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Abstract: As flood water is discharged from a high dam, low frequency (i.e., lower than 10 Hz) noise
(LFN) associated with air pulsation is generated and propagated in the surrounding areas, causing
environmental problems such as vibrations of windows and doors and discomfort of residents
and construction workers. To study the generation mechanisms and key influencing factors of LFN
induced by energy dissipation through submerged jets at a high dam, detailed prototype observations
and analyses of LFN are conducted. The discharge flow field is simulated using a gas-liquid turbulent
flow model, and the vorticity fluctuation characteristics are then analyzed. The mathematical model
for the LFN intensity is developed based on vortex sound theory and a turbulent flow model, verified
by prototype observations. The model results reveal that the vorticity fluctuation in strong shear
layers around the high-velocity submerged jets is highly correlated with the on-site LFN, and the
strong shear layers are the main regions of acoustic source for the LFN. In addition, the predicted and
observed magnitudes of LFN intensity agree quite well. This is the first time that the LFN intensity
has been shown to be able to be predicted quantitatively.

Keywords: LFN; high dam flood discharge; energy dissipation by submerged jets; vorticity
fluctuation; prediction model

1. Introduction

Noise pollution is a serious environmental problem to human beings, which has further been
shown to be associated with reduced quality of life and wellbeing [1,2]. At present, most of the
academic literature is related to high frequency noise sources from traffic, industry and human
activities [3–5], while low frequency noise (LFN) is also considered annoying for humans [6]. The LFN
found in living environments is mainly emitted from many artificial sources such as road vehicles,
aircraft, and air movement machinery including wind turbines, compressors, and ventilation [7,8], and
it is claimed that exposure to LFN has a negative impact on humans’ physiological and psychological
health. The physiological problems include headaches, hormone changes, dizziness or vertigo, tinnitus
and the sensation of aural pain or pressure, and the psychological impact can cause sleep disturbance,
dysphoria, difficulty concentrating, irritability and fatigue [9,10].

In the field of hydraulic engineering in China, the majority of high dams were constructed in
recent decades with the features of high water head, large flow capacity, a deep narrow valley and
large flood discharge power. Issues such as energy dissipation and scour protection, vibration control
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of a hydraulic structure, vapor atomization protection, aeration for cavitation protection, and security
warnings associated with high dam flood discharge have attracted significant attention and led to
abundant technological achievements [11–14]. Some environmental problems from LFN have also
recently been found around some hydropower stations during the flood discharge period. For instance,
when the Xiangjiaba Hydropower Station (Zhaotong, at the border of Sichuan and Yunnan provinces,
China) began to release flow through the dam orifices at a high water level on 10 October 2012, the roller
shutter doors of some shops and the windows and doors of residential buildings experienced sustained
vibration in downstream Shuifu County. The dominant frequencies of the LFN observed on-site were
approximately 0–2 Hz. In a recent study [15], the impact of ground vibration induced by the flood
discharge of Xiangjiaba on on-site roller shutter doors was eliminated by means of a vibration response
analysis, and it was deduced that the doors shaking resulted from the resonant interaction between
the flow-induced LFN and the door structures. Moreover, the windows of buildings located at the left
abutment of the Ertan Hydropower Station (Panzhihua, Sichuan Province, China) oscillated noticeably
when the flood was released. The windows and doors of residential buildings in a downstream village
about 700–1500 m from the Huangjinping Hydropower Station (Kangding, Sichuan Province, China)
experienced sustained vibrations when the flood was released. The LFN observed during the flood
discharge period of both the Jinping Hydropower Station (Liangshan Yi Autonomous Prefecture,
Sichuan Province, China) and Xiluodu Hydropower Station (Zhaotong, at the border of Sichuan and
Yunnan provinces, China) had sound pressure levels (SPL) approximately 20–50 dB higher than the
background noise, and the dominant LFN frequencies were between 0.5 Hz and 1.5 Hz. It is found that
the inaudible LFN observed around these hydropower stations causes audible secondary noise from
surrounding buildings. In Japan, there are some criteria specific to the vibration and rattle attributable
to the effects of LFN from stationary sources in worksites, shops and neighborhood residences [16].
The lowest noise frequency listed in the criteria is 5 Hz with its reference SPL limit of 70 dB. For the
flow-induced LFN, the LFN’s effects are extended to a lower frequency of about 0–2 Hz.

Japanese scholars have conducted some research on flow-induced LFN. As Japan is a densely
populated country and many hydropower stations are close to residents’ living quarters, the problems
of LFN were noted earlier in Japan. Most of the research focused on the waterfalls formed by the
discharge flow through the weir or dam’s floodgate. The oscillation of such waterfalls can cause LFN,
which has an adverse impact on surrounding buildings and inhabitants [17–19]. In addition, since
LFN is a low frequency wave, it has a low attenuation rate in air [17,20,21], which is difficult to control,
and thus can spread over long distances, even tens of kilometers, to resonate with buildings. Among
the previous studies, Nakamura [17] reported the phenomenon of LFN induced by flood discharge as
early as 1978. Takebayashi [18] and Nakagawa [19] carried out systematic research on the mechanisms
of self-excited oscillation of cavity-waterfall systems and the characteristics of the induced LFN based
on site observations. Some control measures, such as placing deflectors, were put forward and applied
effectively in the research. Ochiai et al. [22] studied various influencing factors of the SPL of the noise
from windows and doors induced by LFN by a series of model tests. Saitoh et al. [23] studied the
sound sources of the hydraulic jump through hydraulic model experiments on the hydraulic jump and
cylinder nozzle, and they found that the noise energy at a high frequency of 500–600 Hz induced by the
hydraulic jump was derived from bubble cloud oscillations. These research results indicate that LFN
induced by flood discharge can cause environmental problems within large areas, and the generation
of LFN closely correlates with the discharge flow regime. The problems of LFN can be controlled
and reduced by adjusting the flow regime. The previous studies mainly focus on LFN induced by
a relatively continuous waterfall of some water projects with low water head, small flow rate and
a simple flow regime. However, for water projects that dissipate energy through multi-horizontal
submerged jets, LNF energy can still be observed on site although a waterfall does not exist during
flood discharge. Therefore, there must be some differences in the generation mechanisms of LFN
between energy dissipation by the submerged jet of high dam flood discharge and the oscillation of
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the waterfall. An extensive literature search has not found any research reports on LFN induced by
energy dissipation through the submerged jets of a high dam.

The objective of this study was to identify the mechanisms and key influencing factors of LFN
induced by energy dissipation through the submerged jets of a high dam. First, in light of the
prototype observation results of LFN, the on-site spatial distribution and propagation laws of the
induced LFN along the downstream are analyzed, and the correlation between LFN and the discharge
flow regime is discussed. Next, the vortex sound model and numerical turbulent flow model for the
flood discharge and energy dissipation of the high dam are presented as the theoretical bases. Then,
the flow field’s distribution characteristics and effective regions of acoustic source for the LFN are
studied and identified, according to the numerical simulation results of the gas-liquid turbulent flow
model of flood discharge. The mathematical prediction model of the LFN intensity induced by the
submerged jets is established based on the vortex sound model and turbulent flow model, and the
prediction model is verified by prototype observation results. Finally, the findings are summarized,
and the conclusions of this study are drawn.

2. Materials and Methods

2.1. Prototype Observation

2.1.1. Prototype

The Xiangjiaba Hydropower Station is the third largest hydropower station in China and the
sixth largest in the world. It is the last cascade on the Jinsha River and is adjacent to Shuifu County of
Yunnan Province downstream, with the nearest distance being about 0.5 km [24]. The dam is 162 m in
height, with a reservoir capacity of 5 ˆ 109 m3 and planned flood discharge rate of 41,200 m3/s. The
total installed capacity of the station is 6400 MW. The station consists of water-retaining structures,
flood-releasing and sediment-flushing structures, a water diversion and power generation system,
navigation structures, and irrigation water intakes. Because of the large scale of the flood discharge
and energy dissipation and the requirement of the flood discharge and sediment flushing of the
hydropower station, the water release structure was chosen as a gravity spillway dam, composed
of 12 crest overflowing orifices and 10 mid-discharge orifices, as shown in Figure 1. However, after
comparing a range of orifice layout schemes through a hydraulic model test, it was determined
that the water release structure had to dissipate energy by the submerged jets and that the 12 crest
overflowing orifices and the 10 mid-discharge orifices ought to be alternately arranged for the sake of
balancing the unit width discharge, facilitating flood discharge and sediment flushing, decreasing the
sluice gate’s size and reducing the influence of the discharge atomization on the surrounding town
and enterprise [25]. There are two symmetrical energy dissipation areas separated by the middle
guide wall.
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2.1.2. Observation System and Conditions

Since 2012, Tianjin University has organized prototype observations of LFN many times during
the flood period of Xiangjiaba. The observation equipment of LFN on site consists of an infrasound
microphone, a multi-channel digitizer and a computer. The infrasound microphone, which was fixed
above the ground a little over 2 m, has a frequency range of 0.1–500 Hz and a sensitivity of 107 mv/Pa.
The multi-channel digitizer connects the microphone with the computer, which supplies power to the
microphone and saves data in high speed. The digitizer has a built-in GPS, so the equipment can work
well in the open air. With regard to the uncertainties in the observed data from the self-noise of the
microphone and digitizer, the errors from the digitizer are small sufficiently to be neglected, and the
maximum error from the microphone is below 2%, which corresponds to ˘1 dB.

The observation range covered the dam area, construction area and urban area of Shuifu, placing
25 observation points in total (T1–T25 in Figure 2). The observation work was conducted at least
twice at the same point under the same discharge conditions. The observation time period was set
as 3–6 min. The observation frequency was set as 1000 Hz. Due to the daily, traffic and industrial
noise in the county [26,27], especially with respect to the LFN generated by the surrounding living
environments [8,28,29], the observation work was carried out in the evening to avoid signal mixing or
distortion and ensure, as much as possible, the validity of the flow-induced LFN data. Table 1 shows
the details of the observed discharge conditions of Xiangjiaba.
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Table 1. Observed discharge conditions *.

No. Q (m3/s)
Water Level Elevation (m) Crest Overflowing Orifice Mid-Discharge Orifice

Upstream Downstream Number Opening (m) Number Opening (m)

1 0 / / / / / /
2 1150 353.43 267.71 / / M6, M8, M10 3.3
3 2760 379.42 269.81 C8–C11 1.5 M6–M10 1.5
4 3340 379.34 270.52 C8–C11 1.5 M1–M10 1.5
5 4470 379.42 271.27 C2–C5, C8–C11 1.5 M1–M10 1.5
6 5140 379.30 271.87 C2–C5, C8–C11 1.7 M1–M10 1.9
7 6370 379.19 272.77 C2–C5, C8–C11 3.0 M1–M10 2.0

8 6600 374.71 275.89
C1–C6 3.0

M1–M10 1.2C7–C12 2.0

* Q is the total discharge through the dam orifices. The discharge orifice’s number is named from the left bank
to the right bank.
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2.1.3. Prototype Observation Data

Figure 3 compares the time history and power spectral density (PSD) curves of the LFN observed
at T8 between the no-releasing discharge condition (Condition 1) and the small discharge condition
(Condition 2) in Table 1. In this study, all of the PSD for the LFN is estimated using the autoregressive
(AR) model with the Burg algorithm, which is one of the most frequently used parametric methods for
processing various signals [30,31], and the order of the AR model is determined by the final prediction
error (FPE) criterion. As shown, during the flood release period, the LFN intensity increases greatly,
and the LFN energy presented in the PSD has an apparent peak frequency below 20 Hz. It is obvious
that LFN is induced in the process of flood discharge.
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Figure 3. Comparisons of the time history and PSD curves of LFN.

Spatial Distribution and Propagation Patterns

The spatial distribution patterns of the induced LFN along the downstream area were obtained
through statistical analysis. The LFN amplitude decreases gradually with increasing distance to the
dam area under all observed discharge conditions. Figure 4 shows the contour map of the LFN
amplitude observed under Condition 8. In this condition, the LFN amplitude achieved the maximum
value, approximately 9.3 Pa (113.3 dB), at the dam area. To evaluate the human hearing and perception
sensitivity for the LFN, the G-weighting (dB(G)) [32] is proposed as an appropriate metric for noise
limits for LFN [33,34]. The maximum G-weighting SPL for the observed LFN was calculated as
approximately 78.6 dB(G), well below the average 95 dB(G) hearing threshold [35] and the LFN limit
of 85 dB(G) from Australian and Danish recommendations [36,37]. Therefore, it is noted that, under
the discharge conditions in Table 1, the LFN observed around Xiangjiaba has no direct negative effect
on local residents’ health in general.
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To analyze the attenuation rates of the flow-induced LFN in the process of propagation along the
downstream city, the SPLs of 8 LFN observation points (dashed line in Figure 2) under all observed
discharge conditions were calculated, as observed in Figure 5. Table 2 shows the SPL attenuation
coefficients at different distances from the flood release and energy dissipation area. As a result,
the SPLs near the dam area are greatly attenuated and have a maximum attenuation coefficient,
0.0347 dB/m, as a statistical average. The SPL attenuation coefficient gradually decreases with
increasing distance to the dam area, and it decreases to 0.000459 dB/m for distances greater than 2 km.
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Table 2. SPL attenuation coefficients at different propagation ranges *.

Range
Q (m3/s)

Statistical Average
1150 2760 3340 4470 5140 6370 6600

Dam area 0.0434 0.0336 0.0322 0.0356 0.0274 0.0314 0.0386 0.0347
<0.5 km 0.0251 0.0220 0.0213 0.0202 0.0224 0.0234 0.0206 0.0221
0.5–1 km 0.00594 0.0108 0.0118 0.0124 0.0112 0.0102 0.0106 0.0104
1–2 km 0.00236 0.00190 0.00276 0.00319 0.00360 0.00406 0.00388 0.00311
>2 km 0.000324 0.000368 0.000397 0.000777 0.000416 0.000596 0.000332 0.000459

* The unit is dB/m.

Correlation between LFN and Discharge Flow Regime

Figure 6 shows the relationship between the RMS values of the LFN amplitude analyzed and the
flow rate for several observation points in the downstream city area. In general, the LFN amplitude
increases gradually with increasing Q, and the discharge operation conditions have some influence on
the LFN amplitude. It is seen from Table 1 and Figure 6 that the joint discharge operation schemes
of the crest overflowing orifices and mid-discharge orifices are advantageous for reducing the LFN
amplitude. For instance, the LFN observed under Condition 4 (Q = 3340 m3/s) has a higher amplitude
than the LFN observed under Condition 5 (Q = 4470 m3/s). The LFN amplitude observed under
Condition 8 (Q = 6600 m3/s) shows a significant decrease compared to the amplitude observed under
Condition 7 (Q = 6370 m3/s). As joint discharge operation schemes can avoid concentrated flow in
the stilling basin, maintaining uniform and smooth flow in the stilling basin plays a significant role in
reducing the LFN amplitude induced by flood discharge. Figure 7 shows the relationship between
the analyzed dominant frequency of the LFN and the flow rate. As shown in the figure, the dominant
frequencies of the LFN are concentrated between 0 Hz to 2 Hz and decrease gradually with increasing
Q under the observed discharge conditions.
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2.2. Theoretical Model of Vortex Sound

In acoustic research, Powell [38] and Howe [39,40] et al. studied the basic issues of the internal
mechanism of fluid vocalization and the interaction between acoustic wave and turbulent flow in
terms of vortex dynamic theory since the 1960s, and they established the vortex sound theory. Their
research results indicated that the vortex is a significant acoustic source and that vortex sound theory
is feasible and effective for identifying the generation mechanism of flow-induced noise at a low
Mach number. In the turbulent flow field of flood discharge and energy dissipation from a high dam,
various vortices always exist. In a stilling basin, the large amount of energy carried by high-velocity
submerged jets is dissipated through strong turbulent mixing. Numerous low-frequency large coherent
structures are present in the strong shear layers of the submerged jets, and they have evident vortical
structures, high regularity and repeatability. The acoustic energy’s formation and transition coming
from the interaction of the vortical structures, potential flow and solid boundaries cannot be neglected.
Therefore, the vortex sound theory is applied to determine the mechanism for LFN induced by energy
dissipation through submerged jets in this study. Assuming that the flow is incompressible and
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isentropic and based on the equations of continuity and motion, the vortex sound equation [38] can be
deduced and simplified as:

∇2 p´
1
c2
B2 p
Bt2 “ ´∇ ¨ ρ pωˆ uq , (1)

where p is the acoustic pressure in the far field; c is the acoustic velocity; ρ is the density; ω is the
vorticity vector; and u is the flow velocity vector. The equation shows that the vortex sound equation
is a typical nonhomogeneous wave equation, with the differential expression of the acoustic wave’s
propagation process in a nonhomogeneous fluid on the left and the acoustic source term of the vortex
on the right. Equation (1) indicates that the flow-induced acoustic pressure is directly related to the
sizes, variations and motion of the vortices. To predict the acoustic pressure, the general solution of
Equation (1) for the far field is written as follows using the Green function method and the Helmholtz
vortex equation, according to Möhring [41]:

ppx, tq “ ρ
B

Bt1

ż

G
`

x, t; y, t1
˘

¨ω
`

y, t1
˘

d3ydt1, (2)

where x is the displacement vector of the predicted point in the far field and y is the displacement
vector of the acoustic source point in the flow region. The Green function must satisfy
∇yG

`

x, t; y, t1
˘

“ ∇y ˆ G
`

x, t; y, t1
˘

.
The integrand on the right side of Equation (2) only contains the vorticity variable ω, which

identifies that the region with time-varying vorticity is the effective region of the acoustic source.
Furthermore, because the flow velocity is not contained in the integrand, the acoustic pressure of the
far field can be directly calculated by the effective vorticity fluctuation data. As G is a symmetric
function, according to Powell’s deduction, G can be confirmed as:

G
`

x, t; y, t1
˘

“
1

12πc2x3 δ2

´

t´ t1 ´
x
c

¯

px ¨ yq xˆ y, (3)

where δ is the Dirac delta function. Then, Equation (2) leads to:

ppx, tq “
ρ

12πc2x3
B3

Bt3

ż

px ¨ yq xˆ y ¨ωd3y, (4)

where the vorticity values depend on the time t1 = t ´ x/c. As the attenuation of acoustic pressure
during propagation is not included above, a sonar equation is obtained as:

SL´ TL “ 20log10
Pe

Pre f
´

ˆ
ż

L
αdL

˙

y
“ 20log10

P1

Pre f
, (5)

where SL is the RMS value of the SPL without regard to attenuation; TL is the SPL attenuation value;
Pe is the RMS value of acoustic pressure calculated by Equation (4); Pref is the reference value of the
acoustic pressure, set as 2 ˆ 10´5 Pa; α is the SPL attenuation coefficient; and P1 is the virtual value of
the acoustic pressure finally achieved with regard to attenuation. The mathematical prediction model
of LFN is generated using Equations (4) and (5), and the LFN intensity can be predicted by substituting
the results of numerical simulation of the near-field turbulent flow into the prediction model.

2.3. Numerical Turbulent Flow Model

2.3.1. Gas-Liquid Turbulent Flow Model

A large number of numerical simulation studies have shown that the k-ε turbulent flow model is a
reasonable method for simulating the hydrodynamic characteristics of turbulent flow [42,43]. However,
the RNG k-ε turbulent flow model, first developed by Yakhot and Orszag [44], can better simulate flow
with high strain rate and large streamline curvature compared to the traditional k-ε turbulent flow
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model. The VOF method, proposed by Hirt and Nichols [45] in 1975 based on the MAC method, is
also an effective way to calculate the complex free water surface [46]. Therefore, the RNG k-ε turbulent
flow model and the VOF method are employed in this study to analyze the hydraulic parameters in
the flow field of flood discharge and energy dissipation of a high dam. The major governing equations
are listed below:

Basic equations of turbulent flow:
$

&

%

Bρ
Bt `

Bρui
Bxi

“ 0
Bui
Bt `

Buiuj
Bxj

“ ´ 1
ρ
Bp
Bxi
` 1

ρ
B
Bxj

”´

µ` Cµ
k2

ε

¯´

Bui
Bxj
`
Buj
Bxi

¯ı , (6)

k equation:
B pρkq
Bt

`
B pρkuiq

Bxi
“

B

Bxj

«

αkµe f f
Bk
Bxj

ff

` Gk ` ρε, (7)

ε equation:
B pρεq

Bt
`
B pρεuiq

Bxi
“

B

Bxj

«

αεµe f f
Bε

Bxj

ff

`
C˚1εε

k
Gk ´ C2ερ

ε2

k
, (8)

Gas-liquid VOF equation:
#

αa “ 1´ αw
Bαw
Bt ` ui

Bαw
Bxi

“ 0
, (9)

where µe f f “ µ` ρCµ
k2

ε , C˚1ε “ C1ε ´
ηp1´η{η0q

1`βη3 , η “
`

2Eij ¨ Eij
˘1{2 k

ε , Eij “
1
2

´

Bui
Bxj
`
Buj
Bxi

¯

, Cµ = 0.0845,
αk = αε = 1.39, C1ε = 1.42, C2ε = 1.68, η0 = 4.377, β = 0.012, and αw and aa are the volume fractions of
water and air in a unit grid, respectively.

2.3.2. Simulation Domain and Boundary Conditions

The numerical turbulent flow model established is for a 1:1 scale simplified spillway dam of
Xiangjiaba, as shown in Figure 8, where X is along the flow direction. The calculation conditions
of the numerical simulation are listed in Table 1. The simulation domain includes the water body
extended 80-m into the reservoir; the spillway dam segments with the crest overflowing orifices and
mid-discharge orifices, which are 132 m long; the 228 m long stilling basin; and the 40 m long tail-weir.
Because the stilling basins of Xiangjiaba are symmetrical on two sides of the middle guide wall, the
simulations are done on just a half portion of the discharge structures which is on one side of the
middle guide wall in the transverse Z direction to reduce the numeration workload. The model
is meshed by block-structured grids. For the main flood discharge and energy dissipation regions,
such as the spillway dam area and the front of the stilling basins, the grid size is set as 1 m long ˆ 1 m
wide ˆ 1 m high. In the remaining regions, the grid size is set as 2 m long ˆ 1 m wide ˆ 1 m high.
Mesh refinement is applied on the overflow dam face, and the mesh refinement method adaptive to
the variations of the pressure gradient and free water surface is employed during the calculation. The
total number of grid units is approximately 3.52 million. Furthermore, based on the RNG k-ε turbulent
flow model and the VOF method, the methods of finite volume, PISO and wall function are employed
in the process of calculation.

When setting the boundary conditions of the turbulent flow model, the upstream inlet and
downstream outlet are set as the pressure inlet and pressure outlet, respectively, and the water levels of
upstream and downstream are set equal to the measured values shown in Table 1. The top boundary
of the model is all set as the air pressure inlet with the atmospheric pressure. The other boundary is set
as a no-slip wall.
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3. Results and Discussion

From solving Powell’s equation in the above section, it is suggested that the region with the
time-varying vorticity is the effective region of acoustic source, and the mathematical prediction model
of LFN is developed accordingly. The numerical turbulent flow model is also built as a feed to the
LFN prediction model. In this section, the numerical calculation results from the turbulent flow model
and the vortex sound model are analyzed to verify the theoretical analysis results. The flow field and
vorticity fluctuation characteristics of the energy dissipation area are analyzed to identify the main
regions of acoustic source for the LFN. The prediction model developed is used to calculate the LFN
intensity on site.

3.1. Verification and Validation of Turbulent Flow Model

To evaluate the numerical uncertainty and discretization errors of the simulation results, the Grid
Convergence Index (GCI) analysis based on the Richardson extrapolation method, which was outlined
by Celik et al. [47,48], is adopted herein. Two additional refined grids are set to do the computations,
which represent a relevant contribution to the numerical uncertainty. The three different grids consist
of 3.52 (N1), 4.81 (N2) and 6.41 (N3) million cells respectively, which are called as the coarse, medium
and fine grids. The GCI of the coarse and fine grids are calculated as follows:

$

&

%

GCI21
coarse “

1.25e21rP
21

rP
21´1

GCI32
f ine “

1.25e32
rP

32´1

, (10)

where P “ 1
lnpr21q

|ln |p f3 ´ f2q { p f3 ´ f2q| ` q pPq|, e21 “
ˇ

ˇ

ˇ

f1´ f2
f1

ˇ

ˇ

ˇ
, and e32 “

ˇ

ˇ

ˇ

f2´ f3
f2

ˇ

ˇ

ˇ
. Here P is the order

of accuracy; e is the relative error; r is the grid refinement factor; and f 1, f 2 and f 3 denote the solutions at
the coarse, medium, and fine levels, respectively. As Roach [49] recommended a minimum 10% change
in point of the computational cost and time consumption, the grid refinement factor is set to r = 1.11.
The variables, f 1, f 2 and f 3, are considered as the flow velocity magnitudes near the stilling basin floor
for different grid sizes.
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Table 3 summarizes the numerical uncertainty assessment results for the turbulent flow model
under Condition 8. All of the solutions for the velocity magnitudes show good mesh convergence
behavior with errors of less than 2.5%, even to the coarse grid.

Table 3. Numerical uncertainty assessment for the turbulent flow model *.

Z
(m)

X
(m)

Velocity Magnitude (m/s)
r21 r32 p e21 e32

GCI21
coarse

(%)
GCI32

fine
(%)f 1 f 2 f 3

44
155 2.628 2.610 2.599 1.11 1.11 4.28 0.0067 0.0043 2.33 0.96
170 2.516 2.498 2.491 1.11 1.11 8.79 0.0072 0.0029 1.49 0.24
185 2.182 2.171 2.176 1.11 1.11 7.73 0.0053 0.0024 1.19 0.24

54
155 2.773 2.763 2.768 1.11 1.11 5.79 0.0035 0.0019 0.95 0.29
170 2.509 2.511 2.509 1.11 1.11 2.51 0.0009 0.0007 0.49 0.29
185 2.411 2.400 2.395 1.11 1.11 8.56 0.0049 0.0020 1.04 0.18

* The solutions for the velocity magnitudes with Z = 44 m and Z = 54 m are at the midlines of the crest
overflowing orifice and the mid-discharge orifice, respectively.

To further validate the turbulent numerical simulation model, the data among the physical model
experiment, hydraulic prototype observation and numerical simulation results were compared. The
measured and simulated results of the water surface profile of Condition 8 in the stilling basin are
shown in Figure 9. The observed and simulated results of the time-average pressure distribution and
flow velocity near the stilling basin floor of Condition 8 are shown in Figures 10 and 11, respectively.Int. J. Environ. Res. Public Health 2016, 13, 594 12 of 25 
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Figure 10. Comparisons of the time-average pressure distribution on the stilling basin floor between 
the observed (from the prototype) and simulated results: (a) Midline of the crest overflowing orifice; 
(b) Midline of the mid-discharge orifice. 
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The figures show that the simulation results of the water surface profile, pressure distribution and
flow velocity near the floor are in good agreement with those from the experiments and observations,
and the other conditions’ validation results are all consistent. As a result, it is feasible to analyze the
hydraulic characteristics of the flow field by the numerical methods chosen in this study.

3.2. Analyses of Numerical Modeling Results

3.2.1. Flow Velocity Distribution

Because the distribution patterns of the flow field obtained by numerical calculation under every
condition are similar, only the velocity contours on the sections along midlines of the crest overflowing
orifice and mid-discharge orifice of Condition 8 are shown here in Figure 12. In Figure 12, the flow
velocity begins to increase after the water discharges from the reservoir through the orifices, and
the maximum velocity reaches 39.67 m/s near the end of the overflow dam surface. Then, the high
velocity flow enters the stilling basin and forms submerged jets, where the water level rises locally.
The multi-horizontal submerged jets maintain a certain distance in space from each other, and a steady
three-dimensional flow structure similar to a submerged hydraulic jump is developed with strong
turbulence and shearing action. As a result, the enormous energy carried by the high velocity flow is
dissipated. Nevertheless, the kinetic energy of the high-velocity jets cannot vanish until the jets nearly
reach the middle of the stilling basin.
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Figure 13 shows the instantaneous velocity vector distribution. Plenty of vortices of different
sizes and strengths form and develop continuously around the high-velocity submerged jets in the
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zone of the three-dimensional flow structure (submerged hydraulic jump) as a result of the large flow
velocity gradient.
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3.2.2. Vortical Structures’ Characteristics

When analyzing the characteristics of the vorticity field, the Eulerian method, such as the
Q-criterion developed by Hunt et al. [50], is frequently utilized to identify and visualize the vortical
structures, and the patterns of the vortex motion can be found in an instantaneous flow field [51].
In addition, the Q-criterion method relies on the derivatives of the velocity and is derived from the
invariants of the velocity gradient tensor. The velocity gradient tensor A for incompressible flow can
be divided into two parts, S and W, respectively, for the symmetric and antisymmetric parts:

Aij “ Sij `Wij “
1
2

˜

Bui
Bxj

`
Buj

Bxi

¸

`
1
2

˜

Buj

Bxi
´
Bui
Bxj

¸

, (11)

where Sij is the strain rate tensor representing the irrotational motion, and Wij is the rotation tensor
representing the rotational motion. Q is the second invariant of Aij defined as:

Q “
1
2
`

WijWij ´ SijSij
˘

, (12)

As a consequence, if the Q value in some regions is positive, the rotational motion plays a
dominating role in those regions. Figure 14 displays the visualization results of the vortical structures
in the flow field of energy dissipation by the Q-criterion. To display the interaction of the vortices
more clearly in the process of energy dissipation, the contours of the Q value (Q > 0) of the midline
sections of the crest overflowing orifice and mid-discharge orifice under Condition 8 are presented in
incremental time steps in Figure 15.
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At different discharge moments, the shear layers grow gradually along the overflow dam surface
with increasing flow velocity, where the vortical structures that are tubular in the horizontal axial
direction (Z direction) begin to appear. At the end of the overflow dam surface and the beginning of the
submerged jets, the vortical structures in the shear layers turn to axial breakup.The breakup becomes
more evident when the submerged jets enter the stilling basin, and much more vortical structures of
different sizes and strengths are developed. It is seen that the three-dimensional characteristics of the
flow regime in the stilling basin are distinct, and the vortical structures in the flow field are unsteady,
movable and intermittent under different discharge conditions. All of the visualization results show
that the vortical structures are mainly located at the beginning of the stilling basin, where the shearing
motion of the flow is violent.

3.2.3. Correlation Analysis of Vorticity Fluctuating Characteristics and Acoustic Source

As the radiated acoustic pressure in the far field is directly related to the vorticity fluctuation
characteristics and vortex motions in the flow region according to previous theoretical deductions,
the dynamic characteristics of the vorticity in the energy dissipation area are derived by numerical
calculation in this section to verify the deductions and estimate the location of the effective regions
of acoustic source for the LFN. Figure 16 shows the vorticity contours of the midline sections of the
crest overflowing orifice and mid-discharge orifice of Condition 8. It is clearly observed that the
distributions of the vorticity and velocity fields are approximately similar. The vorticity intensity is
large in two regions, one located at the free surface of the overflow water, and the other one located
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at the strong shear layers around the submerged jets. Before the jets get into the stilling basin, the
Z-component of the vorticity, representing the quantity of horizontal vortices in the shear layers, is
maximum. When the horizontal vortices flow into the stilling basin, vertical vortices begin to develop,
and the components of the vorticity in every direction tend toward uniformity. The distributions of the
vorticity field correspond to the identification results of the vortical structures in Figures 14 and 15.Int. J. Environ. Res. Public Health 2016, 13, 594 16 of 25 
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The time-averaged values, RMS values and dominant frequencies of the vorticity fluctuation of 
every monitoring point under all conditions were computed according to the transient monitoring 
data obtained through the numerical calculation. The results for Condition 8 are listed in Table 4. It is 
shown that, for the monitoring points located at the free surface of overflow water (S1, M1), the 
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To analyze the vorticity fluctuation characteristics in the flow field, several monitoring points
have been set on the midline sections of the crest overflowing orifice and mid-discharge orifice in
the numerical models, as shown in Figure 17. Specifically, S1 and M1 are set at the free surface of
the overflow water; S2 and M2 are set under the high-velocity overflow water; and the rest of the
measuring points are set in the energy dissipation region of the submerged jets.
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The time-averaged values, RMS values and dominant frequencies of the vorticity fluctuation of
every monitoring point under all conditions were computed according to the transient monitoring
data obtained through the numerical calculation. The results for Condition 8 are listed in Table 4.
It is shown that, for the monitoring points located at the free surface of overflow water (S1, M1),
the time-averaged values of the vorticity fluctuation are larger, whereas the RMS values are smaller,
and the dominant frequency does not exist. The points located at the strong shear layers around the
high-velocity submerged jets (S4, S5, S7, M4, M6, and M8) have the vorticity fluctuation with larger
RMS values and dominant frequencies of 0–2 Hz.

Table 4. Analyses of the vorticity monitoring data.

Midline Section of Crest Overflowing Orifice Midline Section of Mid-Discharge Orifice

Monitoring
Point

Time-Averaged
Value (s´1)

RMS
Value
(s´1)

Dominant
Frequency

(Hz)

Monitoring
Point

Time-Averaged
Value (s´1)

RMS
Value
(s´1)

Dominant
Frequency

(Hz)

S1 15.143 0.663 / M1 30.021 1.656 /
S2 3.022 0.031 / M2 7.986 0.394 /
S3 1.828 0.812 / M3 0.654 0.243 /
S4 18.737 1.149 1.000 M4 20.610 2.530 1.060
S5 11.686 1.599 0.960 M5 1.630 0.665 /
S6 1.518 0.680 / M6 10.589 1.162 0.875
S7 8.948 1.839 1.020 M7 1.791 0.967 /
S8 2.036 1.056 / M8 6.045 1.812 0.425

Contrastive analyses were conducted between the monitoring data of the vorticity fluctuation
and the prototype observation data of the LFN under the same condition. Figure 18 compares the
time-history curves and autocorrelation PSD between monitoring point S5 and prototype observation
point T8 under Condition 8. As a consequence, the vorticity fluctuation data from the strong shear
layers (S4, S5, S7, M4, M6, and M8) have approximately the same periodic pattern with the prototype
observation data of LFN.
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Additionally, for clearly quantifying the correlation between the vorticity fluctuation and LFN,
the spectral correlation coefficient ρF [52] is defined as:

ρF “

n
ř

k“1
Fx pkq Fy pkq

d

n
ř

k“1
F2

x pkq
n
ř

k“1
F2

y pkq

, (13)

where Fx and Fy represent the module of the Fourier spectrum of the vorticity fluctuation and
the observed LFN, respectively. Figure 19 displays the statistical results of the spectral correlation
coefficients between every monitoring point of the vorticity fluctuation and the prototype observation
point T8 under all conditions. It is seen that the values of ρF at the monitoring points in the strong
shear layers (S4, S5, S7, M4, M6, and M8) are relatively larger, which can be up to 0.762. The average
values of ρF of the monitoring points in the strong shear layers of the crest overflowing orifice and the
mid-discharge orifice are 0.681 and 0.601, respectively.
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The analysis results of the vorticity fluctuating characteristics above verify the close correlation
between the vorticity fluctuation in the strong shear layers around the high-velocity submerged jets
and the flow-induced LFN propagated to the far field. In addition, combined with the identification
results of the vortical structures above, it is concluded that, during the energy dissipation process of
the submerged jets, a large number of turbulent low-frequency large-scale vortical structures come into
existence in the strong shear layers around the submerged jets because of the large velocity gradient,
and the LFN is generated in the intensive interactions of the vortical structures. Therefore, the strong
shear layers around the submerged jets are judged as the main regions of acoustic source for the LFN.

3.3. Verification of the Mathematical Prediction Model of LFN

According to the mathematical prediction model of LFN (Equations (4) and (5)) built theoretically
in the previous section, the numerical simulation results of the main acoustic source regions in the flow
field are put into the prediction model to calculate the LFN intensity of prototype observation point
T1, which is located at the energy dissipation region under all conditions. The comparisons between
the prediction results and prototype observation results are listed in Table 5.
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Table 5. Comparisons of results from the prediction model and prototype observation of LFN *.

Condition
Prototype Observation Results Prediction Model Results

LFN (Pa) SPL (dB) Frequency (Hz) LFN (Pa) SPL (dB) Frequency (Hz)

2 8.57 112.64 1.117 8.84 112.91 1.150
3 9.49 113.53 1.022 9.99 113.97 1.125
4 10.72 114.59 0.978 11.54 115.23 0.933
5 10.38 114.30 0.899 10.62 114.50 0.895
6 10.54 114.44 0.833 11.08 114.87 0.975
7 11.87 115.47 0.894 12.93 116.21 1.261
8 13.08 116.31 1.178 13.46 116.56 1.250

* The values of the LFN intensity and SPL in the table are the RMS values.

The comparison results indicate that the LFN amplitudes, dominant frequencies and variation
laws predicted theoretically are approximately consistent with those of the prototype observation. The
predicted amplitudes gradually increase with increasing flow rate, and the dominant frequencies of
the LFN predicted are concentrated between 0 Hz and 2 Hz. Depending on the prediction results of T1
and the SPL attenuation rate in Table 2, the LFN amplitudes of several observation points (T2, T3, T6,
T9, T15, T18, and T22) downstream were estimated. Figure 20 compares the normalized PSD of T1
and the LFN amplitudes along the downstream between the observed and predicted LFN data under
all conditions. It is shown that the variation tendencies of the LFN amplitudes of the observed and
predicted LFN are nearly the same, while the predicted LFN amplitudes of some points are a little
larger than the observed data.

In order to evaluate the proposed prediction model, the power spectral entropy, derived from
Shannon entropy [53] as a common method [54,55], is introduced here to quantify and compare the
uncertainties and complexities of PSD estimation between the observed and predicted LFN data. The
power spectral entropy is defined as [54,55]:

HF “ ´

f“20
ÿ

f“0.1

p p f q log pp p f qq, (14)

where p p f q “ s p f q

O

f“20
ř

f“0.1
s p f q , s(f ) is the spectral component, the base of the logarithm is two, and

the unit of HF is bits. In current work, because the infrasound microphone’ minimum measuring
threshold is 0.1 Hz and the on-site LFN energy is generally below 20 Hz, the power spectral entropy
is estimated based on the PSD within 0.1–20 Hz in Equation (14). In essence, the greater the spectral
entropy, the more irregular the PSD distribution. The power spectral entropy between the observed
and predicted LFN data of T1 under all conditions are shown in Figure 21. It is seen that the power
spectral entropy of the observed and predicted LFN data are very close, and the power spectral entropy
of the observed LFN are always a little larger than those of the predicted LFN. The average power
spectral entropy of the observed and predicted LFN data are 2.632 and 2.540, respectively, and the
difference in the average values is approximately 0.0923. A comparison of the results reveals that the
PSD between the observed and predicted LFN data has uncertainties and complexities of nearly the
same degree.
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Figure 20. Comparisons of the normalized PSD of T1 and the LFN amplitudes along the downstream 
between the observed and predicted data: (a) Condition 2; (b) Condition 3; (c) Condition 4; (d) 
Condition 5; (e) Condition 6; (f) Condition 7; (g) Condition 8. 

Figure 20. Comparisons of the normalized PSD of T1 and the LFN amplitudes along the downstream
between the observed and predicted data: (a) Condition 2; (b) Condition 3; (c) Condition 4;
(d) Condition 5; (e) Condition 6; (f) Condition 7; (g) Condition 8.

Moreover, the spectral correlation coefficients ρF between the observed and predicted LFN data
of T1 were calculated through Equation (13). As observed in Figure 22, the values of ρF under all
conditions are relatively large, at approximately 0.645–0.717. Thus, according to the analyses of the
uncertainties of PSD and the spectral correlation coefficients, it can be seen that the mathematical
prediction model is feasible and reasonable for preliminary estimation of the LFN intensity induced by
energy dissipation through the submerged jets of a high dam.
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4. Conclusions

In this study, extensive prototype observations and analyses of low frequency noise (LFN) induced
by the process of energy dissipation through the submerged jets of a high dam are carried out. It is
found that the LFN amplitude reaches the maximum value near the dam area, which is below the
hearing threshold and the LFN limits. In general, the observed LFN has no directly negative effect
on local residents’ health. The sound pressure level (SPL) attenuation coefficient of LFN decreases
gradually with increasing distance to the dam area, reaching maximum in the vapor atomization area
near the overflow dam. The flow-induced LFN intensity has a close relationship with the discharge
operation schemes and flow regimes in the stilling basin, and maintaining uniform and smooth flow
patterns in the stilling basin using the joint discharge operation scheme has the benefit of reducing the
LFN intensity.

The results from numerical simulation of the flow field characteristics of energy dissipation by the
submerged jets indicate that the vortical structures are mainly located at the beginning of the stilling
basin where the shearing motion of the flow is violent. The results from correlation analysis of the
vorticity fluctuation characteristics and acoustic source indicate that the vorticity fluctuation from
the strong shear layers around the high-velocity submerged jets have larger RMS values, where the
vorticity fluctuation data are highly correlated to the on-site LFN data. Besides, the strong shear layers
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are the main regions of acoustic source for the LFN. The mathematical prediction model of the LFN
intensity for energy dissipation by the submerged jets is established by combining the vortex sound
theory and turbulent flow model, and the model is verified by the prototype observations. The intensity
and dominant frequency of the predicted and observed LFN data show satisfactory agreement.

This study for the first time provides the reference data, theoretical foundation and prediction
method for addressing the environmental problem of LFN induced by energy dissipating submerged
jets during flood discharge from a high dam. In further studies, the specific and scientific discharge
operation schemes for reducing the LFN intensity around the station should be built using the current
models, which will provide an operation guide and improvements for the station in engineering
practices. The theoretical and numerical methods adopted in this study should be applied to other
similar engineering projects on LFN issues for further verification of the universality of the prediction
model and optimization of the model parameters. Moreover, further problems, such as the propagation
and attenuation patterns of LFN and the effects of the water surface wave on the LFN energy, should
be studied systematically.
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