

  A Group Decision Framework with Intuitionistic Preference Relations and Its Application to Low Carbon Supplier Selection




A Group Decision Framework with Intuitionistic Preference Relations and Its Application to Low Carbon Supplier Selection







Int. J. Environ. Res. Public Health 2016, 13(9), 923; doi:10.3390/ijerph13090923




Article



A Group Decision Framework with Intuitionistic Preference Relations and Its Application to Low Carbon Supplier Selection



Xiayu Tong 1 and Zhou-Jing Wang 2,*





1



School of Management, Zhejiang University of Finance & Economics, Hangzhou 310018, China






2



School of Information, Zhejiang University of Finance & Economics, Hangzhou 310018, China









*



Correspondence: Tel.: +86-571-8504-3562







Academic Editors: Jason K. Levy and Peiyong Yu



Received: 29 July 2016 / Accepted: 13 September 2016 / Published: 19 September 2016



Abstract:



This article develops a group decision framework with intuitionistic preference relations. An approach is first devised to rectify an inconsistent intuitionistic preference relation to derive an additive consistent one. A new aggregation operator, the so-called induced intuitionistic ordered weighted averaging (IIOWA) operator, is proposed to aggregate individual intuitionistic fuzzy judgments. By using the mean absolute deviation between the original and rectified intuitionistic preference relations as an order inducing variable, the rectified consistent intuitionistic preference relations are aggregated into a collective preference relation. This treatment is presumably able to assign different weights to different decision-makers’ judgments based on the quality of their inputs (in terms of consistency of their original judgments). A solution procedure is then developed for tackling group decision problems with intuitionistic preference relations. A low carbon supplier selection case study is developed to illustrate how to apply the proposed decision model in practice.
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1. Introduction


In recent years, increasingly frequent red alerts of hazardous smog in China have created significant concerns for public health and the unsustainability of its current economic development modes [1]. Rapid increase of carbon emissions has caused climate change and resulted in global warming in the past decades. This challenge has prompted many governments and environmentalists to take actions to curb pollution. As the largest manufacturer in the world, China’s manufacturing industry reached a total value of $2.9 trillion in 2014 alone [2]. Nowadays, manufacturers in China are facing increasing pressure to develop green technology and reduce carbon emissions [3]. In this process, a critical stage is to select low carbon suppliers. Generally speaking, supplier selection requires input from different departments within the organization and judgments or preferences for comparing different suppliers are often vague and uncertain. To address this important issue, this paper first proposes a general framework to handle group decision problems where decision-makers’ (DMs’) preferences are provided by intuitionistic fuzzy judgments and the DMs’ weights are unknown. The proposed approach is then applied to a case study concerning low carbon supplier selection problems.



Since Atanassov [4] extended the fuzzy set theory to intuitionistic fuzzy sets (IFSs) by introducing both membership and non-membership functions, IFSs and their applications to decision modeling have received increasing attention from researchers. Thanks to their flexibility in characterizing inherent vagueness and hesitancy in the human decision making process, IFSs have been extensively studied in the area of multiple attribute decision making [5,6,7,8,9]. A common multiattribute decision framework is to take pairwise comparison preference relations as basic input. Along this line, Szmidt and Kacprzyk [10] represent an intuitionistic preference relation as a combination of a fuzzy preference matrix and a hesitancy matrix, and investigate how to aggregate individual DMs’ intuitionistic preference relations in a group decision making (GDM) setting. Xu [11] employs intuitionistic fuzzy numbers (IFNs) to describe DMs’ pairwise judgments, thereby defining intuitionistic preference relations. Subsequently, Xu [12] introduces a compatibility measure between intuitionistic preference relations, and applies it to develop a consensus reaching procedure in GDM. When a pairwise comparison matrix is employed to depict a DM’s preference, a critical issue is the consistency of the preference relation [13]. In the context of intuitionistic preference relations, different consistency definitions have been proposed [14,15]. For instance, based on IFNs operations [16], Xu [11] defines multiplicative consistent intuitionistic preference relations, and introduces an intuitionistic fuzzy weighted averaging (IFWA) operator to develop an approach to GDM with intuitionistic preference relations, in which the weights of DMs are known. Subsequently, Xu et al. [17] point out the deficiency of the multiplicative transitivity condition in Xu [11]. Motivated by the multiplicative consistency equivalence formula of fuzzy preference relations, Xu et al. [17] furnish a new multiplicative consistency definition for intuitionistic preference relations. On the other hand, Gong et al. [18] introduce an additive consistency definition for intuitionistic preference relations and investigate how to derive priority weights by establishing a goal programming model and a least squares model. Wang [19] shows that the additive consistency in Gong et al. [18] is defined in an indirect manner, and the matrix based on the consistency transformation equations therein may not necessarily be an intuitionistic preference relation. As such, Wang [19] introduces a new additive consistency definition by employing membership and non-membership of the DM’s intuitionistic judgments and establishes goal programming models to derive intuitionistic fuzzy weights.



In GDM, an important topic is to aggregate individual preference values into a group preference [20,21,22,23]. The ordered weighted averaging (OWA) [24] and the induced ordered weighted averaging (IOWA) [25] operators have been extended to situations where decision inputs are provided as IFNs. These extensions range from the intuitionistic fuzzy ordered weighted averaging (IFOWA) operator [16], to the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator [26], the induced intuitionistic fuzzy ordered weighted geometric (IIFOWG) operator [27], the induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator [28], and the induced generalized intuitionistic fuzzy ordered weighted averaging (IG-IFOWA) operator [29]. These aggregation operators take different operational laws to treat membership and non-membership information. The drawback of this treatment is that these aggregation operators do not necessarily possess the desired monotonic property as per the ranking based on the score and accuracy functions. The implication is that, even if all individual intuitionistic preference relations are consistent, the aggregated one may not be consistent. Another drawback is that the complement property (see Theorem 5 in Section 4) will not be maintained by employing these aggregation operators, implying that it is difficult to use them for aggregating individual intuitionistic preference relations. On the other hand, in the process of GDM, it is often the case that the intuitionistic preference relations provided by the DMs are inconsistent. To obtain a reasonable decision result, it is necessary to first rectify consistency of these intuitionistic preference relations. By employing the additive consistency definition introduced by Wang [19], this paper puts forward a consistency rectification framework to tackle GDM problems with intuitionistic preference relations. The proposed procedure consists of three stages: (1) Rectification of individual inconsistent intuitionistic preference relations; (2) Aggregation of the rectified consistent intuitionistic preference relations; (3) Ranking of alternatives based on aggregated preference values. More specifically, an innovative approach is first proposed to rectify any inconsistent intuitionistic preference relation. An induced intuitionistic ordered weighted averaging (IIOWA) operator is then developed to aggregate individual IFNs, in which the same weighted averaging scheme is applied to both the membership and non-membership of IFNs. Subsequently, the mean absolute deviation (MAD) between the original and rectified intuitionistic preference relations is adopted as an order inducing variable of the IIOWA operator to aggregate the rectified consistent intuitionistic preference relations. A key objective of this treatment is to assign different weights to different DMs’ judgments as per the quality of the inputs (in terms of consistency of the DMs’ original judgments). Finally, a solution procedure is summarized for handling GDM with intuitionistic preference relations and applied to a low carbon supplier selection problem to illustrate its applicability and effectiveness.



The remainder of this paper is organized as follows. Section 2 furnishes basic concepts of IFSs and additive consistent intuitionistic preference relations. Section 3 proposes an approach to rectifying inconsistent intuitionistic preference relations. In Section 4, a new aggregation operator, IIOWA, is developed to aggregate intuitionistic preference values, followed by a procedure for solving GDM problems with intuitionistic preference relations. A low carbon supplier selection example is presented to illustrate the proposed approach in Section 5. Concluding remarks are offered in Section 6.




2. Preliminaries


This section presents basic concepts of IFSs and additive consistent intuitionistic preference relations. The aim is to put future discussions in a proper context.



By introducing membership and non-membership functions, Atanassov [4] put forward the notion of IFSs as follows.



Definition 1. 

Let a nonempty set Z be fixed, an IFS A in Z can be defined as


[image: there is no content]



(1)




where [image: there is no content], [image: there is no content]





[image: there is no content] and [image: there is no content] denote the membership and non-membership degree of element z to set A, respectively. In addition, [image: there is no content] is called the hesitancy degree of z to A. Obviously, [image: there is no content] for every [image: there is no content]



For a given z and IFS [image: there is no content], the pair [image: there is no content] is referred to as an IFN [26]. For notational and computational convenience, an IFN is often denoted by [image: there is no content], where [image: there is no content] and [image: there is no content].



To compare two IFNs, a score function is defined by Chen and Tan [30] as


[image: there is no content]



(2)




and subsequently, an accuracy function is defined by Hong and Choi [31] as


[image: there is no content]



(3)







It is obvious that [image: there is no content], [image: there is no content], and the hesitancy degree of [image: there is no content] can be computed as


[image: there is no content]



(4)







The higher the accuracy degree of [image: there is no content], the lower its hesitancy degree. If [image: there is no content], then [image: there is no content], indicating that the IFN [image: there is no content] is reduced to a fuzzy number [image: there is no content].



Let [image: there is no content] and [image: there is no content] be any two IFNs, based on the aforesaid score and accuracy functions, Xu and Yager [26] propose a prioritized comparison method for two IFNs as follows:

	
If [image: there is no content], then [image: there is no content] is smaller than [image: there is no content], which is denoted by [image: there is no content].



	
If [image: there is no content], then

	
if [image: there is no content], then [image: there is no content] is smaller than [image: there is no content], which is denoted by [image: there is no content];



	
if [image: there is no content], then [image: there is no content] and [image: there is no content] are equal, which is denoted by [image: there is no content].













The aforesaid comparison method for any two IFNs implies that [image: there is no content] if and only if (i) [image: there is no content] or (ii) [image: there is no content] and [image: there is no content].



To express hesitancy and uncertainty in DMs’ pairwise judgments, Xu [11] introduces the concept of intuitionistic preference relations.



Let [image: there is no content] be a discrete set of decision alternatives. An intuitionistic preference relation on [image: there is no content] is characterized by a matrix [image: there is no content], where [image: there is no content] denotes an intuitionistic preference value of alternative [image: there is no content] over [image: there is no content] such that


[image: there is no content]



(5)







It is clear that each preference value [image: there is no content] in [image: there is no content] is an IFN. [image: there is no content] and [image: there is no content] indicate, respectively, membership and non-membership degrees to which alternative [image: there is no content] is superior to [image: there is no content].



Due to [image: there is no content] in [image: there is no content] for all i, j = 1, 2, …, n, Wang [19] defines the following additive consistent intuitionistic preference relations by directly using the membership degrees in the judgment matrix.



Definition 2. 

An intuitionistic preference relation [image: there is no content]with [image: there is no content]is additive consistent if the following additive transitivity is satisfied.


[image: there is no content]



(6)









Since [image: there is no content] for all i, j = 1, 2, …, n, it follows from (6) that


[image: there is no content]



(7)







Based on Definition 2 and the score function [image: there is no content], Wang [19] establishes the following result to judge the additive consistency of an intuitionistic preference relation.



Lemma 1. 

An intuitionistic preference relation [image: there is no content]is additive consistent if and only if


[image: there is no content]



(8)










3. Rectification of Inconsistent Intuitionistic Preference Relations


According to Lemma 1, the additive consistency of an intuitionistic preference relation [image: there is no content] can be verified by checking whether the scores of the intuitionistic judgments in [image: there is no content] satisfy (8). To derive a consistent intuitionistic preference relation from an inconsistent judgment matrix [image: there is no content], a sensible approach is to adjust the scores of some elements in [image: there is no content]. On the other hand, it is clear from (2) that different IFNs may possess an identical score value as long as they have the same difference between their corresponding membership and non-membership degrees. So, a critical issue is how to properly adjust these score values in the rectification process. To avoid excessive distortion of the DM’s original judgment, it is desirable that the rectified IFNs should be as close to the original IFNs in [image: there is no content] as possible. As per (2) and (4), one can see that an IFN can be uniquely determined by its score and hesitancy values. Given these considerations, the rectified IFNs are selected to maintain the original hesitancy values. If an additive consistent intuitionistic preference relation cannot be obtained by keeping hesitancy values constant, their hesitancy values will be scaled down proportionally in the rectification process.



For a given intuitionistic preference relation [image: there is no content], let


[image: there is no content]



(9)






[image: there is no content]



(10)







Then, we have the following result.



Theorem 1. 

Let [image: there is no content]with [image: there is no content]be an intuitionistic preference relation, and [image: there is no content]and [image: there is no content][image: there is no content]be defined by (9) and (10), respectively, then

	(i) 

	
[image: there is no content], [image: there is no content].




	(ii) 

	
[image: there is no content], [image: there is no content].




	(iii) 

	
[image: there is no content]and [image: there is no content], [image: there is no content].




	(iv) 

	
[image: there is no content], [image: there is no content].




	(v) 

	
[image: there is no content], [image: there is no content].




	(vi) 

	
[image: there is no content], [image: there is no content].











Proof. 

Since [image: there is no content] is an intuitionistic preference relation, as per (4) and (5), we have [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] for all [image: there is no content]. Therefore, (i)–(iv) can be derived from (9) and (10).





As [image: there is no content] for all [image: there is no content], it follows from (9) that


[image: there is no content]











Similarly, from (10), we have [image: there is no content][image: there is no content]. ☐



Denote a matrix by [image: there is no content] with [image: there is no content], where [image: there is no content] and [image: there is no content][image: there is no content] are defined by (9) and (10), respectively. From Definition 2 and Theorem 1, one can easily obtain the following corollary.



Corollary 1. 

If [image: there is no content]and [image: there is no content]for all [image: there is no content], then [image: there is no content]is a consistent intuitionistic preference relation and [image: there is no content].





Theorem 2. 

If [image: there is no content]is an additive consistent intuitionistic preference relation, then [image: there is no content].





Proof. 

If [image: there is no content] is additive consistent, from Lemma 1, one has [image: there is no content] ∀i, j, k = 1, 2, …, n. Thus,


[image: there is no content]













As per (2), (4), (9), and (10), one confirms that


[image: there is no content]










[image: there is no content]











This proves that [image: there is no content]. ☐



Corollary 1 reveals that a consistent intuitionistic preference relation [image: there is no content] can be derived from [image: there is no content] by using the Formulaes (9) and (10) provided that [image: there is no content] and [image: there is no content] for all [image: there is no content]. In this case, the hesitancy degree of each IFN in [image: there is no content] remains the same as that of the corresponding element in [image: there is no content]. Theorem 2 demonstrates that [image: there is no content] if the original intuitionistic preference relation [image: there is no content] is additive consistent. On the other hand, if [image: there is no content] is not consistent, Equations (9) and (10) may yield [image: there is no content], [image: there is no content], [image: there is no content], or [image: there is no content]. In this case, [image: there is no content] will not be an intuitionistic preference relation. To derive a consistent intuitionistic fuzzy preference relation, [image: there is no content] (i, j = 1, 2, …, n) in [image: there is no content] have to be converted into IFNs by using a transformation function as shown below.



Let


[image: there is no content]



(11)







It is obvious that [image: there is no content], and [image: there is no content][image: there is no content]. As per Theorem 1, one has [image: there is no content][image: there is no content]. Thus, [image: there is no content], [image: there is no content][image: there is no content], i.e., [image: there is no content][image: there is no content].



As the membership and non-membership degrees of an IFN lie between 0 and 1, (0, 1) and (1, 0) are the smallest and largest IFNs, respectively. To derive an additive consistent intuitionistic preference relation from the matrix [image: there is no content], a proper transformation function [image: there is no content] should possess the following properties:

	(i)

	
[image: there is no content].




	(ii)

	
[image: there is no content].




	(iii)

	
[image: there is no content].




	(iv)

	
[image: there is no content][image: there is no content], where [image: there is no content] is the complement of [image: there is no content], i.e., [image: there is no content].




	(v)

	
[image: there is no content], if [image: there is no content], then [image: there is no content], where [image: there is no content].




	(vi)

	
[image: there is no content], if [image: there is no content] and [image: there is no content], then [image: there is no content] and [image: there is no content], where [image: there is no content]k = 1, 2, …, 6.









Properties (i) and (ii) require the transformation function to convert the pairs [image: there is no content] and [image: there is no content] to the smallest IFN (0, 1) and the largest IFN (1, 0), respectively; (iii) ensures that an indifferent judgment (0.5, 0.5) remains after [image: there is no content] is applied; (iv) expects [image: there is no content] to maintain the complementary property under [image: there is no content]; (v) guarantees that the converted values [image: there is no content][image: there is no content] are IFNs if [image: there is no content]. The last property (vi) makes sure that the conversion procedure retains additive transitivity.



If a transformation function [image: there is no content] possesses the aforesaid six properties, as per Theorem 1, it can be immediately confirmed that [image: there is no content] is an additive consistent intuitionistic preference relation.



More specifically, based on the transformation function furnished for fuzzy preference relations by Herrera-Viedma et al. [32], let


[image: there is no content]



(12)







Then, it is obvious that [image: there is no content] satisfies the aforesaid desired properties (i)–(iv). Since [image: there is no content], it is confirmed that [image: there is no content] if [image: there is no content]. Thus, [image: there is no content] satisfies the property (v). To verify (vi), for [image: there is no content], if [image: there is no content] and [image: there is no content], then [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content] possesses the desired property (vi) as well.



By applying the transformation function [image: there is no content], [image: there is no content] is converted to [image: there is no content] as follows:


[image: there is no content]



(13)




where [image: there is no content] is defined by (9) and (10).



Theorem 3. 

Let [image: there is no content]be an intuitionistic preference relation, and the elements of [image: there is no content]be defined by (13), then [image: there is no content]is an additive consistent intuitionistic preference relation and [image: there is no content].





Proof. 

As [image: there is no content] satisfies the aforesaid six desired properties of a transformation function, it immediately follows that [image: there is no content] is an additive consistent intuitionistic preference relation. As per Theorem 1, [image: there is no content] for all [image: there is no content]. By (4), one has [image: there is no content]. ☐





Theorem 3 furnishes an approach to rectifying any intuitionistic preference relation [image: there is no content]. If [image: there is no content] is consistent, the rectification process ends up with the same [image: there is no content]. For an inconsistent intuitionistic preference relation [image: there is no content], if d = 0, the rectification process stops at [image: there is no content] and the hesitancy degree of each IFN in the rectified intuitionistic preference relation [image: there is no content] equals that of the corresponding original judgment in [image: there is no content]; if d > 0, the hesitancy degree of each IFN in [image: there is no content] is scaled down by a common proportion 1/(1 + 2d).



For an inconsistent original judgment matrix [image: there is no content], this additive consistency rectification process can be summarized as follows:



Step 1. Construct [image: there is no content] with [image: there is no content] from [image: there is no content] as per (9) and (10).



Step 2. Determine the value of d by Equation (11). If d = 0, [image: there is no content] and stop; otherwise, go to Step 3.



Step 3. Calculate [image: there is no content] (i, j = 1, 2, …, n) to transform [image: there is no content] into an additive consistent intuitionistic preference relation [image: there is no content] by Equation (13).




4. An Approach to Group Decision Making with Intuitionistic Preference Relations


4.1. An Induced Intuitionistic Ordered Weighted Averaging (IIOWA) Operator


Yager and Filev [25] extend the ordered weighted averaging (OWA) operator [24] to an induced ordered weighted averaging (IOWA) operator by introducing an order inducing variable as defined below.



Definition 3. 

An IOWA operator is a function [image: there is no content]defined by an associated m-dimensional weight vector [image: there is no content]such that [image: there is no content]and [image: there is no content](i = 1, 2, …, m), and a set of pairs [image: there is no content], as per the following expression:


[image: there is no content]



(14)




where [image: there is no content]is a permutation of {1, 2, …, m} such that [image: there is no content]for i = 1, 2, …, m-1, i.e., [image: there is no content]is a reordering of [image: there is no content]as per a decreasing order of all [image: there is no content](i = 1, 2, …, m).





In Definition 3, [image: there is no content] in the pair [image: there is no content] is referred to as the value of an order inducing variable and [image: there is no content] as the value of an argument variable. The reordering may be generalized as an ascending order. In this case, it is necessary to distinguish between a descending IOWA operator (DIOWA) and an ascending IOWA (AIOWA) operator.



In the following, the IOWA operator is extended to accommodate situations where the input arguments are expressed as IFNs.



Definition 4. 

Let [image: there is no content](i = 1, 2, …, m) be m IFNs, then an induced intuitionistic ordered weighted averaging (IIOWA) operator is defined as:


[image: there is no content]



(15)




where [image: there is no content]is an associated weight vector with [image: there is no content]and [image: there is no content](i = 1, 2, …, m), [image: there is no content]is the value of an order inducing variable (i = 1, 2, …, m), and [image: there is no content]is a permutation of {1, 2, …, m} such that [image: there is no content]for each i = 1, 2, …, m − 1.





As [image: there is no content] is an IFN, we have [image: there is no content] and [image: there is no content]. Thus, one can obtain [image: there is no content] and [image: there is no content]. Therefore, the aggregated value by using the IIOWA operator remains an IFN. Obviously, if [image: there is no content] for all i = 1, 2, …, m, one has [image: there is no content].



Theorem 4. 

The IIOWA operator defined in (15) is idempotent, commutative, bounded, and monotonic with respect to the order based on score and accuracy functions.





Proof. 

The idempotence and commutativity of the IIOWA operator can be directly obtained from Definition 4.





Let [image: there is no content] and [image: there is no content]. According to the prioritized comparison method for any two IFNs in Section 2, one has

	(i)

	
[image: there is no content] or [image: there is no content]




	(ii)

	
[image: there is no content] or [image: there is no content].



Thus, one can obtain




	(iii)

	
[image: there is no content]



or



[image: there is no content].




	(iv)

	
[image: there is no content]



or



[image: there is no content].









Therefore, [image: there is no content] verifying the boundedness of the IIOWA operator in terms of the score and accuracy functions.



For the monotonicity, let [image: there is no content] for all i (i = 1, 2, …, m), where [image: there is no content], then as per the comparison method for two IFNs, we have


[image: there is no content]











By applying the IIOWA formula in Definition 4, one has


[image: there is no content]










[image: there is no content]











As per the comparison approach of IFNs, one can get [image: there is no content]. It follows from (15) that


[image: there is no content]








.



The proof of Theorem 4 is thus completed.  ☐



As per (15), it is easy to prove the following theorem.



Theorem 5. 

Let [image: there is no content](i = 1, 2, …, m) be m IFNs, then


[image: there is no content]



(16)




where [image: there is no content]is the complement of [image: there is no content], i.e., [image: there is no content]for each [image: there is no content].





Theorem 5 indicates that for m IFNs, we have [image: there is no content][image: there is no content], implying that the complement property will be maintained by using the IIOWA operator to aggregate m IFNs into an IFN. It is noted that this property does not hold for the aggregation operator I-IFOWA introduced by Wei [28].



Apparently, the order inducing variable follows an ascending order in Definition 4, which can be conveniently reversed to obtain a descending IIOWA (DIIOWA) operator.




4.2. Properties of IIOWA Aggregation of Intuitionistic Preference Relations


Next, we shall investigate the properties of the aggregation result when the IIOWA operator is applied to aggregate intuitionistic preference relations.



Theorem 6. 

Let [image: there is no content]with [image: there is no content](k = 1, 2, …, m) be m intuitionistic preference relations, and [image: there is no content](k = 1, 2, …, m) be m values of the order inducing variable, then the aggregation [image: there is no content]is also an intuitionistic preference relation.





Proof. 

As [image: there is no content] is an intuitionistic preference relation, as per (5), we have [image: there is no content][image: there is no content].





According to Definition 4, one has [image: there is no content] and [image: there is no content]. Thus, [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content] is an intuitionistic preference relation. ☐



Theorem 7. 

If [image: there is no content]is an additive consistent intuitionistic preference relation for each k = 1, 2, …, m, then the aggregation [image: there is no content][image: there is no content][image: there is no content]is also additive consistent.





Proof. 

As per (2) and (15), we have


[image: there is no content]








and


[image: there is no content]













On the other hand, as [image: there is no content] is additive consistent, it follows from Lemma 1 that


[image: there is no content]











Therefore, [image: there is no content] for all i, j, l = 1, 2,…, n. By Lemma 1, [image: there is no content] is additive consistent. ☐



Theorem 6 indicates that an intuitionistic preference relation [image: there is no content] will be obtained by applying the IIOWA operator to aggregate individual intuitionistic judgments [image: there is no content] (k = 1, 2, …, m). Theorem 7 further confirms that the resulting [image: there is no content] is additive consistent provided that all individual intuitionistic preference relations are also consistent.




4.3. An IIOWA-Aggregation-Based Procedure for Group Decision with Intuitionistic Preference Relations


Consider a group decision problem with m DMs, [image: there is no content]. Each DM [image: there is no content][image: there is no content] furnishes its assessment on an alternative set [image: there is no content] as an intuitionistic preference relation [image: there is no content].



If a given intuitionistic preference relation [image: there is no content] is not additive consistent, by employing the proposed rectification method in Section 3, a consistent intuitionistic preference relation [image: there is no content] can be obtained for DM dk. Based on [image: there is no content] ([image: there is no content]), the next stage in the solution process for a GDM problem is to derive a consistent group intuitionistic preference relation by a certain aggregation procedure. To obtain a reasonable result, the aggregation operator should properly account for the importance degree of each DM’s rectified [image: there is no content] (k = 1, 2, …, m).



In this model, the importance degree of each DM dk (k = 1, 2, …, m) is assumed to be completely unknown. As such, a rational way in the aggregation process is to associate the importance degree with the deviation between the rectified consistent intuitionistic preference relation and the original judgment matrix. In order to measure the importance degree of a DM’s [image: there is no content], Wang and Li [9] introduced the following definition.



Definition 5. 

Let [image: there is no content]and [image: there is no content]be any two intuitionistic preference relations, the mean absolute deviation (MAD) between [image: there is no content]and [image: there is no content]is defined as:


[image: there is no content]



(17)









Obviously, [image: there is no content] and [image: there is no content]. The smaller the value of [image: there is no content], the closer [image: there is no content] is to [image: there is no content]. Especially, if [image: there is no content], [image: there is no content] = [image: there is no content].



By applying (17) to the rectified [image: there is no content] and the original [image: there is no content] for each k = 1, 2, …, m, we obtain m MAD values [image: there is no content]. The smaller the value of [image: there is no content], the closer the rectified [image: there is no content] is to the original intuitionistic judgment [image: there is no content]. It is sensible to assign a higher importance level for [image: there is no content] in the aggregation process. Thus, [image: there is no content] will be adopted as the order inducing variable in aggregating [image: there is no content].



Once the order inducing variable is determined, a natural issue in the aggregation of [image: there is no content] by using the IIOWA operator is to calculate the weight vector associated with the order inducing variable. A number of approaches [33] have been developed for determining the associated weights. This paper adopts the following formula that is initially proposed by Yager [34]:


[image: there is no content]



(18)




where [image: there is no content].



In the context of the inducing variable here, it is desirable that a higher weight is assigned to a lower MAD value. Without loss of generality, [image: there is no content] is used to determine the associated weights.



Based on the weights determined by (18), a group intuitionistic preference relation [image: there is no content] with [image: there is no content] can be derived from [image: there is no content] (k = 1, 2, …, m) by employing the IIOWA operator. According to Theorem 7, [image: there is no content] is additive consistent.



The last stage in the solution process is to obtain a ranking of all alternatives or select the best one(s) based on the aggregated [image: there is no content]. To facilitate the ranking process, define:


[image: there is no content]



(19)







Theorem 8. 

Let [image: there is no content](i = 1, 2, …, n) be defined by (19), if [image: there is no content]([image: there is no content]), then [image: there is no content]





Proof. 

As [image: there is no content] is an additive consistent intuitionistic preference relation, it follows from (8) that [image: there is no content].





Plugging in (19), one has [image: there is no content].



If [image: there is no content], it immediately follows [image: there is no content]. This proves Theorem 8. ☐



Theorem 8 indicates that a ranking order of alternatives as per a descending order of [image: there is no content] (i = 1, 2, …, n) is consistent with the score-function-based ranking derived from the aggregated preference values in [image: there is no content].



Based on the aforesaid analyses, a solution procedure is summarized below for GDM with intuitionistic preference relations.



Step 1. For each intuitionistic preference relation [image: there is no content] furnished by DM [image: there is no content][image: there is no content], use Lemma 1 to determine if it is additive consistent. If [image: there is no content] is consistent, [image: there is no content]. Otherwise, employ the rectification process in Section 3 to construct an additive consistent intuitionistic preference relation [image: there is no content] for each inconsistent [image: there is no content].



Step 2. Calculate MAD value [image: there is no content] between the constructed consistent intuitionistic preference relation [image: there is no content] and the original judgment matrix [image: there is no content] for each [image: there is no content] as per (17).



Step 3. Determine the associated weights [image: there is no content] (k = 1, 2, …, m) by plugging the values of [image: there is no content] into (18) with [image: there is no content].



Step 4. Use the IIOWA operator to aggregate all [image: there is no content](k = 1, 2, …, m) into a collective consistent intuitionistic preference relation [image: there is no content] with [image: there is no content], where [image: there is no content] (i, j = 1, 2, …, n), i.e., [image: there is no content] and [image: there is no content] (i, j =1, 2, …, n).



Step 5. Obtain the ranking value [image: there is no content] for alternative [image: there is no content] (i = 1, 2, …, n) as per (19).



Step 6. Rank alternatives and select the best one(s) according to a decreasing order of [image: there is no content] (i =1, 2, …, n).





5. An Example of Low Carbon Supplier Selection


This section applies the proposed procedure to GDM concerning low carbon supplier selection where the DMs’ judgment information is furnished as intuitionistic preference relations (adapted from Theißen and Spinler [35]).



To select an appropriate low carbon supplier for a manufacturer, a committee consisting of three members, [image: there is no content], and [image: there is no content], is convened and the members are from the procurement, production, and finance departments. These representatives offer their assessments on four potential suppliers [image: there is no content], and [image: there is no content] based on a set of criteria accounting for low carbon technology, cost, and capacity. It is assumed that each DM [image: there is no content] (k = 1, 2, 3) gives its pairwise comparison results over the four suppliers as the following intuitionistic preference relations [image: there is no content] with [image: there is no content]:


[image: there is no content]










[image: there is no content]










[image: there is no content]











It is easy to verify that these three intuitionistic preferences are not additive consistent based on Definition 2. As such, the rectification process in Section 3 has to be carried out. As per (9) and (10), the following three transformation matrices are obtained:


[image: there is no content]










[image: there is no content]










[image: there is no content]











In [image: there is no content], [image: there is no content] and [image: there is no content] for all [image: there is no content]. In [image: there is no content], [image: there is no content] and [image: there is no content] (correspondingly, [image: there is no content] and [image: there is no content]). In [image: there is no content], [image: there is no content] (correspondingly, [image: there is no content]). By (11), the d values for [image: there is no content], [image: there is no content], and [image: there is no content] are 0, 0.1125, and 0.0125, respectively.



According to (13), we obtain three additively consistent intuitionistic preference relations as follows.


[image: there is no content]










[image: there is no content]










[image: there is no content]











One can easily verify that the hesitancy degrees of IFNs in [image: there is no content] are equal to those of the corresponding IFNs in the original intuitionistic preference relation [image: there is no content]. For the constructed consistent intuitionistic preference relations [image: there is no content] and [image: there is no content], one can see that the hesitancy degrees of the original preferences in [image: there is no content] and [image: there is no content] are reduced by a factor of 1/1.225 and 1/1.025, respectively.



By using (17), the MAD values [image: there is no content] (k = 1, 2, 3) between the constructed consistent intuitionistic preference relations [image: there is no content] and the original judgment matrix [image: there is no content] are determined as


[image: there is no content]











As [image: there is no content], as per Definition 4, if the MAD is adopted as the order inducing variable, then a permutation of {1, 2, 3} can be obtained as {1, 3, 2}, i.e., [image: there is no content] and [image: there is no content]. Therefore, based on (18) with [image: there is no content], the associated DM weights of the IIOWA operator are determined as [image: there is no content], [image: there is no content], and [image: there is no content].



By employing the IIOWA operator with the associated weight vector [image: there is no content] and the permutation [image: there is no content], the collective consistent intuitionistic preference relation [image: there is no content] is derived as


[image: there is no content]











As per (19), the ranking values for all alternatives are determined


[image: there is no content]











Since [image: there is no content], a full ranking of the four suppliers is obtained as [image: there is no content].




6. Conclusions


Consistency and aggregation are two critical issues in GDM with intuitionistic preference relations. This paper puts forward a three-stage framework to handle GDM problems with intuitionistic preference relations and applies it to solve low carbon supplier selection problems. Based on the additive consistency definition proposed by Wang [19], the first stage is concerned with rectifying the original inconsistent intuitionistic preference relations furnished by the DMs. In the aggregation stage, a new intuitionistic fuzzy aggregation operator, the so-called IIOWA, is developed to aggregate the rectified consistent intuitionistic preference relations. This aggregation operator adopts the MAD value between the original and rectified intuitionistic preference relations as an order inducing variable. Based on the aggregated consistent intuitionistic preference relation, an overall ranking function is defined to rank alternatives or select the best one(s).



Significant research opportunities remain open along this line of research. For instance, it is unclear how to handle missing values in the intuitionistic preference relations furnished by the DMs. In addition, the current research rectifies inconsistent intuitionistic preference relations to completely additive consistent. However, sometimes complete consistency may not be necessary as long as inconsistency is controlled to within an acceptable level. It would be interesting to examine how the current framework can be adapted to handle these extensions.
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