Zeng performed the modeling process
and write the Matlab code for the proposed GWFM model. Meng Zhou performed the calculations of Section 5
and provided the recommendations in Section 6. All authors read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ghalehkondabi, I.; Anjmand, E.; Young, W.A.; Weckman, G.R. Water demand forecasting review of soft
computing methods. Environ. Monit. Assess. 2017, 189, 313. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10661-017-6030-3
http://www.ncbi.nlm.nih.gov/pubmed/28585040


Int. J. Environ. Res. Public Health 2017, 14, 1386 11 of 12

2. Ghinassi, M.; Fa’al, F.; Abrishamchi, A. Large metropolitan water demand forecasting using DAN2, FTDNN,
and KNN models: Acase study of the city of Tehran, Iran. Urban Water J. 2017, 14, 655–659. [CrossRef]

3. Rangel, H.R.; Puig, V.; Farias, R.L.; Flores, J.J. Short-term demand forecast using a bank of neural models
trained using genetic alogorithms for the optimal management of drinking water networks. J. Hydroinform.
2017, 19, 1–16. [CrossRef]

4. Yu, L.; Tan, S.K.; Chua, L.H.C. Online Ensemble Modeling for Real Time Waster Level Forecasts.
Water Resource Manag. 2017, 31, 1105–1119. [CrossRef]

5. Mitrica, B.; Bogardi, I.; Mitrica, E.; Mocanu, I.; Minciuna, M. A forecast of public water scarcity on
Leu-Rotunda Plain, Romania, for the end of the 21st century, Norsk Geografisk Tidsskrift-Norwegian.
J. Geogr. 2017, 71, 12–29.

6. Zhang, L.; Zou, Z.H.; Shan, W. Development of a method for comprehensive water quality forecasting and
its application in Miyun reservoir of Beijing, China. J. Environ. Sci. 2017, 56, 240–246. [CrossRef] [PubMed]

7. Candelier, A. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly
Detection. Water 2017, 9, 224. [CrossRef]

8. Arya, F.K.; Zhang, L. Copula-Based Markov Process for Forecasting and Analyzing Risk of Quality Time
Series. J. Hydrol. Eng. 2017, 22, 04017005. [CrossRef]

9. Wang, B.; Liu, L.; Huang, G.H.; Li, W.; Xie, Y.L. Forecast-based analysis for regional water supply and
demand relationship by hybrud Markov chain model a case study of Urumqi, China. J. Hydroinform. 2016,
18, 905–918. [CrossRef]

10. Pacchin, E.; Alvisi, S.; Franchini, M. Ashort-Term Water Demand Forecasting Model Using a Moving Window
on Previously Observed Data. Water 2017, 9, 172. [CrossRef]

11. Mouatadid, S.; Adamowski, J. Using extreme learning machines for short-term urban water demand
forecasting. Urban Water J. 2017, 14, 630–638. [CrossRef]

12. Sebri, M. Forecasting urban water demand: A meta-regression analysis. J. Environ. Manag. 2016, 183, 777–785.
[CrossRef] [PubMed]

13. Wang, X.; Babovic, V. Application of hybrid Kalman filter for improving water level forecast. J. Hydroinform.
2016, 18, 773–790. [CrossRef]

14. Wang, X.; Zhang, J.J.; Babovic, V. Improving real-time forecasting of water quality indicators with
combination of process-based models and data assimilation technique. Ecol. Indic. 2016, 66, 428–439.
[CrossRef]

15. Feng, L.; Chen, B.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Dynamic forecasting of agricultural water
footprint based on Markow Chain—A case study of Heihe River Basin. Ecol. Model. 2017, 353, 150–157.
[CrossRef]

16. Wei, T.; Lou, I.; Yang, Z.; Li, Y. A system dynamics urban water management model for Macau, China.
J. Environ. Sci. 2016, 50, 117–126. [CrossRef] [PubMed]

17. Liu, S.F.; Yang, Y.J.; Forrest, J. Grey Data Analysis: Method, Models and Applications; Springer: Berlin, Germany,
2016; pp. 45–65, 141–181.

18. Li, C.; Cabrera, D.; Oliveira, J.V.D.; Sanchez, R.V.; Cerrada, M.; Zurita, G. Extracting repetitive transients for
rotating machinery diagnosis using multiscale clustered grey infogram. Mech. Syst. Signal. Process. 2016,
76–77, 157–173. [CrossRef]

19. Wu, L.F.; Liu, S.F.; Yang, Y.J. Grey double exponential smoothing model and its application on pig price
forecasting in China. Appl. Soft Comput. 2016, 39, 117–123. [CrossRef]

20. Wei, J.C.; Zhou, L.; Wang, F.; Wu, D.S. Work safety evaluation in Mainland China using grey theory.
Appl. Math. Model. 2015, 39, 924–933. [CrossRef]

21. Wojciech, F.; Jose, L.; Salmeron, E. Learning of fuzzy grey cognitive maps for the forecasting of multivariate,
interval-valued time series. Int. J. Approx. Reason. 2014, 55, 1319–1335.

22. Chang, T.S.; Ku, C.Y.; Fu, H.P. Grey theory analysis of online population and online game industry revenue
in Taiwan. Technol. Forecast. Soc. Chang. 2013, 80, 175–185. [CrossRef]

23. Wang, Y.H.; Liu, Q.; Tang, J.R. Optimization approach of background value and initial item for improving
prediction precision of GM(1,1) model. J. Syst. Eng. Electron. 2014, 25, 77–82. [CrossRef]

24. Zeng, B.; Chen, G.; Liu, S.F. A novel interval grey prediction model considering uncertain information.
J. Frankl. Inst. 2013, 350, 3400–3416. [CrossRef]

http://dx.doi.org/10.1080/1573062X.2016.1223858
http://dx.doi.org/10.2166/hydro.2016.199
http://dx.doi.org/10.1007/s11269-016-1539-8
http://dx.doi.org/10.1016/j.jes.2016.07.017
http://www.ncbi.nlm.nih.gov/pubmed/28571859
http://dx.doi.org/10.3390/w9030224
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001494
http://dx.doi.org/10.2166/hydro.2016.202
http://dx.doi.org/10.3390/w9030172
http://dx.doi.org/10.1080/1573062X.2016.1236133
http://dx.doi.org/10.1016/j.jenvman.2016.09.032
http://www.ncbi.nlm.nih.gov/pubmed/27652580
http://dx.doi.org/10.2166/hydro.2016.085
http://dx.doi.org/10.1016/j.ecolind.2016.02.016
http://dx.doi.org/10.1016/j.ecolmodel.2016.11.002
http://dx.doi.org/10.1016/j.jes.2016.06.034
http://www.ncbi.nlm.nih.gov/pubmed/28034421
http://dx.doi.org/10.1016/j.ymssp.2016.02.064
http://dx.doi.org/10.1016/j.asoc.2015.09.054
http://dx.doi.org/10.1016/j.apm.2014.06.017
http://dx.doi.org/10.1016/j.techfore.2012.06.009
http://dx.doi.org/10.1109/JSEE.2014.00009
http://dx.doi.org/10.1016/j.jfranklin.2013.08.007


Int. J. Environ. Res. Public Health 2017, 14, 1386 12 of 12

25. Xie, N.M.; Liu, S.F. Discrete grey forecasting model and its optimization. Appl. Math. Model. 2009,
33, 1173–1186. [CrossRef]

26. Deng, J.L. The Control problem of grey systems. Syst. Control Lett. 1982, 1, 288–294.
27. Wang, Z.X.; Dang, Y.G.; Liu, S.F. The Optimization of Background Value in GM(1,1) Model. J. Grey Syst. 2007,

10, 69–74. [CrossRef]
28. Wei, Y.; Hu, D.H. Deficiency of the Smoothness Condition and Its Remedy. Syst. Eng. Theor. Prac. 2009,

29, 165–170. [CrossRef]
29. Wong, H.L.; Shiu, J.M. Comparisons of Fuzzy Time Series and Hybrid Grey Model for Non-Stationary Data

Forecasting. Appl. Math. Inform. Sci. 2012, 6, 409–416.
30. Zeng, B.; Liu, S. A self-adaptive intelligence grey prediction model with the optimal fractional order

accumulating operator and its application. Math. Meth. Appl. Sci. 2017, 23, 1–15.
31. Chongqing Statistics Bureau. Chongqing Statistical Information Network. Available online: http://www.cqtj.

gov.cn/tjsj/sjjd/ (accessed on 1 January 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apm.2008.01.011
http://dx.doi.org/10.1016/S1874-8651(09)60011-9
http://dx.doi.org/10.1016/S1874-8651(10)60066-X
http://www.cqtj.gov.cn/tjsj/sjjd/
http://www.cqtj.gov.cn/tjsj/sjjd/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Foundation of Grey Prediction Model: Accumulating Generation Operator (AGO) 
	Grey System Model for Forecasting of Water Demand 
	Method to Check for the GWFM Model Error 
	Forecasting the Water Demand in Chongqing Using GWFM 
	Recommendations for Sustainable Development of Urban Water Consumption in Chongqing 
	Conclusions 

