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Abstract: Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for
human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a
cost-effective method remains a challenge, especially for groundwater. In this study, the degradation
of PFOA using activated persulfate under mild conditions was investigated. The impact of different
factors on persulfate activity, including pH, temperature (25 ˝C–50 ˝C), persulfate dosage and
reaction time, was evaluated under different experimental conditions. Contrary to the traditional
alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded
using activated persulfate under acidic conditions, with the degradation kinetics following the
pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction
time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA
degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction
temperature of 50 ˝C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h.
The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all
PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis
results indicate that both SO4

´‚ and ‚OH contribute to the decomposition of PFOA. It is proposed
that PFOA degradation occurs via a decarboxylation reaction triggered by SO4

´‚, followed by a HF
elimination process aided by ‚OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic
acids (PFCAs, Cn´1F2n´1COOH). The decarboxylation and HF elimination processes would repeat
and eventually lead to the complete mineralization all PFCAs.

Keywords: PFOA; activated persulfate; free radicals; defluorination

1. Introduction

Perfluorooctanoic acid (PFOA) is one of the most important perfluorochemicals (PFCs) due to
its extensive applications in electronics, chemical, medical and manufacturing industries (e.g., as a
surfactant, surface treatment agent, polymer, metal coating, and fire retardant), which result in
its release from a wide range of commercial products [1,2]. Because of its toxicity, potential for
bioaccumulation, and common occurrence in water resources, PFOA has been recognized as an
emerging environmental pollutant [3]. PFOA occurrence has been observed worldwide. For example,
Arias et al. observed PFOA concentrations ranging from 0.6 to 1.7 milligrams per liter (mg/L) in an
evaporation pond used to collect wastewater generated from fire-fighting exercises at a military air
base [1]. In the surface water of a Canadian tributary, PFOA was reported at concentrations up to
11.3 micrograms per liter (µg/L) due to a release of fire-fighting foams [4]. PFOA was also detected
in groundwater at Washington county landfill at 41.6 µg/L [5]. These contamination in wastewater,
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surface water and groundwater leads to the PFOA detection in drinking water. For example, in West
Virginia and Ohio, PFOA was detected at levels of up to 13 µg/L in private water supply wells [6].
The United States Environmental Protection Agency (USEPA) issued the provisional health advisory
(PHA) value for drinking water of 400 nanograms per liter (ng/L) for PFOA in January 2009 [7].
An advisory threshold value of 300 ng/L for the sum of PFOA and PFOS (perfluorooctane sulfonate)
has also been set by the German drinking water commission [8]. Comparison of observed PFOA levels
in the environment to drinking water advisory levels indicates an urgent need to develop effective
methods to degrade PFOA in groundwater so as to protect human health and ecosystems.

However, PFOA is chemically inert and recalcitrant to most chemical and microbiological
treatment [9–12] due to its high-energy carbon-fluorine bonds. A number of photolytic methods,
such as direct photolysis [13–15], persulfate photolysis [14,16–18], alkaline isopropanol photolysis [19]
and photocatalysis [20–22], have shown varying degrees of efficacy in the degradation of PFOA.
However, these methods are generally very costly and difficult to implement in the field. Advanced
oxidation processes (AOPs), which utilize strong oxidants to produce free radicals, have been used
widely for in-situ chemical oxidation (ISCO) of a wide range of organic pollutants, showing potential
ability to degrade PFOA in groundwater. Fenton’s reagent (i.e., H2O2 and Fe2+ salts), alkaline ozonation
and peroxone (i.e., a mixture of O3 and H2O2), utilizing the hydroxyl radical in AOPs, have been
shown to be relatively ineffective for PFOA destruction [13,23,24].

Persulfate (S2O8
2´), a strong and relatively stable oxidant (E0 = 2.01 eV), can be activated to

generate free radicals to achieve a higher oxidative potential under conditions of heat [25], light [26],
or chemical activation (e.g., by a base or metal ions) [27–29]. The persulfate anion can produce
SO4

´‚ (E0 = 2.6 V), ‚OH (E0 = 2.7 V) and O2
´‚ (E0 = ´0.33 V) [30–32], resulting in its highly reactive

radical species for degrading different organic contaminants after activation. Early studies have
shown that persulfate can be used to degrade PFOA with different activation methods such as
photolysis [17–19], UV [14,16–18] and microwave [33]. Heat-activated (85 ˝C) persulfate oxidation has
been reported to transform PFOA in water to fluoride and CO2 [34]. However, these extreme activation
conditions limit the practical application in PFOA remediation, especially for the remediation of PFOA
in groundwater. In addition, these processes are energy-intensive, hence very expensive to implement
in full-scale applications.

Little research has been reported on the degradation of PFOA by persulfate under mild conditions.
Celyna et al. reported a low degradation efficiency of PFOA by persulfate using iron-modified diatomite
under alkaline conditions [35]. Lee et al. observed some PFOA degradation by persulfate under acidic
conditions [36], showing a potential approach to remediate PFOA contamination in groundwater,
but the effective radicals responsible for effective degradation of PFOA were not identified and the
degradation mechanisms of degradation were not clear. Therefore, optimal conditions for PFOA
degradation by persulfate under mild conditions, along with the PFOA degradation mechanisms,
need to be further investigated. The primary goal of this study was to investigate the oxidative
degradation of PFOA in groundwater by activated persulfate under mild conditions, which is feasible
to implement in full-scale applications. Experiments were conducted to: (i) evaluate the influence
of pH, temperature, persulfate dosage and reaction time on the PFOA degradation efficiency under
mild conditions; (ii) identify the radicals that are effective in degrading PFOA; and (iii) determine the
degradation kinetics and explore the degradation pathway of PFOA via intermediate analyses.

2. Materials and Methods

2.1. Chemical Reagents

PFOA (C7F15COOH, molecular weight 414.07, 96% purity) and the free radical spin trapping
reagent 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO, 97%) were purchased from Aladdin (Georgetown,
TX, USA). The rest of the chemical reagents used in this study, including sodium persulfate (Na2S2O8,
99%), sulfuric acid (H2SO4, 97%), hydrochloric acid (HCl, 36%), sodium hydroxide (NaOH, 96%),
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sodium fluoride (NaF, 98%), potassium phosphate dibasic anhydrous (K2HPO4, 98%), potassium
dihydrogen phosphate (KH2PO4, 99.5%), trisodium citrate dihydrate (C6H5Na3O7¨ 2H2O, 99%),
methanol (CH4O, 99.7%) and ethanol (C2H6O, 99.7%) were of analytical grade and purchased from
Sinopharm Chemical Reagent Corporation Ltd. (Beijing, China). The deionized water used in all
experiments, with a resistivity of 18.0 MΩ cm, was purified by a Milli-Q system.

2.2. Experimental Methods

Batch experiments to evaluate the influence of different experimental factors (including pH,
persulfate dosage, temperature and reaction times) on PFOA degradation efficiency were carried
out in 40-mL borate glass bottles. Due to the significance of pH in the persulfate activation under
mild conditions, experiments were conducted first to study the effect of pH. In these experiments,
pH of solutions was adjusted by adding NaOH or H2SO4 unless specified otherwise (e.g., HCl).
In subsequent experiments, pH of solutions was adjusted to 2.0 by H2SO4, the initial concentration of
PFOA was 20 µM, and initial persulfate concentrations ranged from 0.5 mM to 4 mM. The containers
were then placed into constant-temperature water baths without shaking (T = 25, 35, 40 and 50 ˝C).
At the designated sampling times, an appropriate amount of ethanol (molar ratio of ethanol and
persulfate was 100:1) was added to quench the reaction immediately. Samples were then taken and
preserved at 4 ˝C in the refrigerator before analysis. All experiments were conducted in triplicate.

Experiments for PFOA kinetics study were conducted under acidic conditions, with pH adjusted
by H2SO4 to 2.0. In these experiments, PFOA (20 µM) and persulfate (2 mM) were mixed to react
at different temperature: 30 ˝C, 40 ˝C and 50 ˝C. At the designated sampling times, an appropriate
amount of ethanol was added and samples were taken and preserved at 4 ˝C in the refrigerator.
For PFOA degradation byproducts analyses, PFOA (20 µM) and persulfate (2 mM) were mixed to react
at a temperature of 50 ˝C, with pH adjusted by H2SO4 to 2.0. After a reaction time of 100 h, ethanol
was added to quench the reaction immediately and samples were taken for analysis.

Free radical analyses, which were used to identify the effective radicals contributing to the
degradation of PFOA, were conducted under three different experimental conditions: (1) PFOA only in
aqueous solution as the control system; (2) PFOA with persulfate under acidic conditions; and (3) PFOA
with persulfate under alkaline conditions. In the control system, 25 mL of PFOA at a concentration
of 20 µM was added to the 40-mL borate glass bottles at a temperature of 50 ˝C. The solution pH
was not adjusted and the final pH was 4.2. For experiments under acidic conditions and alkaline
conditions, 20 µM PFOA and 2 mM persulfate were mixed to react at a temperature of 50 ˝C, with their
solution pH adjusted by H2SO4 to 2.0 and NaOH to 12, respectively. After a reaction time of 10 min,
an appropriate amount of DMPO (i.e., that would result in a final concentration of 100 mM DMPO
in the system), dissolved in phosphate buffer at pH 7.4, was added immediately to react with free
radicals produced by persulfate. 20 µL of the mixed solution were then loaded in the quartz capillary
tube of EPR for analysis.

2.3. Analytical Methods

Concentrations of PFOA and its degradation byproducts were analyzed by a high-performance
liquid chromatograph (HPLC), using an ACQUITY UPLC system (Waters, Milford, MA, USA)
equipped with a Waters ACQUITY TQD triple quadrupole mass spectrometer. All samples were
extracted using solid phase extraction (SPE) without prefiltration. The Oasis WAX cartridges (6 cubic
centimeter, 150 mg, 30 µm) were cleaned and conditioned with 4 mL of 0.1% NH4OH in methanol,
4 mL of methanol, and 4 mL of Milli-Q water. The cartridges were washed with 4 mL of buffer solution
(25 mM acetic acid/ammonium acetate, pH = 4), centrifuged for 3 min at 3000 revolutions/min to
remove residual water, and then washed with 4 mL of methanol. Target compounds were then eluted
with 4 mL of 0.1% NH4OH in methanol. The latter fraction was concentrated to 0.5 mL using a
bath-typed nitrogen blowing instrument and then passed through a polypropylene-membrane syringe
filter (Acrodisc GHP, 13 mm, 0.2 µm). 100 µL of filtrate and 100 µL of Milli-Q water were transferred
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into a polypropylene vial for concentration analysis. Further details of the analysis method, such as
column installation, column temperature, mobile phase and its flow rate, can be found in the study by
Yu et al. [37]. PFOA and its degradation byproducts recoveries under the different analytical conditions
were 77%–105%, and the quantitative detection limit for PFOA was 0.10 ng/L.

Concentrations of fluoride ion were analyzed using a Dionex-500 ion chromatography system
(Dionex, Sunnyvale, CA, USA). The samples were filtered through Dionex OnGuard cartridges
(1 cubic centimeter; Dionex) to reduce the interference of organic compounds before analysis.
The cartridges were cleaned and conditioned with 4 mL of methanol and 10 mL of Milli-Q water
before use. Fluoride analysis was carried out using an AS14A (4 mm ˆ 250 mm) analytical column
and Ionpac AG14A 4-mm guard column (4 mm ˆ 50 mm) with a degassed 8.0 mM sodium carbonate
and 1.0 mM sodium bicarbonate mobile phase at a flow rate of 1 mL¨min´1. The retention time for
fluoride ion was 3.12 min. In addition, a fluoride-ion-selective electrode was also used to analyze
concentrations of fluoride ion, after a 1:1 dilution with an ionic strength adjustment buffer. The ionic
strength adjustment buffer solutions were prepared by adding hydrochloric acid into trisodium citrate
dehydrate aqueous solution (1 M) adjusting solution pH to 6.00. The quantitative detection limits were
1 µg/L and 20 µg/L, for the ion chromatography and ion selective electrode, respectively.

An electron paramagnetic resonance (EPR) spectrometer was used to analyze free radicals
generated by activated persulfate. The EPR spectra were obtained using a Bruker-EMX-10/12
spectrometer (Bruker, Karlsruhe, Germany) with a magnetic field modulation frequency of 9.77 GHz,
microwave power of 19.97 mW, modulation frequency of 100 kHz, modulation amplitude of 2.0 G,
sweep width of 100 G, time constant of 40.95 ms, sweep time of 83.85 s, and receiver gain of 2.0 ˆ 104.

3. Results and Discussion

The defluorination ratio (DF ratio), expressed as (moles of fluorine released due to PFOA
degradation)/(total moles of fluorine in initial PFOA solution), is an indicator of PFOA degradation
and was used to evaluate the defluorination efficiency of PFOA by activated persulfate. PFOA
degradation efficiency, expressed as (moles of PFOA degraded)/(moles of initial PFOA concentration),
was also used in the evaluation of PFOA removal efficiency by activated persulfate.

3.1. Effect of pH

The effects of pH on PFOA degradation, with a molar ratio of 1:100 PFOA to persulfate,
are illustrated in Figure 1. The pH of the solutions was adjusted by adding H2SO4 and NaOH
(Figure 1a), HCl (Figure 1b) and H2SO4 (Figure 1c), respectively. The initial pH value of 20 µM PFOA
and 2 mM persulfate, without pH adjustment, was about 4.2. The experimental results show that
solution pH plays a major role in the defluorination efficiency of PFOA. In solutions where pH was
adjusted by H2SO4 and NaOH, the decrease in solution pH (from 12.0 to 2.0) resulted in an increase
in the DF ratio (Figure 1a). DF ratios were significantly higher in solutions with pH values less than
3. According to an early study by Liang and Lee [38], in activated persulfate solutions with varying
pH, SO4

´‚ is the predominant oxidant radical at acid pH (e.g., pH < 3); both SO4
´‚ and ‚OH are

present at neutral pH; and at pH > 12, ‚OH is the predominant free radical, and reductant radical
O2

´‚may also be present. The higher DF ratio under acidic conditions (pH < 3) could be due to the
production of predominant SO4

´‚, as explained through a proton-catalyzing process to form sulfate
free radicals as shown in Equations (1) and (2) [36]. The measured pH value in solution decreased
from 4.2 to 2.4 after a reaction time of 100 h, consistent with the proton production in Equation (2).
At pH > 5, however, OH´ may act as a fast scavenger, converting SO4

´‚ to ‚OH through the path
demonstrated in Equation (3), considering the reaction rate of Equation (3) is much higher than that of
Equation (4) [36]. The much lower DF ratio observed at pH > 5 suggests that the SO4

´‚ free radical
plays a major role in PFOA degradation, and ‚OH itself cannot oxidize PFOA directly [13,39].

S2O2´
8 `H` Ñ HS2O´

8 (1)
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HS2O´
8 Ñ SO2´

4 ` SO´
4 ‚ `H` (2)

Alkaline pH : SO´
4 ‚ `OH´ Ñ SO2´

4 ` ‚OH, k “ 7ˆ 10´7 M´1 ¨ s´1 (3)

AlL pHs : SO´
4 ‚ `H2O Ñ SO2´

4 ` ‚OH`H`, k ă 60 M´1 ¨ s´1 (4)

In addition, it was noted that the acid reagent (H2SO4 versus HCl) used to adjust the solution
pH also affected the DF ratio. When solution pH was adjusted by HCl, the DF ratio was much lower
(data shown in Figure 1b) than when H2SO4 was used for pH adjustment (data shown in Figure 1c).
Therefore, further experimentation, with the total reaction time greater than 1200 h, was carried out to
investigate the cause of this phenomenon. As shown in Figure 1b, the DF ratios were less in solutions
where pH was adjusted by HCl (pH < 3) than in those where pH was not adjusted (with an initial pH
of 4.2). Furthermore, it was noted that, due to the low reactivity in solutions with pH adjusted by HCl,
the DF ratio was less than 1% at pH 2.0 after 1200 h (Figure 1b). In contrast, for the solution with pH
adjusted by H2SO4, the DF ratio was more than 20% at pH 2.0. This may be attributed to the presence
of chloride ion, which can annihilate reactive free radicals as demonstrated in Equations (5)–(7) [40,41].
This is consistent with results from early studies, which showed that the chloride anion can act as a
free radical scavenger, thus inhibiting the reaction between PFOA and free radicals [42].

Cl´ ` SO´
4 ‚ Ñ SO2´

4 `Cl‚ (5)

Cl´ ` ‚OH Ñ ClOH‚´ (6)

ClOH‚´
`H` Ñ H2O`Cl‚ (7)

Based on the results discussed above, pH for subsequent experiments (i.e., to study the effect of
persulfate dosage, temperature, and reaction time) was adjusted by H2SO4 to 2.0 in an effort to obtain
optimal experimental conditions for PFOA removal. Effects of persulfate dosage, temperature and
reaction time on PFOA degradation by persulfate under acidic conditions were further explored.
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Figure 1. Effects of pH on the degradation of PFOA: (a) Solution pH was adjusted by NaOH and 
H2SO4 from 1.8 to 12.0, [PFOA]0 = 20 μM; [persulfate]0 = 2 mM, reaction temperature: 40 °C, reaction 
time: 22 h; (b) solution pH adjusted by HCl, room temperature (<20 °C), [PFOA]0 = 20 μM, 
[persulfate]0 = 2 mM; and (c) solution pH adjusted by H2SO4, reaction temperature (at room 
temperature < 20 °C), [PFOA]0 = 20 μM, [persulfate]0 = 2 mM. The initial pH value of 20 μM PFOA 
was about 5.4, and the initial pH value of 20 μM PFOA with 2 mM persulfate, without pH 
adjustment, was about 4.2. 

3.2. Effect of Persulfate Dosage 

The impact of persulfate dosage on the DF ratio was studied following those preliminary 
experiments on the influence of pH. As shown in Figure 2, the DF ratio increased with both 
increasing persulfate dosage and reaction time at 40 °C. At the higher persulfate dosages (molar 
ratios of PFOA to persulfate of 1:100 and 1:200), DF ratios could exceed 10% and were as high as 
approximately 25% in the case of a 1:200 molar ratio (PFOA to persulfate) and after a reaction time of 
117 h. This indicates that excessive persulfate is required for effective PFOA degradation. This 
observation has significant ramifications on the engineered application of activated persulfate to 
remediate PFOA since insufficient persulfate dosage may result in the failure of PFOA remediation 
in the field. 

Figure 1. Effects of pH on the degradation of PFOA: (a) Solution pH was adjusted by NaOH and H2SO4

from 1.8 to 12.0, [PFOA]0 = 20 µM; [persulfate]0 = 2 mM, reaction temperature: 40 ˝C, reaction time:
22 h; (b) solution pH adjusted by HCl, room temperature (<20 ˝C), [PFOA]0 = 20 µM, [persulfate]0 =
2 mM; and (c) solution pH adjusted by H2SO4, reaction temperature (at room temperature < 20 ˝C),
[PFOA]0 = 20 µM, [persulfate]0 = 2 mM. The initial pH value of 20 µM PFOA was about 5.4, and the
initial pH value of 20 µM PFOA with 2 mM persulfate, without pH adjustment, was about 4.2.

3.2. Effect of Persulfate Dosage

The impact of persulfate dosage on the DF ratio was studied following those preliminary
experiments on the influence of pH. As shown in Figure 2, the DF ratio increased with both increasing
persulfate dosage and reaction time at 40 ˝C. At the higher persulfate dosages (molar ratios of PFOA
to persulfate of 1:100 and 1:200), DF ratios could exceed 10% and were as high as approximately 25%
in the case of a 1:200 molar ratio (PFOA to persulfate) and after a reaction time of 117 h. This indicates
that excessive persulfate is required for effective PFOA degradation. This observation has significant
ramifications on the engineered application of activated persulfate to remediate PFOA since insufficient
persulfate dosage may result in the failure of PFOA remediation in the field.
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was achieved. As with the effect of temperature, this observation was further verified by 
experiments conducted at a temperature of 50 °C (Figure 3c). Both the PFOA degradation efficiency 
and DF ratio increased with increasing reaction time. The DF ratio exhibited a linear relationship 
with reaction time, and the r2 value of the linear regression fitting was 0.987. In contrast, the PFOA 
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reaction time of 80 h when the degradation efficiency was up to 80%. After a reaction time of 100 h, 
the DF ratio was 23.9%, accounting for 89.9% of PFOA degraded. This indicates that PFOA degraded 
by activated persulfate does not undergo complete conversion to fluorine and carbon dioxide 
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groundwater, this finding is very helpful for engineers who are in charge of determining the 
monitoring frequency to evaluate the effectiveness of PFOA remediation with activated persulfate.  

Figure 2. Comparison of PFOA degradation given different concentrations of persulfate
([PFOA]0 = 20 µM; temperature = 40 ˝C; molar ratio of PFOA to persulfate are 1:25, 1:50, 1:100
and 1:200; pH adjusted by H2SO4 to 2.0).

3.3. Effect of Temperature and Reaction Time

Additional experiments were conducted to evaluate the effect of temperature on PFOA
degradation by activated persulfate under acidic conditions. The results are shown in Figure 3.
The temperature range tested included 25 ˝C, 35 ˝C, 40 ˝C and 50 ˝C. As expected, the DF ratio
increased with increasing temperature, and the incremental increase in DF ratio was more significant
when temperatures were higher than 40 ˝C (Figure 3a). This is due to the influence of heat activation as
shown in Equation (8), and is consistent with the literature which has demonstrated that heat-activation
of persulfate can be achieved at temperatures above 40 ˝C [25]. The impact of temperature was further
evaluated using the solution system with a molar ratio of PFOA to persulfate of 1:100 and with a
reaction time of 24 h at 50 ˝C (Figure 3b). The corresponding DF ratio was 7.45%, which accounts for
approximately 35.7% of the PFOA degradation efficiency. This suggests that not all PFOA degrades
via fluorine removal.

S2O2´
8 ` heat Ñ 2SO´

4 ‚ (8)

The effect of reaction time was also explored, and the results are shown in Figure 3a,c. As shown
in Figure 3a, the DF ratio increased with increasing reaction time. The r2 value of the linear regression
fitting of DF ratio to reaction time varied from 0.908 to 0.988, demonstrating a linear relationship
between DF ratio and reaction time through the reaction period until a DF ratio of 25% was achieved.
As with the effect of temperature, this observation was further verified by experiments conducted
at a temperature of 50 ˝C (Figure 3c). Both the PFOA degradation efficiency and DF ratio increased
with increasing reaction time. The DF ratio exhibited a linear relationship with reaction time, and
the r2 value of the linear regression fitting was 0.987. In contrast, the PFOA degradation efficiency
initially increased faster than the DF ratio, and then slowed down after a reaction time of 80 h when
the degradation efficiency was up to 80%. After a reaction time of 100 h, the DF ratio was 23.9%,
accounting for 89.9% of PFOA degraded. This indicates that PFOA degraded by activated persulfate
does not undergo complete conversion to fluorine and carbon dioxide directly, but rather undergoes a
stepwise degradation process. Even though the long reaction time makes it more difficult to implement
a large-scale remediation system for PFOA removal from groundwater, this finding is very helpful for
engineers who are in charge of determining the monitoring frequency to evaluate the effectiveness of
PFOA remediation with activated persulfate.
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Figure 3. Effect of temperature and reaction time on PFOA degradation: (a) effect of reaction time
on PFOA DF ratio at different temperature ([PFOA]0 = 20 µM; the molar ratio of PFOA to persulfate
= 1:100; temperature = 25 ˝C, 35 ˝C, 40 ˝C, 50 ˝C; pH adjusted by H2SO4 to 2.0); and (b) effect of
temperature on PFOA degradation efficiency and DF ratio ([PFOA]0 = 20 µM; molar ratio of PFOA to
persulfate = 1:100; reaction time = 24 h; pH adjusted by H2SO4 to 2.0); and (c) effect of reaction time on
PFOA degradation efficiency and DF ratio ([PFOA]0 = 20 µM; molar ratio of PFOA to persulfate = 1:100;
temperature = 50 ˝C; pH adjusted by H2SO4 to 2.0).
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The kinetics of PFOA degradation by activated persulfate under acidic conditions are shown
in Figure 4a, where PFOA concentration changes were plotted as ln(Ct/C0) versus reaction time at
temperature of 30 ˝C, 40 ˝C and 50 ˝C. The degradation of PFOA by activated persulfate under acidic
conditions was found to follow the pseudo-first-order decay model, with the r2 correlation values of
0.894, 0.988 and 0.998, for temperature of 30 ˝C, 40 ˝C and 50 ˝C, respectively.
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Figure 4. (a) The pseudo-first-order kinetic plots of PFOA degradation by activated persulfate under
acidic conditions ([PFOA]0 = 20 µM; molar ratio of PFOA to persulfate = 1:100; temperature = 30 ˝C,
40 ˝C, 50 ˝C; pH adjusted by H2SO4 to 2.0); (b) Arrhenius plot of the pseudo-first-order
degradation constants.

Table 1 shows the fitted kinetic constants (k), and the corresponding half-lives (t1/2), which can be
used to evaluate the degradation rate at different temperature. The k values of PFOA degradation
by activated persulfate under acidic conditions increase with increasing temperature, further
demonstrating the significant effect of temperature on PFOA degradation.
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Table 1. Pseudo-first-order kinetic constant (k) of PFOA degradation by activated persulfate under
different reaction temperatures, ([PFOA]0 = 20 µM; [persulfate]0 = 2 mM; pH adjusted by H2SO4 to 2.0).

Temperature (˝C) Pseudo-First-Order Kinetic Constant k (10´2¨ h´1) t1/2 (h) r2

30 0.57 138 0.894
40 1.06 69 0.988
50 2.28 30 0.998

Figure 4b showed an Arrhenius plot of the pseudo-first-order degradation constants associated
with three different temperature. According to the Arrhenius Equation (9), the activation energy
(Ea) for the degradation of PFOA by activated persulfate under acidic conditions was determined
to be 56.2 kJ/mol (r2 = 0.986), which is in good agreement with previous study by Lee et al. [36].
This apparent activation energy is lower than those for the oxidation of chlorinated ethenes by
heat-activated persulfate (97–143 kJ/mol) [43], indicating that the apparent activation energy only
accounts for the one decarboxylation step, which results in PFOA degradation. This suggests that
PFOA degradation by activated persulfate undergoes a stepwise degradation process, as discussed in
more detail later.

lnk “ lnA´
Ea
RT

(9)

3.4. Reaction Mechanisms

In order to further understand PFOA degradation mechanisms under acidic conditions, free
radicals analysis experiments were carried out along with quantification of PFOA and its daughter
products. Figure 5 shows DMPO hydroxyl radicals adduct (DMPO-OH) with hyperfine splitting
constants of aN = 14.9 and aHβ = 14.8, and DMPO sulfate radicals adduct (DMPO-SO4) with hyperfine
splitting constant of aN = 13.51, aHβ = 9.91, aHγ1 = 1.34 and aHγ2 = 0.88 in the EPR spectra for
different solution systems in which pH was adjusted by H2SO4 and NaOH. The EPR spectra of radical
adducts show the generation of ‚OH and SO4

´‚ in solutions under both acidic and alkaline conditions.
Relatively little degradation of PFOA was observed in persulfate solution systems with high pH values.
According to Equation (3), SO4

´‚ reacts rapidly with OH´ to produce ‚OH under alkaline conditions.
This suggests that ‚OH itself may not be able to degrade PFOA, consistent with the conclusion of early
studies that showed ‚OH cannot oxidize PFOA directly [23,44].

The predominant SO4
´‚ produced by protons under acidic conditions (pH < 3), as discussed

earlier, plays a significant role in the successful degradation of PFOA. It was speculated that the proton
increases the reaction rate of sulfate radicals with PFOA, which leads to the efficient degradation
of PFOA. Furthermore, consistent with the results of a previous study [45], the signal intensity of
DMPO-OH adduct was much stronger than that of DMPO-SO4. A possible explanation is the radical
conversion as described in Equations (10) and (11) [46].

2S2O2´
8 ` 2H2O Ñ 3SO2´

4 ` SO´
4 ‚ `O2 ` 4H` (10)

SO´
4 ‚ `OH´ Ñ SO2´

4 ` ‚OH (11)

Furthermore, concentrations of PFOA and its daughter products were quantified, after a reaction
time of 100 h, and the results are summarized in Table 2.

It was observed that, in general, the total molarity of perfluoroalkyl carboxylic acid (PFCA)
intermediates was equal to the initial concentration of PFOA. As indicated by the earlier conclusion
that not all PFOA decomposes via fluorine removal (as seen from the discrepancy between DF ratio
and degradation efficiency), it can be deduced that concentrations of shorter-chain PFCs increase with
increased reaction time. The analysis results indicate a stepwise degradation process, consistent with
those reported in early studies [33,36].
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Table 2. Concentrations of PFCA intermediates formed by PFOA (20 µM) with a reaction time of 100 h,
2 mM persulfate, initial pH = 2.0 adjusted by H2SO4, temperature = 50 ˝C.

PFCA Intermediates Concentrations (µmol/L)

PFOA, C8 1.93
Perfluoroheptanoic acid, PFHpA, C7 5.91
Perfluorohexanoic acid, PFHeA, C6 3.82
Perfluoropentanoic acid, PFPeA, C5 2.07

Perfluorobutyric acid, PFBA, C4 3.03
Perfluoropropionic acid, PFPrA, C3 2.10

Trifluoroacetic acid, TFA, C2 2.13
Total PFCAs 20.99

Considering the free radical and degradation byproduct analyses discussed above, together
with the mechanisms of PFOA degradation reported previously [47,48], a possible chemical reaction
pathway for PFOA oxidation by activated persulfate under acidic conditions can be described by
Equation (12) through Equation (16) below and is shown in Figure 6. As a first step, one electron
is transferred from PFOA to reactive radical SO4

´‚ to initiate a decarboxylation reaction and
perfluoroalkyl radicals are formed (i.e., CnF2n+1‚). The newly formed CnF2n+1‚ continues to react
with ‚OH to form CnF2n+1OH, which undergoes an HF elimination to form Cn´1F2n´1COF [49],
resulting in the formation of one-CF2-unit-shortened PFCA (Cn´1F2n´1COOH) via hydrolysis [50].
The decarboxylation and HF elimination processes continue until all PFCAs are converted to CO2 and
fluoride (Figure 6).

SO´
4 ‚ `C7F15COO´ Ñ SO2´

4 `C7F15COO‚ (12)

C7F15COO‚ Ñ CO2 `C7F15‚ (13)

C7F15 ‚ ` ‚OH Ñ C7F15OH (14)

C7F15OH Ñ C6F13COF` F´`H` (15)
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4. Conclusions

This study demonstrates that advanced chemical oxidation of PFOA by activated persulfate
under acidic conditions in aqueous solutions is effective, while its degradation by the traditional
alkaline-activated persulfate shows rather low degradation efficiency. Experimental results showed
that higher temperature, higher persulfate dosage and a longer reaction time resulted in higher PFOA
degradation efficiency by activated persulfate under acidic conditions. The degradation kinetics of
PFOA was found to follow the pseudo-first-order decay model. It was demonstrated that 89.9% of
PFOA can be degraded after a reaction time of 100 h in a solution system with pH 2.0 at a temperature
of 50 ˝C. The corresponding DF ratio of 23.9% was much less than the PFOA degradation efficiency,
indicating that not all PFOA degradation is achieved via fluorine removal. EPR data showed that
SO4

´‚, along with ‚OH, are the effective free radicals contributing to PFOA degradation. It was
speculated that SO4

´‚ initiated a decarboxylation reaction in PFOA, followed by HF elimination
due to ‚OH, and formed one-CF2-unit-shortened PFCA (Cn´1F2n´1COOH). The discoveries of this
study provide a basis for the cost-effective remediation approach of PFOA contamination in aqueous
solutions, especially in groundwater. However, it is still technically challenging due to the fact that
remediation at elevated temperature is difficult to implement in the field at large scale. Hence, further
study to improve the efficiency of sulfate radical production to accelerate the degradation of PFOA
and its associated intermediate products is needed. In addition, the influence of soil on the PFOA
degradation by activated persulfate under acidic conditions was not investigated in this study. Further
study to evaluate the impact of soil will prove to be valuable.
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