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Abstract: Many different quantitative techniques have been developed to either assess Environmental
Justice (EJ) issues or estimate exposure and dose for risk assessment. However, very few approaches
have been applied to link EJ factors to exposure dose estimate and identify potential impacts
of EJ factors on dose-related variables. The purpose of this study is to identify quantitative
approaches that incorporate conventional risk assessment (RA) dose modeling and cumulative
risk assessment (CRA) considerations of disproportionate environmental exposure. We apply the
Average Daily Dose (ADD) model, which has been commonly used in RA, to better understand
impacts of EJ indicators upon exposure dose estimates and dose-related variables, termed the
Environmental-Justice-Average-Daily-Dose (EJ-ADD) approach. On the U.S. nationwide census
tract-level, we defined and quantified two EJ indicators (poverty and race/ethnicity) using an EJ
scoring method to examine their relation to census tract-level multi-chemical exposure dose estimates.
Pollutant doses for each tract were calculated using the ADD model, and EJ scores were assigned to
each tract based on poverty- or race-related population percentages. Single- and multiple-chemical
ADD values were matched to the tract-level EJ scores to analyze disproportionate dose relationships
and contributing EJ factors. We found that when both EJ indicators were examined simultaneously,
ADD for all pollutants generally increased with larger EJ scores. To demonstrate the utility of using
EJ-ADD on the local scale, we approximated ADD levels of lead via soil/dust ingestion for simulated
communities with different EJ-related scenarios. The local-level simulation indicates a substantial
difference in exposure-dose levels between wealthy and EJ communities. The application of the
EJ-ADD approach can link EJ factors to exposure dose estimate and identify potential EJ impacts on
dose-related variables.

Keywords: environmental justice; risk assessment; multiple stressors; dose estimates

1. Introduction

Since the early 1990s, Environmental Justice (EJ) advocates have expressed concern that using
traditional risk assessment (RA) as a regulatory tool was inadequate in accounting for unusual
exposures and susceptibilities, and could potentially cause environmental inequity [1,2]. A more
comprehensive risk assessment process that integrates demographic data and fairly assesses risk
distribution was recommended [3]. In 2003, the U.S. Environmental Protection Agency (EPA)
developed a framework for cumulative risk assessment (CRA) which was defined as a procedural and
analytical tool intended to characterize and possibly quantify the combined risks to human health
or the environment from multiple agents or stressors [4,5]. Examples of CRA application include
providing guidance for risk assessment in Superfund sites, combining ecological risks, and informing

Int. J. Environ. Res. Public Health 2017, 14, 24; doi:10.3390/ijerph14010024 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2017, 14, 24 2 of 15

regulations and policies regarding pesticide controls and pollutants emission [5]. In addition to
assessing cumulative risks from exposure to multiple chemical stressors or mixtures [6–8], CRA also
considers other non-chemical factors [9–13]. For example, smoking will elevate the risks of having
lung cancer associated with radon exposure [14,15]; toluene and noise together will induce higher
levels of hearing loss [16]; children exposed to violence will have higher risks of developing asthma in
the presence of air pollution [17]. This unique aspect of integrating socio-demographic information in
CRA makes it different from conventional RA and allows it to address EJ issues as potential modifiers
to exposure and dose-response.

On one hand, several quantitative tools have been established to help assess cumulative impacts
and address EJ issues [18]. For example, the Office of Environmental Health Hazard Assessment
(OEHHA), on behalf of California Environmental Protection Agency (Cal/EPA), developed a screening
tool, CalEnviroScreen [19], for developing cumulative impact scores for communities as a response
to scientific findings of EJ and associated health impacts, especially with respect to relevant local
environmental laws and regulations [20]. Another example involves the EPA’s Environmental
Justice Mapping and Screening Tool (EJSCREEN), which was designed to map environmental and
demographic indicators at a detailed geographic level and offer screening information to support EJ
research and policy development [21]. However, these tools do not provide direct estimates of exposure
dose levels or the modifying impacts of EJ susceptibility/vulnerability factors on them. On the
other hand, various exposure modeling techniques have been constructed to estimate environmental
exposure doses. For examples, a personal delivered-dose model was developed to assess the impact of
tetrachloroethylene on breast cancer risk via drinking water exposure [22], and a mechanistic dosimetry
model was constructed to describe how respirable particles move in human airways [23]. Very few of
the existing quantitative tools integrate EJ information and their specific contributions to exposure
dose estimates. Our research begins to draw those linkages.

This work proposes an application to use existing approaches that can estimate exposure dose
and incorporate EJ factors that modify them, termed the Environmental-Justice-Average-Daily-Dose
(EJ-ADD). The concepts of “exposure” and “dose” are closely related and were sometimes used
interchangeably [24]. The term “exposure dose” in this paper refers specifically to dose that is related
to “temporally-integrated exposure” [24]. Dose is defined as “the amount of agent that enters a target
in a specified period of time after crossing a contact boundary” [25].

Two components involved in this approach are the Average Daily Dose (ADD) model and EJ
indicators. The former is an existing quantitative approach commonly used in RA and the latter is
a measure of EJ susceptibility/vulnerability factors often included in a CRA framework. Therefore,
EJ-ADD also represents a connection between RA and CRA. The RA framework includes five steps:
problem formulation, hazard identification, dose response assessment, exposure assessment, and risk
characterization [26]. A very important tool for exposure assessment in RA is the ADD model that has
four main variables: contaminant concentration, intake rate, exposure factor, and body weight [27].

EJ indicators are essentially data that emphasize particular aspects of environmental or communal
conditions and trends that could differentially impact environment-health relationships [28–30],
providing useful information to support further public decision making [13,31]. EJ indicators have
been used as a tool to assess and quantify non-chemical factors [20,32,33], including health, economic,
and social indicators related to vulnerability and susceptibility [31]. Vulnerability factors typically
encompass socio-economic conditions such as poverty, racial/ethnic bias, or education [34,35]; while
susceptibility relates to biological factors such as life stage, genetic predisposition, or pre-existing health
conditions [3,36]. Several studies have identified combined impacts of EJ indicators and chemical
stressors [37–40]. Considering poverty as a non-chemical EJ indicator, individuals or families with
lower income were located more closely to commercial, industrial, or traffic areas [41]. Race/ethnicity
is another important factor widely evaluated in EJ assessments. Certain racial/ethnic minorities,
due to economic and political disadvantage, could be exposed to more toxic pollution than other
groups currently and through time. For example, aggregated cancer risk burden across Harris County,
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Texas, was found to be associated with the proportion of Hispanic residents and those at social
disadvantage [29]. The interrelation between poverty and race/ethnicity with respect to environmental
exposures has also been explored [42–44].

In this study, we demonstrate the utility of the EJ-ADD approach at both the nationwide and
local levels. First, we quantified EJ indicators (poverty and race/ethnicity measures) for census tracts
across the United States and joined them to ADD estimates of chemicals and chemical mixtures, using
American Community Survey (ACS) data, the 2005 National-Scale Air Toxics Assessment (NATA),
and the EPA Exposure Factors Handbook [25]. Poverty and race/ethnicity are indicative of many
factors that could influence various components of the ADD model, such as exposure frequency and
duration (for exposure factor), emission source prevalence (concentration), and public health (intake
rate and body weight), all of which are concerns in EJ neighborhoods [9,21,41,45–48]. Second, based
on a simulation of communities with different EJ-related scenarios, we estimated ADD levels for
communities exposed to lead via soil/dust ingestion to show the utility of using EJ-ADD to estimate
average daily dose with consideration of EJ indicators on a local scale.

2. Methods

2.1. Average Daily Dose Model

Our study used the ADD model/equation [27] to calculate the chemical average daily dose.
ADD takes the product of contaminant/chemical concentration, intake rate, and exposure factor,
divided by average body weight. The intake rate refers to the inhalation rate of contaminated air or
ingestion rate of contaminated soil/dust, and exposure factor relates to the time period of contact with
the contaminant (exposure duration) divided by averaging time [25], essentially the proportion of time
exposed to the contaminant.

2.2. Nationwide Tract-Level Analysis

The nationwide tract-level analysis contains three major steps. We first calculated ADD at each
tract for various chemicals (see below). We then defined and quantified two EJ indicators: poverty
and race/ethnicity. Lastly, we matched the chemical ADD levels to the EJ indictors for each tract and
analyzed their relationships.

2.2.1. Chemical Concentrations

We used 2005 NATA pollutant concentration data (http://www.epa.gov/airtoxics/nata2005/) for
ambient air at the tract level for five chemicals (acetaldehyde; benzene; cyanide; toluene; 1,3-butadiene)
and particulate matter (PM) components of diesel engine emissions, namely diesel PM. These
pollutants were selected based on their potential environmental influences, health impacts, and
their relevance to EJ issues in that these chemicals are closely related to vehicular traffic and industrial
emissions. Regulations regarding vehicle emission limits were set for four types of pollutants, including
hydrocarbon, carbon monoxide (CO), nitrogen oxides (NOx), and diesel PM (https://www.epa.gov/
regulatory-information-topic/regulatory-information-topic-air#transport). However, CO and NOx

were not included in the list of Air Toxics in the 2005 NATA Assessment (https://www.epa.gov/sites/
production/files/2015-10/documents/2005-nata-pollutants.pdf) and therefore, we did not include
these two chemicals but chose diesel PM as the representative pollutant. Except for lead compounds,
other criteria air pollutants such as ground-level ozone and sulfur dioxide (SO2) were not included
in the list of Air Toxics either. The lead level in air has been reduced by 98% over the past 30 years
due to regulations of removing lead from gasoline (https://www.epa.gov/lead-air-pollution/basic-
information-about-lead-air-pollution#how), so lead was also not selected in this exercise. This method
can easily be adapted to other pollutants, but these were chosen as representative of industrial and
vehicular emissions, as well as for their potential for health impacts. Exhaustive analyses of all
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industrial pollutants are beyond the scope of this study. Eventually, we matched the six chosen
pollutants with the above-mentioned demographic data based on tract labels.

To attempt a more current analysis, we matched the 2005 NATA data with 2009–2013 ACS data,
and performed the same procedural analyses. The results were nearly identical in terms of trending
patterns except for small perturbations for certain chemicals.

2.2.2. Age, Body Weight, and Intake Rate

We obtained age data for census tracts from the ACS database and then calculated the average
weighted age for each tract. Specifically, age by sex for each tract is available via the 2005–2009 ACS
5-Year Summary file of the U.S. Census Bureau. In total, we evaluated approximately 65,000 tracts,
representing around 305,000,000 people across the U.S. Note that census tracts are geographic units
useful for presenting information for areas with population sizes representative of communities and
neighborhoods [49]. The population sizes of census tracts range between 1200 and 8000 people and the
average is around 4000, but their spatial sizes differ significantly from each other based on settlement
density (https://www.census.gov/geo/reference/gtc/gtc_ct.html).

The 2005–2009 ACS data published in 2010 are five-year estimates based on data collected over
a 60-month period, as opposed to “point-in-time” estimates that characterize demographic features of
an area for a specific date/time. Therefore, a 2005–2009 data point is neither the 2007 average estimate
nor an average based on 60 monthly values, but an average estimate based on information collected
“continuously nearly every day of the year” and aggregated over five years. Multiyear estimates are
especially advantageous and reliable for analyzing small geographic areas with populations of less
than 65,000, such as for a community [49].

The weighted average age was calculated by summing the products of the percentage of each age
group and the median (or predefined value if there was no median) of the corresponding age interval.
For example, if the age groups (0, 10), (10, 20), (20, 60), and (60, ∞) for males in a tract are 10%, 20%,
40%, and 30% respectively, then the weighted age for that particular tract is 5 × 10% + 15 × 20% +
40 × 40% + 90 × 30%. Note that 90 is a predefined value here. Next, we calculated the mean value of
all the weighted ages across all tracts for both male and female. Lastly, we obtained the mean of the
female and male average weighted ages that will be used for further analysis.

The EPA Exposure Factors Handbook provides recommended values for long-term inhalation
exposure and body weight according to age groups ranging from birth (<1 month) to adult [25].
Based on average weighted age, we identified the corresponding average body weight and 95th
percentile intake rates for each tract by referring to the Exposure Factors Handbook, particularly,
“Table 6-1 Recommended Long-Term Exposure Values for Inhalation” and “Table 8-1 Recommended
Values for Body Weight” (see Supplementary Materials Tables S1 and S2).

2.2.3. Data Analysis

We performed analyses using statistical software R (version 3.2.1; R Core Team, Vienna, Austria).
Analyses include the calculation of ADD for single chemicals and chemical mixtures, calculation of EJ
race and poverty scores, and a nationwide tract-level evaluation of exposure dose estimates based on
the EJ indicators.

• Single Chemical ADDs

We assessed exposures to each of the six pollutants individually by calculating ADD using
chemical concentration, inhalation intake rate, and body weight. We assumed the exposure factor
to be 1, the maximum value, which means that residents living in a census tract were exposed
constantly to the ambient air concentrations of each pollutant. Arguably, EJ communities would incur
a higher exposure factor due to their living, working, and going to school near pollution sources;
the disproportionate nature of this variable is a potential subject for further study. To compare the
changes in ADD levels across different pollutants, we normalized the average ADDs associated with
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each score category for each chemical. Specifically, we divided each ADD by the maximum ADD value
across all score categories for each chemical, with the unit of results being a percentage.

• Multiple Chemical ADDs

To evaluate exposure to a chemical mixture, we calculated the mixture ADD levels for
acetaldehyde, benzene, and 1,3-butadiene using the Index Chemical Equivalent Dose (ICED)
formula [4]. We selected benzene as the index chemical, the ‘well-studied component of the chemical
mixture’ [4]. When calculating the chemical mixture dose, the doses of acetaldehyde and 1,3-butadiene
were scaled to doses of benzene by using the Relative Potency Factor (RPF), which is the potency of one
chemical relative to that of another [50] and a generalized form of the toxicity equivalence factor (TEF)
method [4,51]. In this study, we used estimated inhalation unit risk to represent the potency of each
chemical. According to the EPA Integrated Risk Information System (IRIS) (http://www.epa.gov/iris),
the quantitative estimate of carcinogenic risk from inhalation exposure for 1,3-butadiene, acetaldehyde,
and benzene are 3 × 10−5 per µg/m3, 2.2 × 10−6 per µg/m3, and 2.2 × 10−6~7.8 × 10−6 per µg/m3,
respectively. We used 5 × 10−6 per µg/m3 (the median) as the unit risk for benzene. Therefore, the RPF
of 1,3-butadiene to benzene was 6, and that of acetaldehyde to benzene was 0.44. The total chemical
ADD level was the sum of the doses of each chemical weighted by the RPF. For example, when we
considered chemical mixture exposure for both benzene and 1,3-butadiene, we added the 1,3-butadiene
ADD level multiplied by the RPF of 1,3-butadiene to benzene, or the adjusted 1,3-butadiene ADD level
to the index chemical ADD level (benzene ADD).

• EJ Poverty and Race

In that poverty and race/ethnicity are the two main factors that are closely related to other EJ
indicators such as proximity to contamination sites and pre-existing conditions, and emphasized in
many EJ studies [3,29,33,41,52], we selected these two indicators in this study. The measurement of
poverty can be multi-dimensional and involves the concept ‘deprivation’—a person is poor in certain
dimension if s/he is deprived in that dimension [53]. Due to data availability, we utilized ratio of
individual income to poverty level and race/ethnicity population percentage data at the tract level
from the 2005–2009 ACS 5-Year Summary file to quantify the EJ indicators poverty and race/ethnicity.
We calculated the percentage of residents whose ratio of income to poverty level in the past 12 months
was below 1.5 for each tract; that is, the percentage population with an annual income that was less
than one-and-a-half times the poverty level. A score ranging from 1 to 10 was assigned to each tract
based on percentage. Specifically, the numeric range from 0 to 1 was binned evenly into 10 intervals,
each associated with a score value from 1 to 10 (1 being the lowest levels of poverty and 10 representing
the highest proportion of poor residents). This score is defined as the EJ poverty score. We also
calculated, binned, and assigned a score (ranging from 1 to 10 as well) to the percentage of non-white
population in each tract. This score is considered the EJ race/ethnicity score (referred to as “race
score” in the remaining text) with 1 being lowest non-white population percentage (i.e., most residents
are white) and 10 being highest non-white percentage. We calculated the number of tracts for each
poverty and race score. Supplementary Materials Table S3 presents the number of tracts for each score
combination of both EJ indicators. When the poverty score is greater than 7, the sample size was
relatively small in comparison to other groups. These small sample sizes reflect the need for scrutiny
outside the scope of this paper, as they could represent very specific conditions; therefore, these results
are not reflected in the subsequent graphs and interpretations.

We matched EJ indicators to single- or multiple-chemical ADD values at the tract level, and then
grouped census tracts based on their EJ indicator scores and score combinations. We then analyzed the
relationship between EJ indicators and chemical ADDs. We first calculated the mean single-chemical
ADDs associated with each score for each EJ indicator separately. We then calculated the mean
single- or multiple-chemical ADDs associated with each unique combination of EJ indicator scores.

http://www.epa.gov/iris
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We used the function “persp3d” in the R package “rgl” [54] to generate the 3-dimesional (3-D)
surface plots based on discrete matrix inputs. Details of how the surface was created can be found
in the R document of package “rgl” (http://cran.R-project.Org/package=rgl). 3-D surface plots
provide straightforward visualization and therefore can potentially improve communications between
scientists and decision makers with less requirement of mathematical background.

2.3. Average Daily Dose Estimates of Local Scale Scenarios

Most analyses thus far were performed for all U.S. census tracts. However, the EJ-ADD approach
can also be applied for specific communities or neighborhoods, which is sometimes more preferable
and informative given that certain unusual exposure dose levels may not be easily discerned if one
focuses on the average doses of a large geographic unit. Ideally, community-level data regarding body
weights, intake rates, and exposure factor information should be available and can be used directly
to estimate exposure dose using the ADD model. However, due to lack of data access, we estimated
the ADD levels for communities with distinct environmental scenarios based on information from
relevant peer-reviewed journal articles in order to demonstrate the utility of using EJ-ADD method to
estimate average daily dose with consideration of EJ indicators on a local scale. Note that the inputs
for the ADD model in the nationwide tract-level analysis were highly related to the variable age with
less consideration of other EJ factors. In this exercise, we will demonstrate how EJ indicators can affect
each parameter in the ADD model in a more direct fashion. We examined only lead exposure via
soil/dust ingestion as an example here. The purpose of this exercise is to show the utility of using
EJ-ADD on a smaller geographic unit, so exhaustively considering multiple routes of exposure to
multiple pollutants is not the focus of this demonstration.

The first scenario is a wealthy community far away from any industrial or contamination sites.
All the residents are living well above the poverty level and can access grocery stores easily. The next
scenario involves an EJ community residing in areas severely affected by mining activities and we
assume that the majority of the residents are living in poverty with limited access to grocery stores
(i.e., living in “food desert”). The other two scenarios lie in between these two above-mentioned
scenarios with closer proximity to the mining sites than the wealthy community but further than the
EJ community.

The approximation of parameter values in the ADD model is as follows.
C (lead concentration in soil): We utilized results presented in Bergstrom et al. [55]. In particular,

we first calculated the averaged geometric mean (GM) of lead concentration for each of the two
reference soil samples weighted by the mass composition fraction and then assigned the rounded
average of these two reference values (5 mg/kg) as the lead concentration in soil for the wealthy
community. Similarly, we calculated the average of the weighted-averaged GM of the three samples
collected downstream from the Bunker Hill Mining and Metallurgical Complex that was included in
the EPA’s National Priorities List (NPL), and assigned the rounded value (5 × 103 mg/kg) as the lead
concentration for the EJ community. We assigned 50 mg/kg and 500 mg/kg as the lead level for the
other two scenarios.

BW (body weight): We used 80 kg as the average population body weight for the wealthy
community. A previous study showed that poverty rates were linked with obesity based on data from
3139 U.S. counties, and that the obesity rate of the wealthiest quintile (included 630 counties) is around
5% lower than that of the poorest quintile (encompassed 629 counties) [56]. Therefore, we assumed
84 kg (=80 kg × 1.05) as the BW value for the EJ community, and 82.4 kg (=80 kg × 1.03) and 83.2 kg
(=80 kg × 1.04) for the other two communities respectively.

IR (intake rate, soil/dust ingestion rate in this case): Our estimation was based on the findings
that increasing intake of foods was associated with behaviors leading to obesity [57]. In addition,
psychosocial stress can also lead to eating disorder such as pica [58]. Therefore, we assumed the soil
ingestion rate for residents in EJ communities was 70% higher than that of the wealthiest community
where the residents’ soil ingestion rate was assumed to be 50 mg/day according to the EPA’s Exposure
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Factor Handbook. Furthermore, 60 mg/day (20% increase) and 75 mg/day (50% increase) were
assumed to be the IR for those living in the two intermediate communities.

EF (exposure factor): We assumed the exposure factor to be 1 for the EJ community in that all
the residents are constantly exposed to lead pollution on a daily basis. For the wealthiest community,
it was assumed that exposure duration for most residents was 3 h/day and therefore, EF would be
0.125 (=3 h-day/24 h-day). Furthermore 0.25 and 0.5 were assigned to be the EF values for the other
two scenarios.

We calculated the ADD levels for the four scenarios and compared them in order to evaluate how
the exposure dose levels change when EJ indicators were considered for smaller geographic units.

3. Results

3.1. Nationwide Average Daily Dose Estimate

We evaluated ADD for the group of chemicals (normalized for graphing) for poverty and
race/ethnicity separately, and then examined each chemical with respect to the combination of EJ
indicators, as both 2- and 3-dimensional plots. Finally, we analyzed race/ethnicity and poverty with
respect to a chemical mixture.

3.1.1. Single EJ Indicator

In Figure 1, it can be seen that the ADD level for most pollutants increased as the poverty
score increased from 2 to 7. The ADD level of cyanide had the highest increase (33.64%) and that of
acetaldehyde the least (14.34%). 1,3-Butadiene showed relatively similar ADD levels at poverty scores
of 1 and 2, as compared to higher poverty scores (6 and 7).
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Figure 1 also shows the trend of chemical ADD with respect to increasing race score. The ADD
level of most chemicals (except cyanide compound) increased gradually as race score became larger,
reached the peak at race score of 8, and decreased slightly as race score increased from 8 to 10.
The ADD level of diesel PM had the greatest increase (73.00%) and that of acetaldehyde the
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least (31.03%). Similar to chemical ADD levels associated with poverty score, aside from isolated
perturbations, ADD displayed monotonically increasing trends as race score became higher.

3.1.2. Two EJ Indicators (Multiple Chemical)

Figure 2 shows the 3D plot of benzene ADD with respect to both poverty and race/ethnicity,
indicating a saddle-like surface to the results. As race score increased from 1 to 10, the benzene ADD
level increased by more than 100% (from 2 × 10−4 mg-day/kg to more than 4 × 10−4 mg-day/kg).
Comparing between EJ indicators, increasing poverty scores generally resulted in higher benzene
ADD as well, but with smaller magnitude. When poverty and race scores were in their medians,
there was a flatter surface (lower slope) for benzene ADD levels. A more detailed analysis on the
suggested impacts of poverty and race/ethnicity on ADD are presented in the Discussion section
below. Results of analysis for two EJ indicators with single chemical can be found in Supplementary
Materials Figure S1.
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EJ 
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Figure 2. Two Environmental Justice (EJ) Indicators 3D Plot. (A) Single-chemical (benzene) ADD levels
(mg-day/kg) associated with both poverty and race scores (color in sky blue); (B) Multiple-chemical
ADD levels (mg-day/kg) associated with both poverty and race scores. These two graphs are snapshots
of different perspectives of the same 3-D plot. The bottom layer (color in sky blue) represents the ADD
level of benzene; the middle layer (color in aquamarine) represents the ADD level of benzene plus that
of adjusted 1,3-butadiene; the first layer (color in cyan) represents the ADD level of benzene plus that
of both adjusted 1,3-butadiene and acetaldehyde.

Figure 2 also illustrates the 3D surface plots for three layers of chemical ADD: benzene, benzene
plus adjusted 1,3-butadiene, and benzene plus adjusted 1,3-butadiene and adjusted acetaldehyde.
All three layers of ADD followed almost the same pattern as the single chemical 3D plot. However,
the perturbations in the ADD surface for multiple chemicals were larger than those for a single chemical
(i.e., benzene).

3.2. Dose Estimates of Local Scale Scenarios

In Table 1, it can be found that the lead exposure dose level in the simulated EJ community is
around 12,941 (=5.06/3.91 × 10−4) times more than that in the wealthiest community. The lead ADD
of the two intermediate communities are also substantially higher than the most affluent neighborhood
by 2 or 3 orders of magnitude. As the poverty level of the community increased, the BW increased as
a denominator and can result in a decrease in ADD while holding other parameters constant. However,
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its change cannot outweigh that of other parameters. Therefore, in this simulated application, the ADD
level of the poorer community is still tremendously higher than that of the wealthy one.

Table 1. Parameters and ADD Estimates for Four Different Scenarios. BW, body weight; IR, intake rate;
C, lead concentration in soil; EF, exposure factor.

Wealthiest
Community

Middle
Community 1

Middle
Community 2 EJ Community

BW (kg) 80 82.4 83.2 84
IR (mg/day) 50 60 75 85
C (mg/kg) 5 50 5.00 × 102 5.00 × 103

EF 0.13 0.25 0.50 1
ADD (mg/kg-day) 3.91 × 10−4 9.10 × 10−3 0.23 5.06

4. Discussion

In general, we found that each EJ indicator (poverty and race/ethnicity) was positively
associated with higher chemical exposure dose estimates based on a nationwide tract-level evaluation.
Racial/Ethnic minority and poor neighborhood combined were also associated with higher chemical
exposure levels. The local-level simulation indicates a substantial difference in exposure-dose levels
between wealthy and EJ communities.

4.1. EJ-ADD Approach

Different from applying other modeling techniques or tools, the application of the EJ-ADD
approach can both estimate average daily dose and take into account environmental justice concerns
at different geographic levels. In particular, it has the following advantages in addressing EJ issues.
First, it can provide direct estimates of exposure dose level for EJ communities and vulnerable
population. Both CalEnviroScreen and EJSCREEN are, in essence, cumulative impact mapping
tools of which the outputs are used to inform public environmental decision making related to
resources allocation and identification of EJ communities. EJ-ADD allows further quantification of
exposure doses for the identified communities with EJ concerns. Second, this approach integrates
both environmental exposure dose information and demographic data, which is a valuable advantage
most exposure and dose modeling techniques tend to neglect. Although the personal delivered
dose model [22] integrates individual behavior information such as consumption and bathing habits,
other EJ indicators related to extrinsic vulnerability such as “food deserts” and poverty cannot be
taken into account when estimating dose levels using the personal delivered dose model. Examination
of EJ indicators that influence exposure can be conducive to targeting risk-reduction actions,
such as an education outreach program, installing air filters in houses close to contamination sites,
or an emission reduction campaign. Third, the EJ-ADD approach is not limited to estimating dose
level for a particular route of exposure, as demonstrated by both the nationwide tract-level analysis
(the media type was air) and the local-scale simulation exercise (the media type was soil/dust). It can
also be applied to estimate exposure dose for other media such as water provided that all the input
information is available. Fourth, partly derived from dose modeling techniques in conventional RA,
EJ-ADD is complementary to conventional RA and can inform public decisions with consideration to
EJ issues for which conventional RA alone cannot achieve.

4.2. Average Daily Dose Estimates for U.S. Census Tracts

We focused mainly on chemical exposures and EJ indicators at the census tract level, aggregated
to represent areas with particular race/ethnicity and poverty conditions. It has been demonstrated
that socio-economic status measured at the individual level compared to the area level could have
independent impacts on individual health conditions [59]. Therefore, our results may not be consistent
with other studies concentrating on individual-measured chemical exposure levels.
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When we considered only one EJ indicator, we found that both EJ poverty and EJ race were
positively associated with ADD exposure levels. This finding is consistent with results in other
environmental justice literature [3,10,29,41,42,44,60–62], suggesting that the approach we adopted is
reasonable and could be utilized for future studies.

If we evaluate both EJ indicators simultaneously (see Supplementary Materials Figure S1),
we observe an increasing trend in chemical exposure levels as the percentage of non-white residents
increased from 0% to 100% for most chemicals. Chemical exposures among the different poverty scores
cannot be easily differentiated for race scores <6 (i.e., <60% non-white), after which, higher poverty
scores tended to group at higher ADD levels, and lower poverty scores (i.e., wealthier tracts) grouped
toward lower exposure levels. Poverty further aggravated the chemical exposure levels in conjunction
with race/ethnicity, inducing higher chemical exposure levels for lower-income census tracts.
In most cases, once race score reached 6 (≥50% non-white), poverty began to differentiate between
chemical exposures more clearly, with lower poverty scores (higher percentage of low-income residents)
achieving higher levels, and vice-versa. Exposure for race score <6 showed less differentiation
(i.e., tighter grouping) of ADD across poverty scores, yet exposures still increased with race score.
In all cases, ADD for non-white areas continued to increase with race score; for example, tracts with
more than 80% non-white residents show at least a 300% increase in diesel PM exposure compared
to those with less than 20% non-white residents. For five out of six pollutants (except for cyanide
compounds), exposure levels slightly decreased as the non-white percentage increased from 80% to
100% (i.e., as race score increased from 9 to 10) across most poverty conditions, yet ADD levels were
still greater than at the lower race scores (i.e., between 1 and 5).

The 3-dimensional surface for benzene (Figure 2) provides additional clues as to the interactions
between race/ethnicity and poverty with respect to chemical ADD levels. As evidenced by the graph,
there is a sharp increase in ADD as race score increases from 1 to 5, regardless of poverty, which
actually shows no clear monotonic increase from higher- to lower-income tracts (i.e., from low to high
poverty scores). However, within the middle of the surface, between poverty scores 4–5 and race scores
5–7, there exists a shallower region surrounded on three sides by sharp increases in slope (i.e., toward
higher or lower poverty or toward higher race scores). This area is of particular interest because it
represents an area of median characteristics, approximately 50% non-white and 50% low-income.

From this region, holding race score constant, as poverty score increases from 3 to 7, ADD
also increases across all three different layers, which might be expected. However, as poverty score
decreases from 3 to 2, ADD still slightly increases, suggesting that higher-income areas are not
necessarily offering additional protections to these racially/ethnically mixed areas. Also from this
region, very clearly, as race score increases from 1 to 8, then ADD also increases dramatically, regardless
of whether poverty remains constant, increases, or decreases. In all cases, race/ethnicity is a clearer
indicator of higher ADD exposure levels in this study, and economic advantage does not necessarily
offer non-white populations additional protection from chemical exposures. Future work will include
additional geospatial analyses in an attempt to distinguish circumstances that could account for this
pattern (e.g., the geographic distribution of high-, medium-, and low-income areas with various
proportions of non-white population); contributing factors could include urban, suburban, and rural
conditions, or socio-political factors such as historical discrimination and the inertia of racial/ethnic
segregation through time.

4.3. Average Daily Dose Estimates of Local Scale Scenarios

Without explicit statement regarding which EJ factors may potentially impact exposure dose
estimates in the local-scale simulation, this exercise in fact involves four different EJ indicators when
making assumptions and assigning values for the parameters in the ADD model, including proximity
to NPL, pre-existing condition (e.g., obesity and soil pica), poverty, and food deserts. It highlights
the merit of using EJ-ADD as a useful application to address EJ concerns which other exposure dose
modeling tools tend to neglect.
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Our simulated results indicate that the difference in exposure dose levels between wealthy and
EJ communities can have multiple orders of magnitude when considering multiple EJ indicators
simultaneously. The cumulative impacts of these EJ indicators can be reflected quantitatively via
the application of EJ-ADD in a way that other techniques cannot achieve. In future analyses, if one
provides a list of EJ indicators to be considered before exposure dose estimates, EJ-ADD may serve as
a reasonable approach to start with.

4.4. Other EJ Indicators

We only considered percentage non-white and ratio of income to poverty explicitly as EJ indicators
in the nationwide tract-level analysis, although the NATA tract-level pollutant concentrations and
the ACS age information could also be viewed as EJ indicators such as those defined in previous
studies [63]. However, additional EJ indicators can potentially be integrated using our approach.

Race/ethnicity and poverty are indicators of environmental injustice, and can be used to identify
and characterize EJ areas and demonstrate (as shown here) their relation to chemical exposures.
However, they are larger issues that, in and of themselves, do not explain the reasons that EJ
populations are over-exposed (i.e., vulnerability), nor do they account for greater risk based on
human dose-response (i.e., susceptibility). In order to fully deconstruct and investigate the negative
impacts of environmental injustice, a further examination (at finer granularity than race/ethnicity and
poverty) of the socio-economic and biological factors associated with them is warranted.

Supplementary Materials Table S4 presents a number of EJ-related variables that could potentially
modify the likelihood or consequence of either exposure or response to chemical pollutants,
and have thus been termed, exposure/response modifiers or ERMs. ERMs encapsulate susceptibility
and vulnerability factors without requiring a distinction between them, since both could contribute to
increased biological risk, such as food deserts (a vulnerability) being related to biological resiliency
(a susceptibility).

4.5. Limitations

Four major limitations of this study are discussed in this section and can potentially be investigated
in future analysis.

First, we used ADD instead of Lifetime Average Daily Dose (LADD) [27], in that we do not have
sufficient exposure duration and frequency information to accurately assess LADD exposure factors on
a national scale. We made the assumption of exposure factor being equal to 1 when calculating ADD.
The influence of this assumption would be magnified if we used LADD as the basis to estimate chemical
exposures. Provided we have enough temporal information for exposure factors at a community level,
LADD can possibly be used interchangeably with the ADD model for exposure dose estimates.

Second, when considering multiple chemical exposures, the pattern of interactions between EJ
indicators became more evident. In this work, we made the simplified assumption that different
chemicals did not interact with each other in a chemical mixture, which allowed us to utilize the ICED
formula. We are aware that such an assumption may not hold in different environmental settings.
In addition, other potency measures may be used to calculate the relative potency factor for different
chemicals. We understand that the unit risk value of benzene provided by IRIS is represented by
a range and not a single value. However, due to the ubiquitous nature of benzene and to estimate
the average benzene ADD level on a national scale, we had to make certain simplifications within
a reasonable scope, and therefore chose to utilize the median value for inhalation unit risk. The main
purpose of showing this chemical mixture result is to demonstrate the ability of employing this ADD-EJ
approach to analyze interactions between EJ indicators and chemical mixtures, acknowledging that EJ
communities are often host to multiple chemical agents simultaneously and periodically through time.

Third, given that majority of this work was based on national-scale data, the quantitative
relationship regarding the interactions between race scores and poverty scores cannot be applied
to a particular area or city, and only for descriptive purpose. Mathematically identifying the optimal
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balance between these two scores in terms of minimizing chemical exposures is beyond the scope of
this paper but could certainly be explored in the future.

Fourth, in the local-scale exercise, we used simulated scenarios in cases where we did not have
relevant local level data to estimate ADD levels for the communities with different characteristics.
Ideally, the estimated ADD levels of these communities could be matched directly to EJ indicators
similar to what we did for the nationwide tract-level analysis, thus exploring the corresponding
relationships between ADD and EJ indicators.

5. Conclusions

The purpose of this study was to identify an approach that links EJ indicators to exposure dose
estimates. First, we presented a nationwide tract-level analysis of ADD, organized by EJ scores for
poverty and race/ethnicity. We found that these EJ indicators likely contribute to increased exposure
dose, which is supported by the EJ literature. Then, we presented a simulation of communities,
representative of a spectrum from affluent to EJ-impacted, to demonstrate the utility of EJ-ADD on
a local scale.

By linking conventional RA methods, such as the ADD model, to exposure response modifiers
typically found in CRA applications, such as proximity to NPL, EJ-ADD can evaluate the potential
primary contributing factor of increased exposure and dose, in the hopes of developing more
targeted solutions.

Finally, this work seeks to bridge the gap between conventional RA and broader CRA
considerations and applications. This study has no intention to be separated from classical techniques
of exposure dose modeling, but rather to draw more attention to EJ indicators that can influence
modeling variables.

We conclude that the application of the EJ-ADD approach can link EJ factors to exposure dose
estimate and identify potential impacts of EJ factors on dose-related variables.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/1/24/s1,
Table S1. Exposure Factors Handbook (U.S. EPA 2011) (Table 6-1. Recommended Long-Term Exposure Values
for Inhalation); Table S2. Exposure Factors Handbook (U.S. EPA 2011) (Table 8-1. Recommended Values
for Body Weight); Table S3. Number of census tracts associated with EJ scores; Table S4. Other EJ-related
Exposure/Response Modifiers; Figure S1. Single-chemical ADD levels (mg-day/kg) associated with both poverty
and race scores.
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