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Abstract: Stop-skipping is a key method for alleviating congestion in rail transit, where schedules
are sometimes difficult to implement. Several mechanisms have been proposed and analyzed in
the literature, but very few performance comparisons are available. This study formulated train
choice behavior estimation into the model considering passengers’ perception. If a passenger’s train
path can be identified, this information would be useful for improving the stop-skipping schedule
service. Multi-performance is a key characteristic of our proposed five stop-skipping schedules, but
quantified analysis can be used to illustrate the different effects of well-known deterministic and
stochastic forms. Problems in the novel category of forms were justified in the context of a single line
rather than transit network. We analyzed four deterministic forms based on the well-known A/B
stop-skipping operating strategy. A stochastic form was innovatively modeled as a binary integer
programming problem. We present a performance analysis of our proposed model to demonstrate
that stop-skipping can feasibly be used to improve the service of passengers and enhance the elasticity
of train operations under demand variations along with an explicit parametric discussion.
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1. Introduction

With the accelerated urbanization process, public transit as an important means of metropolitan
environmental sustainability is increasingly of widespread concern. How to rationally carry out
scheduling plans and how to estimate the performance comparisons of multiple forms has become a
major public health topic area. Obtaining a reasonable scheduling plan is beneficial to public health in
real-life since the performance analysis in needed, for example, to reduce environmental pollution, the
energy consumption and generalized cost of public travelling.

High-speed rail (HSR) as mass public transit has been extensively developed over the last several
decades and various available operation strategies have evolved. With the development of mass
transit systems, a stop-skipping scheduling plan can greatly improve the efficiency and level of service
(LOS). HSR scheduling plan is a principal stage, since its solution determines transit service quality
and subsequent subproblems (i.e., the train and crew scheduling). Stop-skipping applied to HSR
mainly focuses on station determination which aims at minimizing the total travel and waiting time
experienced by passengers. This aspect has seen especially rapid development in Asia, where the
passengers’ time and operators’ benefits are taken into account. It was first applied to the Chicago in
1947, but has since been abandoned in that system [1]. The definition of a stop-skipping scheduling
plan can be comprehended using a simple expression: a decision will be made for scheduled trains
to skip one or more stations if the total time can be reduced at the planning level. The total time in
our further proposed model consists of total passenger waiting time and travel time for all scheduled
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trains. For one train, the skipped stations might serve significantly fewer passengers than those on the
all-stops schedule, which might result in a shorter trip time for the train and a greater waiting time for
the passengers at the skipped stations. For a scheduling plan, as a desired beneficial consequence, the
LOS is improved for most of the users by the increase in the operating speed, which is the basis for
enhancing the high density of train departures. In fact, the objective of stop-skipping scheduling plan
is to achievea trade-off between adding the extra waiting time and reducing the travel time.

In high-speed systems, the rail-demand generally presents different shapes in space and time.
This necessitates unique design approaches to provide users with a reasonable level of service.
Compared with the standard operational plan (i.e., an all-stops schedule), the stop-skipping plan
contributes to an unbalanced condition, in which the total travel time of passengers at congested
stops is reduced since the relatively undersaturated stations are skipped, and their waiting times are
eliminated. On the other hand, the development of the stop-skipping schedule offers a unique solution
to high demand at peak hours, reaching a level at which the departure frequency and cruising speed
cannot be further improved. To some extent, a stop-skipping schedule has greater applicability to the
oversaturated demands of long-distance lines. We address the minimization of the total cost based on
a given demand. Therefore, the plan’s hierarchical nature makes it possible to design stop-skipping
schedules at a lower level and transit assignments at an upper level.

A stop-skipping scheduling plan consists of various modes, providing access to different trains to
meet the travel demands for a given origin-destination pair. At the real-time operation level, the arrival
of passengers at a station is not related to thearranged schedule because of noninterference, i.e., none
of the individuals have information about the timetable for the trains before their arrival. However, the
passenger behavior with regard to train or line selection is heavily affected by the stop-skipping type,
platform structure, and arrival time of trains. Five stop-skipping forms are typically modeled for
diachronic analysis.

Regarding the stop-skipping patterns for a one-way single track, the fundamental approaches are
divided into deterministic and stochastic forms. The deterministic form is derived from the description
and analysis given by Vuchic [2–4] in which stations along a line are classified into three groups, A, B,
and AB. The trains in line A stop at the A and AB stations, while the trains belonging to line B stop at
the B and AB stations. When they intend to alight at a B station, passengers boarding at an A station
will transfer at an AB station onto line B. Thus, the need to walk to make this transfer might affect the
attractiveness of stop-skipping. The main drawbacks of this form are the determination of the skipped
stations and the potential to fall behind the estimated demand with respect to historical statistical data.
In other words, the deterministic form is not able to perform rescheduling based on day-to-day or
periodic demand assignments. Among the studies based on this form, readers can refer to Freyss [5],
Lee [6], Suh [7], Vuchic [2–4], and Zheng [8]. In order to capture the characteristics of passenger flow
fluctuation, a stop-skipping plan can be modeled using a stochastic form. When introducing the
passenger dynamics, the skipped stations are specifically selected according to a stochastic model,
which is likely better suited for demand assignments. Stochastic forms have been described using
various mathematical models for more explicit exploration, even though the theoretical properties
of this modeling approach are under investigation. Among the recent papers that use this approach,
mention should be made of Chen et al. [9], Li et al. [10], Feng et al. [11], Liu et al. [12], Niu [13–15],
Wang et al. [16], and Cao et al. [17]. A concise description and empirical quantitative comparison are
presented below.

Five categories of the AB stop-skipping patterns are estimated with a continuous approximation
approach for one-way single-track rail transit, with the goal of accelerating transit operations using
fixed stopping schedules [5]. The five types of trips proposed by [18], which were based on different
combinations of origins and destinations, were different from the five categories of stop-skipping
operation strategies presented in our paper.

Constantin and Florian [18] formulated a mixed integer programming model for optimizing
frequencies in order to minimize the total travel and waiting time of passengers; they proposed a
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projected sub-gradient algorithm for solving the problem. A robust timetable optimization model
was proposed by Vromans et al. [19] involving the relationship between timetable reliability and
timetable heterogeneity were examined via a number of simulation experiments. Mesa et al. [20]
formulated a fleet frequency optimization model that integrates two control strategies, short-turning
and expressing (or dynamic stop skipping), for the existing trip demand along a corridor. Their model
was solved through a heuristic approach with three objectives: minimizing passenger overload,
maximizing passenger mobility, and minimizing passenger loss. An optimization approach was
proposed by Leiva et al. [21] for designing limited-stop services which minimized both the travel time
of passengers and the operating cost of an urban bus corridor via optimizing the transport services of
various types of buses with different arriving frequencies. Lin and Ku [22] proposed a stopping pattern
optimization model seeking to maximize the profit made by a train company by determining the
optimal train stopping strategy for a given OD (original-destination) demand. Then, they developed
two genetic algorithms to solve the problem, namely binary-coded genetic algorithm and integer-coded
genetic algorithm.

Wang and Lin [16] developed a bi-level model with the objective of minimizing the operating
cost regarding the fleet size and total travel cost of passengers. Here the upper level of the model
concentrated on determining service routes with the associated headways. The lower level referred to
the route choice behavior, which was found by using Frank–Wolfe algorithm. Sogin et al. [23] proposed
a mixed integer formulation to analyze an optimal balance between faster passenger travel times and
lower service frequencies. The overall passenger travel times of the Metra Union Pacific North Line
was decreased by 9.5% through a presented genetic algorithm.

Liu et al. [12] established a theoretical analytical context, in which an intermediate bus (among
three successive buses) was able to use a stop-skipping strategy. Ingeniously, three objectives were
optimized using a genetic algorithm incorporating a Monte Carlo simulation, including minimizing
the total waiting time, in-vehicle travel time, and total operation cost. Sun et al. [11] proposed an
optimization model for designing a skip-stop service that considered the bus capacity and overloads
at bus stops. Then, only minimizing the total travel time for passengers was taken into account as
the objective.

Parbo et al. [24] dealt with bus timetable bi-level optimization from the perspective of minimizing
the waiting experienced by transfer passengers. The lower-level optimization was calculating transit
assignments that yield the passengers’ route choice. A tabu search algorithm was adopted in order to
avoid being trapped in local minima. Raveau et al. [25] modeled the route choice behavior in two metro
networks (London Underground and Santiago Metro), by taking various attributes into consideration,
including different time components, the transfer experience, the level of crowdedness, the network
topology and other social-demographic characteristics. Anderson et al. [26] proposed a two-stage
model accounting for the choice set generation and modeling route choice. The train choice behavior
is estimated with regard to similarity of alternatives and heterogeneity of travelers using survey data.
Clarifying the train choice behavior is crucial to understanding and predicting passenger preferences
when they choose local/rapid/express trains for our proposed approach.

Using smart card-based automated fare collection data, Sun et al. [27] proposed three optimization
models to design demand-driven timetables for a single-track metro service. The results showed
that demand-dynamic timetables have great potential at reducing the waiting time of passengers and
congestion on trains in Singapore’s mass rapid transit.

Chen et al. [9] aimed to optimize the headway of BRT along with a stop-skipping service based
on the given OD demand matrices derived from morning peak hours. Binary variables representing
whether or not a station is skipped by the stop-skipping service were introduced as inputs; the
hypothesis is similar to that in our paper, but these binary variables are the output results of our
proposed model. For the same stop-skipping service concept, Chen et al. [9] found the optimum
headway to be between 3.5 and 5.5 min during the morning peak hour. However, our method clearly
determines how to stop at or skip stations.
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Niu [13] used a stop-skipping plan to solve a scheduling problem for a congested transit line and
optimize the timetable. The fundamental mathematical mechanism was derived by [14]. In order to
characterize the properties of passengers’ cumulative arrival variables, they innovatively defined the
effective loading time slice by considered the bus capacity limit. However, the validity of expressing
the passengers’ arrival form as an integral inequality remains to be proven; the objective of minimizing
the overall waiting time was significantly less accurate and concise than the average waiting time [27]
at approximately 50% of the headway. Furthermore, Niu et al. [15] focused on minimizing the total
passenger waiting time at stations by computing and adjusting train timetables for a rail corridor by
using given time-varying OD passenger demand matrices and skip-stop patterns.

Cao et al. [17] previously explored a mechanism for optimizing stop-skipping and proposed an
approach to achieve equilibrium between avoiding stationary dwell time and producing additional
waiting time. This equilibrium is likewise the core concept of the stochastic model. The model considers
the acceleration and deceleration intervals. Utilization equilibrium was achieved for the performance
of a schedule-based single-track in one direction. Given a simulation using a tabu search algorithm,
two fundamental objectives were proposed for the stop-skipping schedule: minimizing the total
waiting time of passengers, and travel time of passengers. An estimation based on empirical results
showed that the stop-skipping scheduling plan is capable of optimizing the timetable. However, the
problem of the study should be expanded by using an infinite constraint on the train’s capacity and
extending the stop-skipping plan for a single train to all of the schemes or the entire network.

The issue is whether or not the advantage outweighs the inconvenience of transferring from line
A to B or waiting for another train. In order to clarify the contradictory problem of whether a plan
increases the operating speed, we considered scheduling plans for trains where different numbers of
stations are skipped at different locations and determined the benefits.

Unlike existing literature where the stop-skipping scheduling service is optimized under only
a sample given demand with the biggest impact on the planning results, we propose five optimized
base forms in order to assess the potential effect from various time-dependent demand configurations.
We found that the performance of the stop-skipping scheduling plan can be justified in many examples
with mixed load patterns using deterministic and stochastic approaches.

Figure 1a illustrates the topology of the railway system investigated in this study. Consider a
situation in which trains are dispatched at regular intervals on a single, unidirectional track from
an origin to a destination. Three types (categories) of trains are dispatchedand distinguished from
stop-skipping services. No overtaking is allowed on the main track. However, all stations in the system
are located on sidings, so it is possible for an express/rapid train to pass a local train at a station.
Thus, a fast train’s passage of a station being served by a local train is unobstructed. Further, each
station siding is sufficiently long so that braking and acceleration by a local train moving into or out of
a station does not interfere with the operations of the express/rapid trains in the main track which the
local train is leaving or entering.

Passenger’s train choice is identified in our model, which facilitates accurately the demand
assignment to train paths for a single line even though without involving with the transit network
route modeling. This behavioral information would be useful for improving the demand relationship
management of the railway company and for optimizing train scheduling. Our approach can
empirically capture passengers’ expected or experienced characteristics in the train path choice.

One major focus of this paper is comparing different approaches to optimizing the stop-skipping
schedule at the planning level. One methodology based on the work of Vuchic [2–4] specifies that each
train visits only a fixed subset of the stations, while another methodology described by Cao et al. [17]
utilizes a stochastic selection methodology based on optimal evolution of the system conditions.
The former represents a deterministic approach, and the latter represents a further developed stochastic
one. Both approaches are embedded into a stop-skipping scheduling framework. This performance
analysis allowed us to determine scenarios for which each of the two methods presented advantages
to highlight their respective strengths for the construction of an integrated approach.
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The stochastic method proposed by Cao et al. [17] is further developed, which has been
complementally taken into account-congestion situation, train choice preferences and the train’s
acceleration and deceleration process. The enhancement of the stochastic model might be an innovative
contribution for the stop-skipping scheduling methodology. Next, our analysis for developing and
performance assessment of efficient deterministic and stochastic forms for stop-skip scheduling plan
turns out to be an innovative contribution provided our demonstrate convincingly its: (i) ability to
reduce the risk of passenger overload on platforms and in the trains; (ii) feasibility and safety of the train
path planning; and (iii) elasticity of train operations under demand variations. Moreover, demand
assignment is the primary element for determining whether or how to adopt the stop-skipping
scheduling plan. A significant finding is that the stop-skipping scheduling plan is more beneficial for a
single line in which the demand distribution has distinct fluctuations.
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As a sub-objective of our study, the stochastic model is further improved and better applied to the
stop-skipping scheduling optimization, which is a beneficial supplement for stochastic approach. As a
whole, the main objective of the paper is performance analysis of different proposed scheduling forms
so as to find out the mechanism of determining whether or how to adopt the stop-skipping scheduling
plan based on the diversified demand assignments.

2. Diachronic Cases and Assumption

We present several diachronic cases with seven stations and five trains to demonstrate the details
of the performance by the five specific stop-skipping scheduling plans, based on the Taiwan’s rail
transit system.

Based on the same given OD pairs, the benefits are estimated for the five forms of combinations,
including both deterministic and stochastic ones. At the same time, five estimations are derived from
one fundamental graph, as shown in Figure 1b.
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The performance analysis is carried out empirically using the empirical study of Taiwan railways.
As noted by Asakura et al. [28] and Kusakabe et al. [29], some railways in metropolitan areas have
several different types of trains, designated as express, rapid, and local trains. Figure 1b shows that
these rail trains utilize three modes, with local trains stopping at all of the stations, and rapid and
express trains passing some stations to achieve shorter travel times than the local trains. The express
trains stop no intermediate stations. Moreover, the local train mode is generally called the standard
operation or all-stops plan. The stop-skipping schedule is determined in advance and not in real-time
during the planning level. The approach to the scheduling plan greatly depends on historical
passenger data, such as that gathered from smart card and automated fare collection (AFC) systems.
Transit operators provide the stop-skipping information to passengers via panels at platforms and
announcements in the trains. The drivers and crew have full knowledge of the train schedule because
of the predetermined timetable.

Based on the pedestrian transportation dynamics [30], we employed the following assumptions
to avoid choice-confusion due to the stop-skipping schedule:

(I) All passengers desire to minimize both their waiting and travel times on the train, which should
be accommodated within a certain extent, such as 10 min.

(II) The timetable can be illustrated as a parallel train working graph. In other words, the average
operating speed is consistent between adjacent stations, as shown as Figure 2.

(III) The train dwell time is sufficient for all of the waiting passengers to board. Our study showed
that there is no point in adding extra waiting time for passengers who are skipped by previous
rapid or express trains.

(IV) The trains have an infinite capacity to load the waiting passengers. Infinite capacity is unrealistic,
but in theoretical context, this assumption can substantially reduce the complexity of the model.
Moreover, the passengers could board the trains as long as they take the tickets with ignoring the
effect of overloading.

(V) No overtaking is allowed on the main track while all stations in the system are located on siding
tracks to enable overtaking of trains. Further, each station siding is sufficiently long so that
braking and acceleration by a local train moving into or out of a station does not interfere with
the operations of the express/rapid trains.

(VI) The configurations of different demand assignments are given with accordingly determined
train choices.

(VII) Passengers have no preference regarding train classes. When a passenger arrives at a station, he
or she will board the first train available at the station.
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The case is derived from the empirical statistics of a real sectional rail line in Taiwan, China.
In order to find an optimal operation strategy, we compare the overall benefits of five mainstream
forms of fundamental operations, including all-stops and stop-skipping forms. These are given below:

1st form: Only local trains run on the rail line.
2nd form: Both local and rapid trains run.
3rd form: Local and express trains operate alternately.
4th form: Local trains, a rapid train, and an express train run.
5th form: Based on passenger demand, the skipped stations are selected according to a

stochastic approach.

As shown in Figure 1b, there are three types of trains. An express train only stops at the origin
and terminal stations (i.e., the 1st and 7th stations). A rapid train only stops at every second station
(i.e., the 1st, 3rd, 5th and 7th). A local train stops at all stations. We propose an applicable model and
algorithm for 5th form to show its complexity.

3. Sketch of Mathematical Model for 5th Form

The variables are listed in Table 1.

Table 1. Presentation of variables.

Variables Explanations

j Station number of line i, j = 1, 2, . . . , N

τi,j Dwell time of train i at stop j; uniform dwell time is τ

Vmax Maximum speed of the trains, km/h

rj Travel time between stations j´1 and j, j = 2,3, . . . ,N

Si,jk
Number of passengers skipped by train i at station j, who intend to alight at station k,
1 ď j < k ď N

Si,j Total number of passengers skipped by train i at station j

Bi,j Number of passengers boarding train i at station j

Wi,jk
Number of passengers on train i, boarding at stop j and about to alight at station k,
1 ď j < k ď N

λj,k Arrival rate of passengers heading to station k from station j

ξ, η Weight factors depending on the situation, in which the destination station is skipped

yi,j
A binary variable for the stop-skipping decision of train i at stop j; i.e., yi,j = 0 if stop j is
skipped and yi,j = 1 otherwise

M A large positive number

xi,j
If (express/rapid) train i arrives at intermediate station before a (local) preceding train
departs from this station j, xi,j “ 1 and otherwise (binary) xi,j “ 0

ht Minimum headway in minutes between trains on main track (real, >0)

Our proposed approach to describe the stop-skipping problem is introduced in detail as follows.
The total dwell time of trains is derived from the number of skipped stations, which is expressed in
Equation (1):

τi,j “ yi,j ¨ τ, i “ 1, 2, . . . , M; j “ 2, 3, . . . , N (1)

Equations (2) and (3) act as constraints to track the departure time Di,j and arrival time Ai,j of
train i at station j, respectively:

Di,j “ Ai,j ` τi,j (2)
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Ai,j “ Di,j´1 ` rj `
vmax

432
¨

1
β
¨ yi,j `

vmax

432
¨

1
B
¨ yi,j´1 (3)

Here, Di,j is the departure time of train i from the previous stop j, and rj is the travel time between
the two stations, yi,j´1 ¨ vmax{p432 ¨ Bq is the acceleration time at station j – 1 and yi,j ¨ vmax{p432 ¨ βq

is the deceleration time at station j. Without loss of generality, vmax
432 ¨

1
β ¨ yi,j `

vmax
432 ¨

1
B
¨ yi,j´1 (min)

is the inevitable time loss consisting of both braking and acceleration losses as a result of stopping
at one station. To fulfill the tracking requirements, the arrival time is calculated using Equation (3).
The parameter “432” need to be explained based on Vuchic [4]. It is an important variable of transferring
the start-up and braking process into the time of acceleration and deceleration.

The total number of passengers skipped by train i at station j is:

Si,j “

N
ÿ

K“j`1

Si,jk (4)

The number of passengers boarding train i at station j is:

Bi,j “ yi,j

N
ÿ

K“j`1

Wi,jkpξ ` η ¨ yi,kq, i “ 1, 2, . . . , M; j “ 1, 2, . . . , N ´ 1 (5)

The number of passengers picked up by train i at station j is:

Vi,j “ yi,j

j´1
ÿ

K“1

Wi,kjyi,k, i “ 1, 2, . . . , M; j “ 1, 2, . . . , N (6)

Then, the number of passengers skipped by train i at station j, who expect to alight at station k is:

Si,jk “ Wi,jk ´Wi,jk ¨ yi,j ¨ pξ ` η ¨ yi,kq (7)

The studies of Liu et al. [12] and Niu et al. [13] remarked on the absoluteness of the number of
boarding passengers. In other words, passengers do not board a train that skips the station where
they want to alight, i.e., Si,jk “ Wi,jk ´Wi,jk ¨ yi,j ¨ yi,k. If stations k and j are not skipped simultaneously,
Si,jk “ 0, while Si,jk “ Wi,jk explains that only station k or j is skipped. However, these train choice
behaviors might be inappropriate because the passengers’ perception is neglected. Determining the
excepted or experienced user perception while accounting for seamless travel via all-stops trains or
alternative time-saved travel via transfers is a trivial challenge. The two prediction parameters ξ

and η are proposed to reflect to generate choice sets in order to estimate passengers’ perception with
regard to choosing the current train or the next one. If all passengers prefer to take relatively fast trains
without interest in the all-stops trains, the parameters ξ and η are set to 0% and 100%, respectively.
This hypothesis was adopted by Liu et al. [12] and Niu et al. [13], but this impractically neglects
passengers’ perception. The current study challenged the previous hypothesis by generating choice
sets using perceived cost described as Equations (8)–(10).

The perceived cost Ci of choosing the current train i is equal to the weighted average of the
experienced cost ei and the expected cost Ei. The parameter π represents the weight of the experienced
actual cost in updating the perceived cost. A large π describes the behavior with a strong habitual
tendency, while a small π means that passengers depend more on recent expectation (or the previous
experienced cost is too high):

Ci “ πei ´ p1´ πqEi (8)

The probability ξ of choosing the current train i by the waiting passengers can be calculated with
the following equation:

ξ “
eCi

eCi ` eCi`1
(9)
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The logit model is applied, leading to the proportion of demand ξ. Then the probability η of
choosing the next train i is:

η “ 1´ ξ (10)

In addition, Si,jk = 0 if neither station k or j is skipped, as given in Equation (7). If the departing
station j is skipped, then Si,jk = Wi,jk. In particular, if k is similarly skipped, the result (Si,jk = Wi,jk)
might lead to a impractical train choice behavior. This means that some passengers do not board train
i because their origin station is skipped. Then, if their destination station is skipped by train i+1, the
passengers would again not board this train. However, this is unrealistic based on Assumption (I).
In fact, approximately 50% of the passengers might board the train, even if their destination station
is skipped. They will alight at the next or previous station, or be served by another feeder service.
Here, Wi,jk is the total number of passengers waiting at station j and expecting to alight at station k:

Wi,jk “ Si´1,jk ` λj,kh, i “ 1, 2, . . . , M; j “ 1, 2, . . . , N; k “ 2, 3, . . . , N (11)

When some stations are skipped by a train, passengers expecting to board at those stations just
have to wait for at least one more headway to be served. The stop-skipping schedule problem involves
determining the skipped stations and planning schemes. Evidently, there is an optimal equilibrium
between reducing the trip time by stop-skipping and increasing the waiting time compared with the
all-stations scheme. Li et al. [30] proposed the idea that adding one stop means that one train has to be
dropped from a given train-diagram for a high-speed railway. We propose an integral formulation for
the optimization problem and developed algorithm.

4. Objective Function

For the formulation, we define λj,k as the passenger boarding rate from station j heading to k.
Conventionally, the average waiting time is set to wi j “ h{2 at station j waiting for train i. For train i,
when station j is skipped, Si,j passengers have to wait for h/2 + h headways. Nevertheless, the rest
of the passengers wait for half of a headway (h/2) without skipping. Thus, the total waiting time for
passengers taking trains i and i+1 is:

Z1 “

M
ÿ

i“1

N
ÿ

j“1

rpBi,j ´ Si´1,jq
h
2
` Si´1,j ¨

3h
2
s (12)

The total trip time for passengers boarding train i at station j and alighting at station k is
řk

f“j`1 pr f `
vmax
432 ¨

1
β ¨ yi, f ` τi,j ¨ yi, f `

vmax
432 ¨

1
B
¨ yi, f´1q. By summing all of the trains, the travel time

for all of the passengers is calculated as follows:

Z2 “

M
ÿ

i“1

N´1
ÿ

j“1

N
ÿ

k“j`1

Wi,jk ¨

k
ÿ

f“j`1

pr f `
vmax

432
¨

1
β
¨ yi, f ` τi,j ¨ yi, f `

vmax

432
¨

1
B
¨ yi, f´1q (13)

These two objectives are addressed using the weighted sum method:

minZ “ c1Z1 ` c2Z2 “ c1
M
ř

i“1

N
ř

j“1
rpBi,j ´ Si´1,jq

h
2 ` Si´1,j ¨

3h
2 s

`c2
M
ř

i“1

N´1
ř

j“1

N
ř

k“j`1
Wi,jk ¨

k
ř

f“j`1
pr f `

vmax
432 ¨

1
β ¨ yi, f ` τi,j ¨ yi, f `

vmax
432 ¨

1
B
¨ yi, f´1q

(14)

where c1 and c2 are the weighting values of time for each objective. Furthermore, the first and last
stations cannot be skipped, thus:

yi,1 “ 1, yi,N “ 1 (15)

Moreover, two consecutive trains do not skip the same station, so:

yi,j ` yi`1,j ě 1, i “ 1, 2, 3, ..., N ´ 1 (16)
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Considering the feasibility of the stochastic form, the constraint that two successive stations
cannot be skipped is expressed as follows:

yi,j ` yi,j`1 ě 1, j “ 1, 2, 3, ..., N ´ 1 (17)

Figure 2 presents a time-space diagram of the minimum headway depicted later. Each local
(rapid/express) train is denoted using a solid (dashed) line. The slopes of all lines between stations
are equal because all trains move at the same speed on the main line. The minimum headway ht is
the minimum time interval between two successive trains so that they can enter and depart from a
station safely. Due to assumption (V), a train cannot enter the main track until a minimum headway
after the preceding train’s departure. With the stop-skipping plan, the minimum headway between
two consecutive trains is in fact affected by whether a train stops at or skips a station. The last two
constraints Equations (18) and (19) are disjunctive constraints that enforce the headway restrictions
on the main line between origin and terminal station. In particular, these constraints guarantee that
(express/rapid) train i enters main track either ht minutes after (constraint Equation (18)) or ht minutes
before (constraint Equation (19)) a preceding train. The minimum headway constraint can then be
described as:

pi´ 1qh´
j

ÿ

k“2

τk `Mxi,j ě ht (18)

pi´ 1qh´
j

ÿ

k“2

τk ´Mp1´xi,jq ď ´ht (19)

Obtaining a fast solution algorithm is beneficial to solving our proposed mixed nonlinear binary
programming problems. These are difficult to solve with an exact algorithm because the objective
functions are not convex or concave. Hence, we present a tabu search algorithm to solve our model in
the next section.

5. Algorithm for the Stochastic Model

Our proposed model is a nonlinear programming problem with two mixed-binary objective
functions and closely related parameters. It is difficult to solve using conventional solution approaches.
A tabu algorithm, which generates binary solutions with an ergodic search, contributes to the
stop-skipping problems. With no loss of generality, the algorithm can solve problems of forms 1st–4th
by adopting a deterministic 0/1 selection set. The main steps of our proposed algorithm are described
in the form of a flow chart in Figure 3. The details are presented in the Appendix (Tables A1–A4).

Step 0: (Initialization). Check whether or not the problem is feasible (constraints Equations (1)–(19)),
and input the data structures, including the number of iterations, mutations, and
neighborhood-solution comparisons. The initial solution is randomly generated from the
input matrix. The tabu list is set to zero, and the iteration number g = 0.

Step 1: (Obtaining the objective constraint). The total all-stops operation time is calculated as the
maximum of the objective function. Then, g = g + 1, and the test begins.

Step 2: (Seeking a feasible solution). A global search is iterated. A feasible solution is found and
recorded as one of a number of solutions.

Step 3: (Optimizing the feasible solution). The feasible solution should be optimized by comparing
neighborhood-solutions under repeatedmutation. Either the feasible solution is optimized
to obtain a better consequence or to avoid deviating too much from the existing solution,
only two elements of the outcome matrix are changed to their alternate value (0 or 1).

Step 4: (Stopping the test). When the minimum objective function Z cannot be further reduced
using the above steps or the number of iterations reaches the predefined upper bound, the
matrix Yij can be considered to be one of the optimal solutions. Finally, the stop-skipping
problem is solved by employing the tabu search algorithm.
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6. Computational Results for Cases

We present a real-life case study whose data refer to Chang et al. [31] to explain how the model
works. To evaluate five forms and the feasibility of our proposed algorithm, we used a one-way
single-track rail for the performance analysis [32].

Normally, the desired schedule is related to the design frequency [33], which directly depends
on the trip time of a train during an operation period. Therefore, opportunities theoretically exist
to dispatch more trains in stop-skipping forms. By using an intuitively horizontal comparison, the
analytical expressions for five trains associated with these five forms were summarized.

For the 7-station case, Tables 2 and 3 lists the relative parameters including inputs of
the model, distance (km), train running time (min), and planned hourly passenger volume
(passenger-trip/h) between two stations respectively. In order to facilitate problem formulation
and simplification, this study assumes that the passenger arrival pattern at stations follows some
uniform probability distributions.

Weighted values c1 and c2 express the value of time (VOT) under different circumstances [26].
A substantial amount of research [2–4,21] states that a value of 2 is commonly used as a factor to
calibrate the waiting time c1. This means that passengers rate 1 min of waiting as equivalent to 2 min of
driving. Accordingly, the two weighting values in Equation (14) are set as c1 = 1 and c2 = 2. To compare
the performance of the five forms of stop-skipping scheduling, the results of the multi-plans are
listed in Tables 4 and 5. Our presented approach corresponds to 5th form with distinct variations.
No improvement could be achieved using our proposed algorithm after 146 iterations over about
4 min on a personal computer with an Intel (R) Pentium (R) CPU running at 2.90 GHz with 4.00 GB
of RAM. Moreover, the convergence effect of the first train in 5th form was achieved by using our
algorithm as a representative illustration, as shown in Figure 4. The results showed good convergence
of the iterative process, and the best values for all of the generations are listed below.
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Table 2. Input parameters of case study.

Parameter Value Unit

Set of stations (N) {1,2,3,4,5,6,7} -
Operating hours, h 1 h

Train capacity 900 seats/train
Frequency and service line 15 trains/h

Dwell time (τ) 3 min
Headway (h) 4 min

Minimum headway (ht) 2 min
Weighting values (c1) 1 -
Weighting values (c2) 2 -

Acceleration (B) 0.9 m/s2

Deceleration (β) 1.0 m/s2

Maximum speed of the trains (Vmax) 240 km/h

Table 3. Distance, train running time, and planned hourly passenger volume between stations (N = 7).

Adjacent Stations 1 2 3 4 5 6 7

1 (0,0,0) (35.8,14,683) (65.6,27,737) (159.5,40,1407) (245.1,65,483) (307.4,83,636) (338.1,84,2257)
2 (35.8,14,697) (0,0,0) (29.8,11,149) (123.7,36,748) (209.3,61,271) (271.6,79,305) (302.3,83,861)
3 (65.6,27,603) (29.8,11,111) (0,0,0) (93.9,24,320) (179.5,48,53) (241.8,67,64) (272.5,71,242)
4 (159.5,40,1298) (123.7,36,731) (93.9,24,337) (0,0,0) (85.6,22,345) (147.9,40,413) (178.6,44,900)
5 (245.1,65,340) (209.3,61,189) (179.5,48,45) (85.6,22,246) (0,0,0) (30.7,11,817) (93.0,29,332)
6 (307.4,83,513) (271.6,79,270) (241.8,67,68) (147.9,40,295) (62.3,17,222) (0,0,0) (30.7,11,591)
7 (338.1,84,2105) (302.3,83,776) (272.5,71,241) (178.6,44,768) (93.0,29,465) (30.7,11,817) (0,0,0)
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Table 4. Results of five forms (unit: min).

Forms’ Categories List Types of
Trains

Average
Trip

Distance

Waiting Time
Per Passenger

Travel Time
Per Passenger

Occupancy
Level

Total Passenger
Waiting Time

(Z1)

Total Passenger
Travel Time

(Z2)

Total Time
(Z= 2 ˆ Z1 + Z2)

1st form 5 local trains

1st Local train 490.3 2.1 178.7 86.33% 1598 138,833

710,145
2nd Local train 490.3 2.1 178.7 86.33% 1598 138,833
3rd Local train 490.3 2.1 178.7 86.33% 1598 138,833
4th Local train 490.3 2.1 178.7 86.33% 1598 138,833
5th Local train 490.3 2.1 178.7 86.33% 1598 138,833

2nd form
3 local trains and

2 rapid trains

1st Local train 490.3 2.1 178.7 86.33% 1598 138,833

698,179
2nd Rapid train 561.2 4.1 166.4 75.62% 3260 129,255
3rd Local train 458.7 2.2 178.9 97.04% 1674 138,952
4th Rapid train 561.2 4.1 166.4 75.62% 3260 129,255
5th Local train 458.7 2.2 178.9 97.04% 1674 138,952

3rd form
3 local trains and
2 express trains

1st Local train 490.3 2.1 178.7 86.33% 1598 138,833

690,433
2nd Express train 617.1 4.7 159.0 63.23% 3667 123,579
3rd Local train 454.4 2.3 179.8 109.43% 1790 139,707
4th Express train 617.1 4.7 159.0 63.23% 3667 123,579
5th Local train 454.4 2.3 179.8 109.43% 1790 139,707

4th form
3 local

trains,1 rapid train
and 1 express train

1st Local train 490.3 2.1 178.7 86.33% 1598 138833

694,307
2nd Rapid train 561.2 4.1 166.4 75.62% 3260 129255
3rd Local train 458.7 2.2 178.9 97.04% 1674 138952
4th Express train 617.1 4.7 159.0 63.23% 3667 123579
5th Local train 454.4 2.3 179.8 109.43% 1790 139707

5th form
5 trains based on

the stochastic
model

1st 1101011 515.6 2.8 171.1 79.89% 2183 132,920

686,994
2nd 1011101 483.0 2.6 171.8 75.99% 2043 133,481
3rd 1101011 495.7 2.8 171.1 101.57% 2183 132,920
4th 1011101 483.0 2.6 171.8 75.99% 2043 133,481
5th 1101011 495.7 2.8 171.1 101.57% 2183 132,920

Table 5. Stochastic stop-skipping scheduling plan (‘0’ donates that the station is skipped; ”1”, otherwise).

Run 1 2 3 4 5 6 7

1st 1 1 0 1 0 1 1
2nd 1 0 1 1 1 0 1
3rd 1 1 0 1 0 1 1
4th 1 0 1 1 1 0 1
5th 1 1 0 1 0 1 1
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In order to make good use of the tabu algorithm, tests needed to be run to calibrate some
appropriate parameters. The tabu algorithm was run with g = 50, 100, 200, 500, and 1000 iterations.
The results showed that the most appropriate iteration number was 200. Then, the tabu algorithm was
run with mutation population sizes of 100, 300, 500, and 1000 generations. The results demonstrated
that a population size of 300 resulted in a lower processing time and greater efficiency.

Statistical data from the simulation results are listed in Tables 4 and 5. The initial term quantifies
the total passenger waiting time, which depends on the number of skipped stations, and 1st form
experiences the maximum duration. 2nd term measures the aggregate passenger travel time, and
5th form is the optimal choice overall as a result of the flexible stop-skipping strategy. Three different
train paths were tested: (i) the local train had the shortest waiting time and longest travel time for
passengers; (ii) the rapid train increased the total delay (extra waiting time) by approximately 104%
while saving 6.9% of the travel time; and (iii) the total waiting time was drastically increased by 129%
with the express train, which increased the total travel time by 11%. Note that the traveling time
increaseses more than the waiting time (almost 2%) for all three train paths.

The results showed that 5th form optimizes the objective function. Intuitively, 5th form can
save 3.26% compared with 1st form for the case with five trains. This is an important contribution to
optimizing the stop-skipping problem but is achieved at the expense of a plan scheduled according to
the rule of time-dependent varying demand.

Regarding the resulting time, if one schedule determines a stop or skip action at a certain station
that is not physically appropriate, then a stop-skipping schedule will not contribute much in relation
to saving time. In other words, the total time of passengers in 2nd, 3rd, and 4th forms save 1.76%,
2.09% and 2.23% than 1st form. The conflict interest space is so limited that the total travel time of
stop-skipping schedules could not be sharply reduced in large magnitude. In an attempt to make
trade-offs between these two conflicting objectives, the best-compromise solution is the stochastic form.
In 5th form, the 1st and 2nd trains depart alternately as a cyclic schedule, which might be unobstructed
at adding operation’s complexity.

For 3995 pax in one form of five trains, we observe some conclusions to prove more efficient
performance of stop-skipping train service in the following indicators: average trip distance,
waiting/travel time per passenger and transport occupancy level per train. Independently of the
average trip distance to be identified, the results demonstrate that a rapid/express train facilitates
a longer distance trip (561.2/617.1 km per passenger) than a local train (490.3 km per passenger).
While boarding a rapid/express train might result in sacrificing a little extra waiting time for a
passenger (2.0/2.6 min per passenger), the fast service achieves great benefit for average travel time
yielded lower than a local train (12.3/19.7 min per passenger). Moreover, a more balanced performance
in the stochastic form is even noticeable. With a passenger only experiencing extra waiting time
(0.5 min), a significant reduction of travel time (7.6 min) would be improved. Fluctuations of occupancy
level per train can be justified from alternant dispatches between a rapid/express train and a local
train. The 2ndform shows the benefits of attenuating the loading unbalance.

7. Discussion of Different Constraints

A mathematical model with a wide range of applicability is provided to solve stop-skipping
problems. In practice, two or more stations of the Taiwan Rail Transit system might be skipped
consecutively. Tables 4 and 5 list the results for the stochastic form when two or three stations are
skipped successively. The total time of passengers Z2 for one train trip is equivalent to 132,419 min
(Table 6(a)), and Z3 = 131,812 min (Table 6(b)).

The objective function can be further optimized through these numerical simulations, because
the given constraints are relaxed, i.e., yi,j ` yi,j`1 ` yi,j`2 ě 1, j “ 1, 2, 3, ..., N ´ 2 (Table 6(a))
and yi,j ` yi,j`1 ` yi,j`2 ` yi,j`3 ě 1, j “ 1, 2, 3, ..., N ´ 3 (Table 6(b)). If stations can be skipped
successively in the uncontrolled case, all intermediate stations are skipped with the minimum value
123,579 min, which is also express train service.
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Table 6. Station operating states.

Station Stop 1 2 3 4 5 6 7

(a) Two stations are skipped
Yij 1 0 0 1 0 0 1

(b) Three stations are skipped
Yij 1 0 0 0 1 0 1

8. Evaluation of Other Influences

The dwell time and headway significantly affect the objective [34]. Therefore, we need to analyze
these two parameters in relation to the sensitivity of the stop-skipping model. To establish the trend
of the function, we acquire a series of values to observe the changes in the total cost, which is shown
in Figure 4. The objective is positively related to these two parameters, namely the dwell time and
headway. Furthermore, the objective can vary by 0.7420% and 0.6919% on average when the dwell time
and headway change by 1 min, respectively. Therefore, the most sensitive parameter, the dwell time,
affects the objective of our model, which is important to the Operations Management Department.
Moreover, the stop-skipping schedule is depreciated by a long headway, because the waiting time is
too long to make it attractive.

A statement is added addressing how the objectives vary if the multiple (c2) is different, such
as, 1.0, 2.0, 3.0, 4.0 and 5.0, shown as Figure 4c. The 3rd form shows its superiority to others which
indicates the long-distance passengers concerning about their travel time is benefit from the express
trains skipping more stations. Furthermore, with the multiple (c2) increasing, the cost of 1st form rises
dramatically for which the standard (all-stops) solution delays more travel time due to more stops.
Certainly, the multiple (c2) should be set depending on the application scenarios. Urban rail travelers
may be more sensitive to waiting time but the headway is shorter so there is an expectation that the
traveler can just arrive at the station and wait for the next train. Then, the value (c2) could be reduced
as a rationally boundary from 1.5 to 2.0 unit. In the high speed rail, the value is set as 2.0 unit and
more, which represents the emphasis of long travel time.

The methodology developed in our study is applied to the aforementioned rail line comprising
sevenstations, with four other different time-dependent demand scenarios that reproduce the
concentration patterns of various stop-skipping plans, which are typical of real scheduling performance.
The demand profiles are shown in Figure 5, where Example 1 is a real case (corresponding to the
Taiwan Rail Transit), which was already discussed in the previous section, while the other examples
are hypothetical. In terms of the spatial configurations of different demand assignments, the shape of
the accumulation of boarding passengers is given more attention than that of alighting passengers,
which is a method to distinguish the five examples. Example 1 is a radial corridor toward the
suburbs during the morning peak hour. Examples 2 and 3 show homogeneous demand assignments
at the peak and non-peak times. Examples 4 and 5 show the typical peak-demand route patterns.
The performance of the five stop-skipping scheduling plans is later numerically verified under different
time-dependent demands.

Integrating the results of Examples 1–5 shows that the optimal stop-skipping patterns, i.e.,
2nd–5th forms, are superior to the all-stops schedule, out of which the stochastic form may be the
best candidate for passengers and operators. Moreover, 3th form is the best of the deterministic
plans. Table 7 lists the distinct results obtained from Examples 2 and 3 for different demands.
The stop-skipping plan will be more attractive during a high-demand period. The total time can
be reduced by 2%–5% in Example 2, compared with a 1% reduction in the total savings for Example 3.
Thus, the stop-skipping plans produce schedules with high frequencies and short headways, leading
to the alleviation of congestion during the peak hours. Examples 4 and 5 were generated from the
peak-demand patterns.
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There is little difference between the single-peak (Example 4) and bimodal (Example 5) demand
configurations because the average passenger costs (138.1–146.6 min/passenger) would be nearly
equal. If two or more stations are skipped consecutively, even deadheading, the performance is further
optimized for unbalanced demand scenarios. We can obtain conclusions about the demand conditions
with regard to which stochastic stop-skipping schedule is best for balanced and high-demand
conditions. In all cases, 5th form performs better than the others for all five examples. The analysis of
the pre-planned assignments shows that the stop-skipping scheduling plan can deal with intractable
demand imbalances in sections and periods.
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Table 7. Results of performance analysis of different demands (unit: min).

Forms’
Categories

Waiting Time
Per Passenger

Travel Time Per
Passenger

TotalPassenger
Waiting Time (Z1)

Total Passenger
Travel Time (Z2) Z= 2 ˆ Z1 + Z2

(a) Results of Example 2

1st form 2.0 131.0 9740 638,150 657,630
2nd form 3.1 128.2 14,814 624,344 653,972
3rd form 3.4 126.7 17,034 617,048 651,116
4th form 3.2 127.5 15,924 620,696 652,544
5th form 2.7 128.4 12,896 625,301 651,093

(b) Results of Example 3

1st form 2.0 152.9 8020 613,240 629,280
2nd form 2.9 150.1 11,808 602,092 625,708
3rd form 3.4 148.9 13,504 597,012 624,020
4th form 3.2 149.5 12,656 599,442 624,754
5th form 2.4 150.8 9740 604,707 624,187

(c) Results of Example 4

1st form 2.0 144.6 10,770 778,705 800,245
2nd form 2.9 141.8 15,628 763,693 794,949
3rd form 3.3 140.6 17,592 757,091 792,275
4th form 3.1 141.2 16,610 760,392 793,612
5th form 2.6 141.8 14252 763,472 791,976

(d) Results of Example 5

1st form 2.2 137.4 9730 668,400 687,860
2nd form 3.2 134.7 14,610 655,488 684,708
3rd form 3.6 133.7 16,610 650,326 683,546
4th form 3.4 134.2 15,610 652,907 684,127
5th form 2.9 135.3 12,574 658,456 683,604

9. Conclusions and Future Research

In this paper, we addressed the problem of formulating a stop-skipping scheduling plan for a rail
transit system that uses various forms and scenarios to minimize the total travel time of the passengers.
There are two main contributions on the overall stop-skipping scheduling methodology. On one hand,
the empirical operational technique is described more sophisticated in our developed model. On the
other hand, our study could help operators to execute which stop-skipping scheduling plan as an
optimal solution based on what is the demand distribution during the planning level.

While this scheduling concept has been successfully used in previous transit plan studies,
the new proposed model explicitly captures the stochastic nature of the stop-skipping strategy.
No such analytical method has previously been developed to differentiate the stochastic and
deterministic forms. The absence of a stochastic stop-skipping system in a rail transit network
tends to result ina stereotypical plan because it fails to capture the nature of the demand [11,13–15].
Conventional approach is acquired based on the static demand assignment, which hardly handles the
dynamic flow regularity. An amendment of its drawbacks is proposed by our model.

The stochastic method proposed by Cao et al. [4] is further developed, which has been
complementally taken into account-congestion situation, train choice preferences and the train’s
acceleration and deceleration process. The enhancement of the stochastic model might be an
indispensable improvement for the overall stop-skipping scheduling methodology. In particular,
our analysis for developing and performance assessment of efficient deterministic and stochastic forms
for stop-skip scheduling plan turns out to be an innovative contribution provided our demonstrate
convincingly its (i) ability to reduce the risk of passenger overload on platforms and in the trains;
(ii) feasibility and safety of the train path planning; and (iii) elasticity of train operations under demand
variations. Moreover, the passenger characteristics are described based on the OD demands for
passengers. Demand assignment is the primary element for determining whether or how to adopt the
stop-skipping scheduling plan. A significant finding is that the stop-skipping scheduling plan is more
beneficial for a HSR line in which the demand distribution has distinct fluctuations.



Int. J. Environ. Res. Public Health 2016, 13, 707 19 of 23

It was found that the core problem of our study was whether the extra waiting time produced
by the stop-skipping scheduling plan could be compensated for by the time saved when traveling.
The total trip time was considered to be the estimated service level of the rail transit. Interestingly,
the OD demand was found to have a large influence on the stop-skipping scheduling plan. In other
words, skipped stations showed diverse performance during the peak hours, non-peak hours, and
weekend hours, during which the passenger flows fluctuated. Therefore, five forms of the proposed
stop-skipping scheduling plans were compared and quantitatively analyzed using five examples.
The performance of the deterministic forms was less favorable for stop-skipping operations, even
though passengers could easily understand and adapt to them. On the other hand, the stochastic form
had a better performance than the deterministic forms and standard (all-stops) operation.

An optimized function with two objectives was developed to find the optimal stop-skipping
plan under empirical demands. The passenger travel and waiting times and the trains’ trip time were
estimated. A tabu algorithm was used to solve the optimization model. A numerical example was
used to confirm that the tabu algorithm could obtain a satisfactory performance with more efficiency.
Compared to the deterministic forms and all-stops operations, the stochastic form showed the best
results with the minimum travel times. We accurately calculated a viable stop-stopping strategy and
demonstrated the benefits of the stochastic form because the stop-skipping operation is a very complex
problem and is related to demand assignment.

Our stop-skipping model has not previously been applied to a real-life transit network in Asia
because it would aggravate the operation complexity. Future research will include extending our
approach to different marshalling plans, considering the available capacity, and developing efficient
solution algorithms for large-scale implementation.
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Appendix

Table A1. Main process of tabu algorithm.

Algorithm: Main

1 Read the data and input parameters
2 num = 1;
3 bnum = 1;
4 listlength = 12;
5 list = round(rand(1,19));
6 for i = 1:19
7 list(i) = 0;
8 end
9 fxbest(bnum) = c;
10 fxlbest(num) = c;
11 for g = 1:300
12 k = 1;
13 while(k)
14 x0 = round(rand(19,1));
15 x0(1) = 1; x0(19) = 1;
16 for d = 1:18
17 if x0(d) + x0(d + 1) < 1
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Table A1. Cont.

Algorithm: Main

18 x0(d) = 1;
19 end
20 end
21 Z = skipM(x0);
22 if Z < c
23 k = 0;
24 end
25 end
26 if Z < fxbest(num)
27 fxbest(num) = Z;
28 Xbest = x0;
29 end
30 end
31 if fxbest(num) < fxlbest(bnum)
32 fxlbest(bnum) = fxbest(num);
33 end
34 x1 = x0;
35 while(num <= 300)
36 [x,p1,p2] = near(x1,list);
37 list = newlist(p1,p2,list);
38 x1 = x;
39 num = num + 1;
40 Z = skipM(x1);
41 fxbest(num) = Z;
42 if fxbest(num) < fxlbest(bnum)
43 bnum = bnum + 1;
44 fxlbest(bnum) = fxbest(num);
45 Xbest = x1;
46 list(p1) = 0;
47 list(p2) = 0;
48 end
49 end

Table A2. Neighborhood search of tabu algorithm.

Function 1: Near

1 function [x,p1,p2] = near(x1,list)
2 temp = c; xtemp = round(rand(19,1)); p1 = 1; p2 = 1;
3 for j = 1:100
4 k = 1;
5 xt = x1;
6 while(k)
7 px = ceil(rand*18)+1;
8 py = ceil(rand*18)+1;
9 xt(px) = abs(xt(px) ´ 1);
10 xt(py) = abs(xt(py) ´ 1);
11 for d=1:18
12 if xt(d) + xt(d + 1) < 1
13 xt(d) = 1;
14 end
15 end
16 xt(1) = 1;xt(19) = 1;
17 Z = skipM(xt);
18 if Z < c
19 k = 0;
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Table A2. Cont.

Function 1: Near

20 end
21 end
22 if (list(px) > 0)&&(list(py) > 0)
23 continue;
24 else
25 if skipM(xt) < temp
26 temp = skipM(xt);
27 xtemp = xt;
28 p1 = px; p2 = py;
29 end
30 end
31 end
32 X = xtemp;
33 p1 = p1’;
34 p2 = p2’;

Table A3. List update of tabu algorithm.

Function 2: Newlist

1 function list = newlist(pxj,pyj,list)
2 for m = 1:19
3 if list(m) > 0
4 list(m) = list(m) ´ 1;
5 end
6 end
7 list(pxj) = 10;
8 list(pyj) = 10;
9 list = list’;

Table A4. Skip rule of tabu algorithm.

Function 3: SkipM

1 function Z = skipM(x)
2 for i = 1:L
3 for j = 1:L
4 R = 0;
5 for k = (i + 1):j
6 R = R + r(k);
7 end
8 T1 = 0;
9 for k = (i + 1):(j ´ 1)
10 T1 = T1 + T ˆ x(k);
11 end
12 Z1 = Z1 + Q5(i,j) ˆ (h/2 ˆ x(i) ˆ (0.5 + 0.5 ˆ x(j)) + (1 ´ x(i) ˆ (0.5 + 0.5 ˆ x(j))) ˆ 3 ˆ h/2);
13 Z2 = Z2 + Q5(i,j) ˆ (R + T1);
14 end
15 end
17 Z = Z1 + Z2;
18 for i = 1:L
19 Z3 = Z3 + r(i) + T ˆ x(i);
20 end
21 Z3 = Z3´2 ˆ T;
22 Z = Z + Z3;
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