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Abstract: Recent evidence demonstrating an increased fracture risk among obese individuals suggests
that adipose tissue may negatively impact bone health, challenging the traditional paradigm of fat
mass playing a protective role towards bone health. White adipose tissue, far from being a mere energy
depot, is a dynamic tissue actively implicated in metabolic reactions, and in fact secretes several
hormones called adipokines and inflammatory factors that may in turn promote bone resorption.
More specifically, Visceral Adipose Tissue (VAT) may potentially prove detrimental. It is widely
acknowledged that obesity is positively associated to many chronic disorders such as metabolic
syndrome, dyslipidemia and type 2 diabetes, conditions that could themselves affect bone health.
Although aging is largely known to decrease bone strength, little is yet known on the mechanisms
via which obesity and its comorbidities may contribute to such damage. Given the exponentially
growing obesity rate in recent years and the increased life expectancy of western countries it appears
of utmost importance to timely focus on this topic.
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1. Introduction

Obesity and osteoporosis are two of the most important diseases strictly related with an increased
prevalence in both mortality and morbidity worldwide [1–5]. Different studies have shown a protective
role of obesity against osteoporosis but recent evidence suggests that obesity, and thus fat mass, may
prove to be risk factors for decreased bone density and fractures [6–8].

Obesity can be defined as a complex disorder involving an abnormal or excessive amount of body
fat. This imbalance increases the risk associated with different diseases such as heart disease, diabetes
and high blood pressure.
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The World Health Organization (WHO) underlined that in 2014 more than 1.9 billion adults were
overweight and, of these, over 600 million were obese. About 13% of the world’s adult population
(11% of men and 15% of women) were obese in 2014. Moreover, the worldwide prevalence of obesity
has more than doubled between 1980 and 2014. There are many potential causes for this condition of
energy imbalance between calories consumed and calories burned. Among these potential causes, we
can suggest an increased intake of energy-dense foods that are high in fat, and a decrease in physical
activity due to a change in lifestyle habits such as sedentary work, increased use of automated means
of transportation, and increasing urbanization [9].

In the United States (U.S.) it is estimated that obesity costs range from $147 billion to nearly
$210 billion per year [10,11]. Job absenteeism, costing approximately $4.3 billion annually [12] and
lower productivity while at work, have a cost to employers of approximately $506 per obese worker
per year [13]. What about Europe? Obesity-related healthcare burdens of up to €10.4 billion were
found and relative economic burdens ranged from 0.09% to 0.61% of each country’s gross domestic
product [14].

Osteoporosis can be defined as a skeletal disorder characterized by compromised bone strength
which leads to an increased risk of fracture. Bone strength reflects the integration of two main
features: bone density and bone quality. Osteoporosis is the most common underlying cause of
fractures and accounts for approximately 1.5 million fractures in the U.S. each year [15,16]. This
bone condition is defined on the basis of Bone Mineral Density (BMD) assessment. According to
WHO criteria, osteoporosis is defined as a condition in which BMD lies 2.5 standard deviations or
more below the average value for young healthy women (a T-score of ď2.5 SD) [17]. In the future,
given the rise in median age, we expect a significant increase in the prevalence of osteoporosis and
associated rate of fractures [16]. By 2020, over 14 million subjects older than 50 could be affected by
osteoporosis and another 47 million could have low bone mass [17]. The country of origin or ethnicity
plays a crucial role, and European Americans have the greatest reported risk [18–20]. Furthermore,
over 500,000 hospitalizations, more than 2.6 million medical visits, over 800,000 emergency room
admittances and approximately 180,000 individuals being placed into nursing homes are registered
every year in the U.S. [21], anticipating an increase in costs by 100% to 200% by 2040 [21].

Historically, obesity has been linked to bone health as a protective factor [22,23]. Nonetheless,
adipose tissue represents less than 40% of total body weight on average, meaning that the mechanical
load related to increased fat mass may be insufficient to induce this positive effect on bone tissue [24].
Hence, recent studies have been conducted to re-evaluate whether obese individuals may or may not
have an increased risk of presenting certain types of fracture by anatomical zone [25]. With worldwide
increases in both Body Mass Index (BMI) and age, it has never been more important to understand the
risks of osteoporosis in this population [26].

The aim of this review is to analyse and clarify the interplay between BMI, BMD and risk
of fractures.

2. Materials and Methods

PubMed and MEDLINE were searched conforming to PRISMA guidelines [27] in order to identify
publications about obesity and bone health. The study selection process is illustrated in Figure 1.
Specifically, we considered those that examined the potential relationship between obesity and bone
impairment and questioned how obesity may affect bone metabolism. Obesity, BMI and adipokines
were matched with BMD, bone quality, bone biomarkers and bone fractures. Only publications in
English only were included.
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While a BMI <18.5 kg/m2 in older people has been widely linked to an increased risk of  
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Manzoni et al. have reported that obese children and adolescents had higher Total and Regional 
Bone Mineral Content (TBMC and RBMC, respectively) when compared to lean children. However, 
those differences were no longer significant after correction for potentially confounding variables 
such as age and gender [38]. A small study conducted by Fisher and colleagues showed that obese 
children had higher TBMC than eutrophic children, but no significant differences were found in hip 
or lumbar spine BMD between those two groups [39]. Correa Rodriguez et al. recently evaluated 157 
adolescents by calcaneal osteosonography reporting that overweight and obese subjects had higher 
levels of broadband ultrasound attenuation even after correcting for lean and fat mass [40]. A very 
recent Iranian study confirmed this data with 472 adolescents whose BMD was evaluated by Dual X 
Ray Absorptiometry (DXA) scan. Obese individuals were found in fact to have greater total body 
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3. Interplay between BMI and BMD: Epidemiology of Fracture Risk in Obese Subjects

As mentioned above, obesity is traditionally linked to increased bone strength and lower fracture
risk. Many large studies have corroborated this assumption in several populations. However, recent
evidence suggests that this should not be taken as a dogma. In fact, many different factors account for
the interplay between BMI and BMD, thus giving space for ample discussion.

In order to better understand the crosstalk between bone and adipose tissue, it is crucial to
adequately interpret the results presented in literature. Most of the existing data confirm that
adipose tissue has an independent effect on bone remodeling leading to an increase in bone mass.
Mechanisms accounting for this relationship may be, for example, mechanical load that in turn
stimulates bone formation [28], androgens-to-estrogens conversion in adipose tissue, lower serum
levels of Sex Hormone Binding Globulin (SHBG) [29], increased serum leptin levels [30], increased
insulin growth factor production and hyperinsulinemia [31].

While a BMI <18.5 kg/m2 in older people has been widely linked to an increased risk of
fracture [32–36], it has yet to be clarified whether the relationship between adiposity and risk of
fracture is correlated with BMI. Data from the Study of Osteoporotic Fractures showed that total body
weight, fat mass, body fat percentage, hip girth and BMI were inversely associated with fracture risk
before correction for BMD. When adjustment for BMD was performed, the relationship appeared to be
U-shaped [37], confirming that the effect of BMI on fracture risk is nonlinear. According to this data,
we may infer that an increase in BMI above eutrophic ranges is weakly protective against fractures but
this effect tends to disappear as we move towards morbid obesity. However, more evidence is needed
to reach a definitive conclusion.

Manzoni et al. have reported that obese children and adolescents had higher Total and Regional
Bone Mineral Content (TBMC and RBMC, respectively) when compared to lean children. However,
those differences were no longer significant after correction for potentially confounding variables
such as age and gender [38]. A small study conducted by Fisher and colleagues showed that obese
children had higher TBMC than eutrophic children, but no significant differences were found in hip
or lumbar spine BMD between those two groups [39]. Correa Rodriguez et al. recently evaluated
157 adolescents by calcaneal osteosonography reporting that overweight and obese subjects had higher
levels of broadband ultrasound attenuation even after correcting for lean and fat mass [40]. A very
recent Iranian study confirmed this data with 472 adolescents whose BMD was evaluated by Dual
X Ray Absorptiometry (DXA) scan. Obese individuals were found in fact to have greater total body
BMD than normal-weight ones [41].
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While there has been some evidence showing that increased weight increases bone health in
children and adolescents, there have been many studies reporting contrasting data. For instance,
Goulding et al. demonstrated that overweight and obese children do not increase their spinal BMC to
fully compensate for their excess weight. This study was conducted on 362 children and adolescents
evaluated by DXA scan [42]. The same authors later showed that obese children also had higher
BMC, bone area, and fat mass for chronological age when compared to lean age-matched subjects
but the observed values for age-adjusted total body BMC and bone area relative to body weight were
lower than predicted values [43], underlining the need for careful corrections for fat mass. Moreover,
Wetzsteon at al. highlighted that overweight children had greater bone strength than lean children
when evaluated by pQCT but this was disproportionate to body mass [44]. A large, U.S.-based,
cross-sectional study showed that increased BMI was associated with increased fracture risk for the
foot, ankle, leg, and knee in children and adolescents [45]. A recent meta-analysis compiled by Paulis et
al. confirmed that among adolescents increased BMI was associated with higher odds for injuries and
fractures, although the evidence was reported not to be of high quality [46]. Another study, conducted
by Taylor at al., explained that another reason why obesity may increase fracture risk is that obese
children and adolescents have poorer mobility and balance [47]. Moreover, Davidson et al. reported
that obese adolescents falling on outstretched limbs impose greater force to bones and are thus at
greater risk for fractures [48].

The lack of a standardized way to assess bone mass and quality in this category of patients limits
the conclusions that may be drawn, but, taking into account the evidence shown above, childhood
obesity appears a condition where bone strength is in fact slightly increased but not enough to be able
to cope with the resultant higher mechanical load and poorer mobility, resulting in an overall increased
fracture risk.

Regarding the relationship between excess weight and bone health in premenopausal women,
there is a lack of recent data. Cohen and colleagues reported that trunk fat, evaluated by DXA scan,
was inversely associated with trabecular bone volume and bone formation rate, observed with a
transiliac bone biopsy, even after controlling for age and BMI [49]. Bredella et al. indirectly confirm
such a finding, reporting an inverse association between VAT and L4 trabecular BMD [50]. Ishii and
colleagues showed a linear association between BMI and BMD but an inverse one between BMI and
composite strength indexes, suggesting that even though BMD increases with weight, this is not able
to compensate for increased impact forces during falls [51].

Further studies are needed to prove the link between bone and fat in premenopausal women, but
what is shown above may partially confirm what is seen in other groups of patients, where visceral
and subcutaneous fat seem to play different roles and BMI appears to be able to increase bone mass in
some insufficient measure.

Evidence in men appears to be less diverse than it is for other populations. Still, there is some
controversy. A population-based cohort study from Spain conducted on over 100,000 men aged
65 years and older showed a statistically significant reduction in clinical spine and hip fractures in
obese and overweight individuals compared with lean ones. Also, obese men had significantly fewer
wrist and forearm fractures than nonobese ones. Conversely, the risk of incurring multiple rib fractures
was directly proportional to BMI [52]. Nielson et al. studied a cohort of 5995 U.S. men aged 65 years
and older concluding that the risk of incurring vertebral fractures was directly proportional to BMI
when adjusting for potential confounders such as age, race and BMD. However, these associations were
dependent on mobility limitations and walking pace and they appeared non statistically significant
when controlled for these confounders [26]. Shen and colleagues conducted a cross-sectional study on
3067 men from the Osteoporotic Fractures in Men Study (MrOS) analysing the relationship between
BMI and hip QCT measures. Finite element analysis of hip QCT scans was performed for a subgroup
of 672 men providing a measure of hip strength in a simulated fall. Although obese men showed a
higher hip strength they also had a higher ratio of impact force to strength, theoretically increasing
their risk of hip fracture despite the stronger bones [53]. A prospective cohort study from Norway
of 23,061 men aged 60 to 79 years showed that fracture risk was lower with increasing BMI, coming
to a plateau in obese men. However, higher waist circumference and higher waist-to-hip ratio were
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associated with an increased hip fracture risk when adjusted for BMI and other potential confounders.
In fact, men in the highest tertile of waist circumference had a 100% (95% CI 51%–129%) higher risk of
hip fracture compared with the lowest. Combining lower BMI with abdominal adiposity increased the
risk of hip fracture considerably [54].

Again, it is not yet possible to draw a definitive conclusion regarding the bone-fat link in men, but
the available literature seems to echo what has been observed in other categories, especially regarding
the roles of differently localized adipose depots.

The majority of studies on this topic have been conducted on postmenopausal women and the
elderly. Paganini-Hill and colleagues reported that high BMI was associated with a significant reduction
in hip fracture risk independently of other potential confounders using data from 8600 postmenopausal
women [55]. These data were confirmed by Cummings et al. in 9516 white women 65 years of age
and older [56] and by Di Pietro and colleagues in 2285 women aged 55 to 77 years, where subjects
with a BMI in the highest quartile (>37 kg/m2) had a 70% lower rate of hip fractures when compared
with those in the lowest quartile (ď28.7 kg/m2) [57]. Accordingly, The Tromsø Study, a cohort study
which included 12,097 subjects (almost half of it made of postmenopausal women), reported that
overweight and obesity in women were significantly associated with a lower risk of all fractures [58].
A Dutch study on 4725 postmenopausal women also showed that patients who had been obese at
their younger ages seemed to have a much lower lifetime fracture risk [59]. The European Vertebral
Osteoporosis Study (EVOS), in which 16,047 subjects aged 50 years and older (50% women) were
evaluated, confirmed previous observations by showing a trend of decreasing prevalence of vertebral
deformity with increasing BMI in the female subgroup. Also the risk of incurring distal forearm
fractures for those whose BMI was >25 kg/m2 appeared to be decreased by 36% in a sample of
11,798 women, 68% of whom postmenopausal [60]. A metanalysis published in 2005 [37] evaluated
twelve prospective population-based cohorts (14,887 men and 44,757 women, with a mean age of
62.2 years). Low BMI in both men and women correlated with an increased age-adjusted risk of any
type of fracture, whereas higher BMI values decreased the risk of fracture. However, the risk increase
was not linear as the gradient risk per unit BMI was relatively low in the eutrophic range. The gradient
appeared instead much steeper at lower BMI values. When the risk for fracture was adjusted for BMD,
BMI appeared not to be a predictor except for hip fracture in the underweight range. In contrast,
obesity was associated with a 17% reduction in hip fracture risk when compared with those of normal
weight subjects, showing a more modest reduction in the risk of fracture compared to the risk decrease
between underweight and normal weight conditions.

In contrast with what has been reported above, Watts et al. recently published data on
60,393 postmenopausal women showing that higher BMIs related to an increased risk of ankle and
upper leg fractures, whereas wrist fractures were more common in lean subjects [61]. A Spanish
study, which included 832,775 postmenopausal women demonstrated that there was a higher risk of
proximal humerus fractures in obese compared to normal and underweight women. Nonetheless,
the same study showed that the lean group had more hip and pelvis fractures. These associations
did not change after adjustment for several confounders [62]. Confirming these findings, a recent
meta-analysis pooling data from twenty five prospective cohorts for a total of 398,610 women evaluated
aged 20–105 years with a mean age of 63 years showed that increased BMI was positively associated
with a higher risk of upper arm fractures when this correlation was adjusted for BMD. Also, obesity
was an independent risk factor for all osteoporotic fractures [63].

We have shown that a large majority of the evidence regarding the interplay between bone and
adipose tissue is composed of large observational studies that, by nature, cannot assess causality
and have intrinsic limitations. The link between bone and fat is complex and not yet thoroughly
understood, but what we can infer from the literature available up-to-date is that not all fats are the
same and not all fractures are alike. Obesity has proven to be both protective and detrimental to bone
health and so its comorbidities must be taken into account to explain the whole picture. Studies are
summarized in Tables 1 and 2.
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Table 1. Cross-sectional studies and case-control designs focused on the relation between Obesity and bone health in humans.

Author, Year Country Type of Study Subjects RR/OR (95% CI) Results

Michel BA, 1988 [28] U.S. Cross-sectional study 78 healthy subjects, ě50 years -

Moderate weight bearing exercise may increase
lumbar bone density. Comment of the author: maybe,
extremely vigorous exercise could be detrimental to
bone density in individuals after age 50

Haffner SM, 1993 [31] U.S. Cross-sectional study 317 premenopausal and
postmenopausal women -

Lumbar spine and femoral neck density were
positively correlated with BMI. The same between
femoral neck density with fasting insulin level in
younger women after adjustment for age (r = 0.214,
p < 0.01). After adjustment for BMI, femoral neck
density was not significantly correlated with fasting
insulin level (p = 0.08). Adjustment for glucose and
insulin levels does not explain the linkage between
bone density and obesity

DiPietro L, 1993 [57] U.S. Cross-sectional study 2285 postmenopausal women,
aged 50–77 years

Baseline body mass index in the highest
quartile (>37 kg/m2) experienced a 70%
lower rate of hip fracture compared with
women in the lowest quartile (28.7 kg/m2)
(RR = 0.32; 95% CI 0.12–0.82)

Although reported education level, physical activity
level, smoking history and estrogen replacement were
significantly (p < 0.0001) associated with BMI, these
covariates were not related to hip fracture in the
multivariable analysis

Albala C, 1996 [29] Chile Case-control study 113 obese and 50 non-obese
postmenopausal women

In Obese women, a decreased risk of
osteopenia in femoral neck (Age adjusted
OR = 0.36, 0.17–0.75); lumbar spine
(Age adjusted OR = 0.43, 0.20–0.91)

Obese women showed a higher BMD; obesity exerts
protection due to a decreased SHBG thus increasing
free sex steroids. Hyperinsulinemia may produce a
decrease in the production of IGFBG-1, leading to an
increase of IGF-1, that could stimulate the
proliferation of osteoblasts

Manzoni P, 1996 [38] Italy Cross-sectional study

65 obese and 50 normal-weight
children and adolescents
(age range: 5–18 years
relative body weight: 160% ˘ 23%
and 101% ˘ 12%, respectively)

-
No differences in TBMC and RBMC among obese and
normal-weight children groups, after correction for
the confounding variables age and sex

Goulding A, 1998 [30] New Zealand Cross-sectional study 54 postmenopausal women -
No evidence for an association between plasma levels
of leptin and biochemical markers of either
osteoclastic or osteoblastic activity

Kanis J, 1999 [34] UK Case-control study
730 men with hip fracture, 1132
age-stratified controls, 50 years
or more.

The effect of BMI on risk was linear, with a
change for each unit of BMI of 6.8%
(95% CI 4%–9%)

A low BMI was associated with a significantly
increased risk of hip fracture in a
dose-dependent manner

Fischer S, 2000 [39] Chile Cross-sectional, case
control study

16 obese children (8 male, 8 female)
aged 5 to 13 years. 16 healthy
eutrophic children matched for sex,
chronological age, height, and pubertal
stage were enrolled as controls

-

Obese children have more total body BMC than
eutrophic children. No significant difference was
showed in regional hip BMD and lumbar spine BMD
in the group of obese and normal children
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Table 1. Cont.

Author, Year Country Type of Study Subjects RR/OR (95% CI) Results

Goulding A, 2000 [42] Cross-sectional study 200 girls and 136 boys, aged 3–19 years -

Girls and boys (in overweight and obese) showed a
mismatch between body weight and bone
development during growth: their bone mass and
bone area are low for their body weight

van der Voort DJ,
2001 [59]

The
Netherlands Cross-sectional study 4725 postmenopausal women,

50–80 years of age
BMI > 30 kg/m2 and fractures elsewhere:
OR 1.4 (1.0–1.9).

Women with normal BMD showed statistically
significant lower fracture risk than osteoporotic
women. Women with a possibly decreased BMI were
most often osteoporotic and had sustained more
fractures during the past 5 years’ than expected.
Women who had (probably) always been obese were
less often osteoporotic and had a much lower
fracture risk

Goulding A, 2002 [43] New Zealand Cross-sectional study 202 boys and 160 girls, aged 3–19 years

Overweight and obese groups were
0.92 (95% CI 0.87–0.97) and 0.88 (95% CI
0.80–0.96) for girls and 0.96 (95% CI
0.91–1.02, NS) and 0.87 (95% CI 0.78–0.96)
for boys, respectively

During growth children (in overweight and obese) do
not increase their spinal BMC due to a compensation
for their excessive weight

Davidson PL,
2003 [48] New Zealand Cross-sectional study 50 boys (25 obese pair-matched with

25 non-obese subjects), aged 4–17 years -
Environmental modifications are unlikely to lower the
risk of arm fracture in obese children to the same
levels showed by non-obese children

Taylor ED, 2006 [47] U.S. Cross-sectional study
227 overweight and
128 nonoverweight children and
adolescents

The prevalence of documented skeletal
fractures in overweight than in
nonoverweight children and adolescents
(odds ratio (OR): 4.54; 95% confidence
interval (CI): 1.6–13.2 p = 0.0053)

Fractures, impaired mobility, musculoskeletal
difficulties, and lower extremity malalignment were
more prevalent in overweight than nonoverweight
children and adolescents

Sharma S, 2008 [33] UK Cross-sectional study 2035 men aged over 50 years - A low BMI, showed significantly, more hip fractures
than those with fractures elsewhere

Gnudi S, 2009 [36] Italy Cross-sectional study

2235 postmenopausal women
including those with fragility fractures
of the hip (187), ankle (108), wrist (226)
and humerus (85)

BMI had a protective effect against hip
fracture: OR 0.949 (0.900–0.999); higher risk
of humerus fracture: OR 1.077 (1.017–1.141)

Decreasing BMI increases the risk for hip fracture,
whereas increasing BMI increases the risk for
humerus fractures

Bredella MA, 2011 [50] U.S. Cross-sectional study 68 healthy obese
premenopausal women -

VAT exerts detrimental effects, whereas muscle mass
exerts positive effects on BMD in premenopausal
obese women. IGF-1 could be a mediator of the bad
effects of VAT on bone health through effects on
bone formation
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Table 1. Cont.

Author, Year Country Type of Study Subjects RR/OR (95% CI) Results

Prieto-Alhambra D,
2012 [62] Spain Cross-sectional study

832,775 women aged ě50 years were
categorized into underweight/normal
(n: 302,414), overweight (n: 266,798),
and obese (n: 263,563)

Hip fractures were significantly less
common in overweight and obese women
than in normal/underweight women (rate
ratio (RR) 0.77 (95% confidence interval (CI)
0.68 to 0.88), RR 0.63 (95% CI 0.64–0.79),
p < 0.001, respectively). Pelvis fracture rates
were lower in the overweight (RR 0.78
(95% CI 0.63–0.96), p = 0.017) and obese
(RR 0.58 (95% CI 0.47–0.73), p < 0.001)
groups. Conversely, obese women were at
significantly higher risk of proximal
humerus fracture than the
normal/underweight group
(RR 1.28 (95% CI 1.04–1.58), p = 0.018)

An age-related increase in incidence was showed for
all BMI groups at all fracture sites; obese women with
hip, clinical spine and pelvis fracture were
significantly younger at the time of fracture than
normal/underweight women, whereas those with
wrist fracture were significantly older. The association
between obesity and fracture in postmenopausal
women is site-dependent, obesity being protective
against hip and pelvis fractures but associated with an
almost 30% increase in risk for proximal humerus
fractures when compared with
normal/underweight women

Kessler J, 2013 [45] U.S. Cross-sectional study Electronic medical records of
913,178 patients, aged 2 to 19 years

Overweight, moderately obese, and
extremely obese patients all had an
increased OR of fractures of the foot
(1.14, 1.23, and 1.42, respectively, (1.04–1.24,
1.12–1.35, and 1.26–1.61), respectively- along
with the ankle, knee, and leg (1.27, 1.28, and
1.51, respectively, with 1.16–1.39, 1.15–1.42,
and 1.33–1.72, respectively)

Increasing BMI is associated with increased odds of
foot, leg, ankle and knee fractures in children

Cohen A, 2013 [49] U.S. Cross-sectional study 40 healthy premenopausal women -
At the tissue level, premenopausal women with more
central adiposity showed inferior bone quality and
stiffness and markedly lower bone formation

Correa Rodriguez M,
2014 [40] Spain Cross-sectional study 157 adolescents (93 women and

64 men) Mean age: 14.22 ˘ 1.41 year - BMD increases in response to increased muscle mass
in adolescents with overweight and/or obesity

Jeddi M, 2015 [41] Iran Cross-sectional study 472 subjects (235 girls, 237 boys)
aged 9–18 years -

Lean mass was the main predictor of BMD in both
genders. Physical activity appears to positively
impact on lean mass

Shen J, 2015 [53] U.S. Cross-sectional Study 672 men (mean age: 73 years)

Obese men were 4 times more likely to have
aload-to-strength ratio >1.0 compared to
normal-weight men (OR: 4.66; 95% CI
2.16–10.05; p < 0.0001).

About non-obese men (BMI < 30), increasing BMI was
associated with higher integral, cortical and
trabecular BMD, integral volume, cross-sectional area,
and percent cortical volume (all p < 0.001). About
obese men (BMI ě 30), increasing BMI was not
associated with any of those parameters. Furthermore,
compared to non-obese men, obese men had a higher
hip strength, but also a higher ratio of impact force to
strength (p < 0.0001), in theory increasing their risk of
hip fracture despite their increased strength
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Table 2. Cohort studies focused on the relation between obesity and bone health in humans.

Author, Year Country Type of Study Subjects RR/OR (95% CI) Results

Joakimsen RM, 1998 [58] Norway Cohort study 12,270 (922 persons with fractures)
middle-aged

Change in body mass index was not associated with
fractures among men, except for a lower incidence of
hip fractures (not only low-energy) among those who
had gained weight (RR 0.69, 95% CI 0.50–0.95, age
adjusted per unit BMI increase). Women who had
increased their body mass index had a lower risk of
all low-energy fractures (RR 0.95, 95% CI 0.90–1.01,
age adjusted per unit BMI increase) and of low-energy
fractures in the lower extremities (RR 0.88, 95% CI
0.80–0.97, age adjusted per unitBMI increase)

High body height is a risk factor for
fractures, and 1 in 4 low-energy fractures
among women today could be ascribed to
the increase in average stature since the turn
of the century. Low BMI was associated with
a higher risk of fractures

Honkanen RJ, 2000 [60] Finland Cohort study

11,798 women. Mean baseline age of
these women was 52.3 (SD 2.9) years
(range 47–56 years) and 68% were
postmenopausal

Overweight (BMI > 25 kg/m2) decreased the
perimenopausal distal forearm fracture by 36%
(p = 0.0002)

Overweight protects against
perimenopausal distal forearm fracture

Holmberg AH, 2006 [32] Sweden Cohort study 22,444 men and 10,902 women, mean
age 44 and 50 years

High BMI and forearm fractures (RR 0.88, 95% CI
0.81–0.96) High BMI and risk of proximal humerus
and ankle fractures (RR 1.21–1.33). High BMI and
forearm fractures (RR 0.88, 95% CI 0.81–0.96)

High BMI significantly increased the risk of
proximal humerus and ankle fractures while,
by contrast, lowering the risk of
forearm fractures

Wetzsteon RJ, 2008 [44] U.S. Cohort study 302 children healthy weight and
143 children overweight, (9–11 years) -

Bone strength did not adapt to excess body
fat. Rather, bone strength was adapted to the
greater muscle area in overweight group
of children.

Lee SH, 2010 [35] Korea Cohort study
9351 subjects (4732 men and
4619 women) aged 40 to 69 years were
followed for a mean of 46.3 ˘ 2.2 months

In women, Obesity and risk of fracture 1.29 (0.76–2.18)
Older age, lower BMI, and previous fracture
history were positively associated with
fracture risk in men and women

Premaor MO, 2013 [52] Brazil Cohort study
139,419 men: underweight/normal
(n = 26,298), overweight (n = 70,851),
and obese (n = 42,270), ě65 years

A statistically significant reduction in clinical spine
and hip fractures was observed in obese (relative risk
(RR), 0.65; 95% confidence interval (CI), 0.53–0.80 and
RR, 0.63; 95% CI 0.54–0.74, respectively), and
overweight men (RR, 0.77; 95% CI 0.64–0.92 and RR,
0.63; 95% CI 0.55–0.72, respectively) when compared
with underweight/normal men. Additionally, obese
men had significantly fewer wrist/forearm (RR, 0.77;
95% CI 0.61–0.97) and pelvic (RR, 0.44; 95% CI
0.28–0.70) fractures than underweight/normal men.
Conversely, multiple rib fractures were more frequent
in overweight (RR, 3.42; 95% CI 1.03–11.37) and obese
(RR, 3.96; 95% CI 1.16–13.52) men

Obesity was associated with a reduced risk
of clinical spine, pelvis, hip, and
wrist/forearm fracture and increased risk of
multiple rib fractures when compared to
normal or underweight men
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Table 2. Cont.

Author, Year Country Type of Study Subjects RR/OR (95% CI) Results

Ishii S, 2014 [51] Japan Cohort study 1924 women, premenopausal or
early perimenopausal

The relative increment in fracture hazard in obese
women compared to normal weight women was also
statistically significant: 78% (95% CI 13%–181%,
p 1

4 0.01). In stark contrast, obesity was significantly
associated with decreased fracture hazard when
adjusted instead for any of the composite indices of
femoral neck strength relative to load: relative
decrement in fracture hazard in obese relative to low
weight women was 57% (95% CI 24%–76%) after
adjusting for CSI, 41% (95% CI 1%–65%) after
adjusting for BSI, and 53% (95% CI 16%–74%) after
adjusting for ISI

There are 3 major mechanisms by which
obesity influences fracture risk: increased
impact forces, increased BMD in response to
greater skeletal loading, and greater
absorption of impact forces by soft
tissue padding

Søgaard AJ, 2015 [54] Norway Cohort study 19,918 women and 23,061 men,
aged 60–79 years

Compared to women with a BMI of <22 kg¨m´2,
the HR for hip fracture was 0.76 (95% CI 0.65–0.89) in
women with a BMI between 22 and 24 kg¨m´2,
0.56 (95% CI 0.48–0.65) in women with a BMI between
25 and 29 kg¨m´2, and 0.42 (95% CI 0.35–0.51) in
women with a BMI ě 30 kg¨m´2. In men, the
corresponding HRs for hip fracture were
0.62 (95% CI 0.50–0.77), 0.49 (95% CI 0.40–0.60) and
0.49 (95% CI 0.37–0.63), respectively

Abdominal obesity was associated with an
increased risk of hip fracture when body
mass index was taken into account
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4. Physiopathology of the Bone-Body Cross Talk

Recent evidence on increased fracture risk in obese patients has fueled new interest in better
understanding the mechanisms of bone physiopathology, particularly regarding the relationship
between adipose and bone tissue.

Osteoblasts and adipocytes derive from a common mesenchymal stem cell. While osteoblastogenesis
is induced by the Wnt/β-catenin signaling pathway, peroxisome proliferator-activated receptor
gamma (PPAR-γ) is responsible for the differentiation of adipose tissue. In fact, bone marrow-derived
mesenchymal stem cells treated in vitro with PPAR-γ and interleukin-1 (which suppresses its function)
showed an inhibition of the adipogenesis pathway and a switch to the osteoblastogenesis one,
confirming PPAR-γ as an essential component of adipose tissue differentiation [64].

PPAR-γ activity could thus be involved in the age-related bone marrow fat accumulation
associated with suppressed production of osteoblasts and decreases in bone mass [65].

Moreover, PPAR-γ mRNA expression in adipose tissue is increased in obese subjects, suggesting
that its more intense activity may be involved in reduced bone formation [66,67]. The activity of
PPAR-γ also appears to be implicated in body fat distribution according to evidence from animal
studies [68]. In fact, not all fat depots are the same: location [69,70] and type [71] of excessive adipose
tissue, rather than simply total body adiposity, may be crucial in the systemic increase of circulating
cytokines and the upsurge of metabolic diseases such as diabetes [71,72].

Subcutaneously stored adipose tissue depots, particularly those in the gluteal-femoral region,
are negative predictors of metabolic syndrome and appear to be cardioprotective [73,74]. However,
those stored in ectopic locations such as muscle, liver and abdominal cavity are linked with chronic
inflammation [75,76], impaired glucose tolerance [77,78], increased total cholesterol [75,76,79] and
decreased strength and mobility in older adults [80,81]. Advancing age results in a redistribution
of fat depots, despite stable or decreasing overall fat, with adipose storage sites switching from
subcutaneous locations to more harmful ectopic ones [69,82,83]. This process is also known as “the
overflow hypothesis” [84]. Moreover, fat tissue location and distribution relate to several bone health
parameters in healthy premenopausal women independently of obesity per se [50,85]. Recent evidence
suggests that abdominal fat, VAT and bone marrow adipose tissue are associated with lower BMD,
greater cortical porosity, lower bone formation rate and lower bone trabecular volume and stiffness. In
contrast, subcutaneous adipose tissue (SAT) appears to be protective or neutral regarding bone health.

A shift in allocation of resources from bone to other compartments and vice versa is mediated by
a cross communication between all fat compartments, several organs and bone tissue. The endocrine
system, inflammation, and adipokines may be some of the components of such coordination.

It is known that during perimenopause a gradual decrease in estrogen levels occurs. The link
between estrogen deficiency and accelerated bone loss has been well documented. Obese women
show lower serum levels of SHBG thus leading to higher levels of free hormones compared with
normal-weight women [86]. Higher adrenal production of androstenedione with a subsequent
increased pool of precursors ready for peripheral conversion is observed in these subjects as well [87].
As aromatase expression also increases with age in adipocytes [88], fat tissue activity in terms of
estrogens production is one of the potential mechanisms that can explain the protective effect of obesity
on bone health.

Although the relationship between estrogen metabolism and bone tissue is well established,
less is known about estrogens and body composition. Napoli et al. [89] showed that an increase in
the metabolism of estrogen towards the inactive metabolites is associated with lower body fat and
higher lean mass. These results suggest that a subset of women with a specific pattern of estrogen
metabolism may be somewhat protected from obesity, leading to both advantages and disadvantages
of this condition.

Research in the last decade has revealed that bone tissue has connections with several other
circulating hormones [90]. Osteocalcin (Ocn), an osteoblast-derived hormone considered a marker of
bone formation but also released from the bone matrix during the resorption phase [91], stimulates
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testosterone production in mice, acting on Leydig cells [92]. In fact, Ocn-deficient male mice show
reduced levels of testosterone, testis size and fertility [92].

Men demonstrate a correlation between age and bone loss which is apparent even though it is
less marked compared to the one occurring in women [93]. In fact, aging men present bone loss in
both trabecular and cortical compartments with increased cortical porosity [94,95], thus increasing the
risk of fracture after the age of 70 [96]. As for women, male age-related bone loss is due to decreased
circulating sex steroid hormones, necessary for bone growth and maintenance [97–100]. Furthermore,
the possible correlation between androgen deficiency and metabolic syndrome (MetS) deserves further
attention [101,102] as it is not yet fully elucidated. Several studies have shown the beneficial effects of
testosterone replacement on bone and fat mass in hypogonadic men [103,104] confirming the necessity
of filling this lack of knowledge.

Systemic inflammation due to several conditions such as aging, insulin resistance/metabolic
syndrome/diabetes and sexual hormone deficiency appears to impair the balance of body metabolism
leading to bone loss. The pathological process characterized by the up-regulation of the inflammatory
response that occurs with advancing age due to the elevation of the main inflammatory cytokines
like interleukin IL-1, IL-6 and Tumor Necrosis Factor-alpha (TNF-α) has been recently named
“inflammaging” [105]. This process is mainly due to reduced gonadal hormone levels and aging,
conditions leading to the characteristic increase of catabolic cytokines shown in the elderly [106].
The molecular action of TNFα in bone resorption is in large measure a consequence of its ability to
stimulate activation of the Nuclear Factor kappa-B (NF-κB) transcription factor. This pathway is also
a great mediator of Receptor activator of nuclear factor kappa-B ligand (RANKL)-induced signal
transduction, and not surprisingly TNFα potently augments RANKL-induced osteoclast formation. In
fact, RANKL, a member of the TNF cytokine family, has a crucial role in the differentiation of osteoclast
precursors into activated osteoclasts, and it is up-regulated during the inflammatory response [107].
Confirming that inflammation is itself capable of jeopardizing bone health, it has been demonstrated
that inflammatory systemic conditions such as Crohn’s disease and rheumatoid arthritis are associated
with reduced BMD, osteoporosis and fragility fractures [108].

It is well established that obese subjects have lower serum levels of adiponectin compared to
normal-weight individuals, and its levels increase after weight loss [109,110]. Adiponectin serum levels
are inversely correlated with insulin resistance [111]. However, the effects of adiponectin on bone health
remain controversial. Adiponectin activity favors osteoblastogenesis and inhibits osteoclast formation
in vitro, potentially contributing to an increase in bone mass [112]. In contrast, adiponectin knock-out
mice show increased bone density, suggesting an indirect effect of adiponectin on bone tissue, possibly
through modulation of circulating growth factor activity or insulin sensitivity [113]. For example, this
adipokine decreases circulating insulin levels, reducing its anabolic effect, which in turn might inhibit
bone growth [114]. Several authors have shown an inverse correlation between serum adiponectin
and BMD in both women and men [115–117]. Other authors, in an Italian population of 600 elder
men and postmenopausal women, have failed to confirm such a finding in men while confirming it
in women [118]. Tamura et al. showed instead a positive correlation with BMD (evaluated in distal
radius) in patients with type 2 diabetes [119]. Given the controversial evidence currently available,
further studies are warranted to understand whether the characteristically low adiponectin levels in
obese subjects are protective or detrimental with regards to bone health.

Leptin is an adipokine that decreases appetite and increases energy expenditure in malnutrition,
and circulates at higher levels in obese subjects compared with normal-weight ones. Both negative
and positive correlations between leptin and BMD have been described in humans [120,121]; in fact,
while leptin seems to promote the differentiation of osteoblasts [122], it also seems to inhibit bone
formation acting through the sympathetic nervous system and cocaine-amphetamine regulated
transcript [123]. In peri-and postmenopausal women a positive correlation between leptin and BMD
and a negative correlation with markers of bone resorption have been observed (dependent on BMI
and fat content) [124]. The above correlations are weaker in postmenopausal women with osteoporosis,
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in comparison with healthy women in the same age group [125]. In obese postmenopausal women
the correlations between leptin and BMD and bone turnover markers are stronger (mainly for bone
resorption markers) than in lean women in the same age group [126]. Leptin resistance in the central
nervous system may explain the previous assumption, in fact an imbalance between leptin levels in
serum and cerebrospinal fluid is present in obese subjects (leptin cerebrospinal fluid levels are much
lower than serum leptin levels in obese subjects compared with normal weight ones) [125,127].

High leptin levels in obese individuals can have a protective effect on bone tissue due to the
interaction between leptin and the RANKL/ RANK/Osteoprotegerin system. It was proposed that the
beneficial effect of leptin on bone metabolism was a result of the inhibition of the receptor activator of
NF-κB ligand and the improved expression of osteoprotegerin [128].

Ghrelin is a gut-derived hormone, which increases food intake in both rodents [129,130] and
humans [131], and decreases metabolic rate [132] and fat catabolism [133]. Ghrelin also appears to be
involved in bone metabolism via modulation of osteoblast differentiation and function [134]. Although
some in vitro findings suggest that ghrelin has protective effects on bone health, the available data are
controversial. Napoli et al. have recently shown that ghrelin is associated with trabecular BMD but not
with total or cortical BMD in post-menopausal women [118].

Traditionally, bone marrow fat function has always been conceived as a physical support [135].
However, it has been recently reported that its role is far more complex and active, appearing to be
directly implicated in bone metabolism [136–138]. As mentioned above, both osteoblasts and adipocyte
progenitors have roots in a common mesenchimal progenitor, whose ability in differentiating into both
lineages is impaired in some conditions, such as obesity, where adipogenesis becomes the preferential
pathway [136,137]. Moreover, it has been reported that bone marrow fat inversely relates to bone
strength [139]. A study in obese young men and women conducted by Miriam et al. has recently
shown a strong correlation between several lipid parameters such as serum triglyceride, intrahepatic
and intra-myocellular lipids and bone marrow fat, maintaining statistical significance even when
controlled for potential confounders like BMI, age, level of physical activity and serum insulin levels.
Moreover, HDL levels were found to be inversely related to marrow fat content. As bone marrow
adiposity is known to be inversely correlated to BMD, the authors suggested that ectopic and serum
lipid levels are modulated by the same factors as bone marrow fat and may be potentially detrimental
to bone health [140].

The role of lipid and lipoprotein oxidation in the pathophysiology of osteoporosis has been
suggested by several studies [141,142]. In a recent study on mice fed an atherogenic high fat diet,
it was reported that T-lymphocytes may have a role in the hyperlipidemia-induced bone loss. In fact,
in this study, it was demonstrated that T-lymphocytes isolated from the spleen and bone marrow from
the high-fat group showed increased expression of RANKL and not only became hyperlipidemic but
also showed significantly reduced mineral content. T-lymphocytes from the high fat group tested
ex vivo showed an increased expression of IL-6, TNF-alpha, IL-1beta and INF-gamma, cytokines that
have a well-documented association with inflammation and bone loss.

Several potential mechanisms have been suggested to elucidate the complex relationship between
bone and adipose tissue. The endocrine system, adipokines and inflammation have been proposed as
some of the components of such interplay. Fat tissue is one of the major sources of aromatase that has
a crucial role in the maintenance of skeletal health. Several adipokines, such as leptin and adiponectin,
have shown a direct effect on bone metabolism. An inflammation marker as TNFα potently augments
RANKL-induced osteoclast formation. However, the effects of these factors on bone health remain
controversial, especially because some of them presented both potential positive and negative impacts.
More studies are needed to elucidate this complex relationship.

5. Environmental Factors

A complicated interaction between behavioral, genetic, and environmental factors account for the
obesity and osteoporosis epidemic. Although there is a strong genetic component to both conditions,
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given their abrupt prevalence increase, these cannot be due solely to genetic causes, and must also be
caused by changes in the environment.

It is clear that diet and physical activity are the primary modifiable factors associated with obesity
and bone health. Evidence from animal studies prove that over-nutrition and consequent obesity
increase fracture risk by direct and indirect effects on bone and calcium absorption [143,144]. It has been
shown that rodents BMD and bone quality are impaired when an “obesiogenic” diet is administered
during growth [145–147]. A high-fat diet (HFD) resulted in greater lean and fat mass and lower
cortical bone biomechanical properties when compared to low-fat diet but these effects vary depending
on age [148]. HFD appears to affect bone remodeling leading to decreased femoral trabecular bone
mass [147]. Excessive fat and sucrose intake impair bone geometry and mechanical properties of
cortical bone in mice [149] and these effects are exacerbated after long term dietary exposure [150].
The excessive intake of sugars, such as fructose or glucose, has been shown to impair BMD, BMC
and mechanical strength in rats [151–153]. Protein sources during excessive energy intake may also
influence bone response. Skim milk intake improves trabecular bone architecture in obese rats on high
fat and high sucrose diet to a greater extent than either whey protein or casein alone [154]. Despite
evidence from animal models, there is little data from prospective studies or RCT conducted on human
beings about the effects of macronutrients on bone. Some studies evaluated the effect of the long-chain
ω-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid on bone [155–158]. The
majority of these studies have been conducted in adults and the findings are equivocal with respect to
improvements in bone mass [159]. For these reasons, the National Osteoporosis Foundation assigned
an inadequate level of evidence for the benefit of fat on bone [160]. Also, data regarding dietary
proteins and bone quality mainly come from adult studies. The majority of prospective [161–164]
and cross-sectional [165–167] studies support a positive relationship between protein intake and bone.
As prospective studies and RCTs in children and adolescents are lacking, the National Osteoporosis
Foundation conclude that there is a limited level of evidence for the benefit of protein on bone [160].

Regarding micronutrients, it is known that calcium supplementation has a beneficial effect on the
bone, and there is a high level of evidence [160]. It is suggested that low calcium intake during early
life may contribute to the later development of obesity and some of its co-morbidities [168]. It has also
been shown that consumption of a rich source of calcium such as milk, besides increasing bone mass
and inhibiting bone loss, reduces obesity risk in children [169].

On the other hand, weight loss is associated with 1%–2% bone loss at the hip and at highly
trabecular sites, such as the trochanter and radius [170–173]. Age and initial body weight before
caloric restriction appear not only to influence bone loss but also the anatomical sites, compartments
and geometry of bone [174–176]. However, adequate dairy intake during weight loss resulted in
higher lumbar spine BMD and Ocn compared to low dairy intake [177]. A weight-loss intervention
program based on diet conducted on overweight and obese individuals induced a small decrease in
total hip BMD, but not lumbar spine BMD. The decrease was small when compared to the well-known
metabolic advantages of a lower BMI [178]. More recently, it has been shown that moderate weight
loss in overweight and obese men did not decrease BMD at any anatomical site or alter cortical and
trabecular bone and geometry [179].

Adding exercise to dietary-induced weight loss may reduce bone damage by decreasing
mechanical stress [180]. In fact, exercise training added to weight-loss therapy among obese older
adults not only reduces frailty but also appears to ameliorate weight loss-induced reduction in bone
mineral density (BMD) and lean body mass [181,182]. RCTs suggest that exercise such as high intensity
resistance training [183] or a combined aerobic and resistance training program [182] is effective in
maintaining total body [183] and regional [182] bone mass in overweight and obese older adults
undergoing intentional weight loss. Reid et al. found an inverse relationship between bone mass and
body fat content in subjects with high physical activity [184]. In a large cohort of postmenopausal
women with abdominal obesity, those in the highest (ě0.90) vs. lowest (<0.75) category of waist-to-hip
ratio had increased risk of hip fracture if their activity was less than the population median [185].
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Hence, physical activity should consolidate a thorough weight loss program in obese older adults in
order to minimize the adverse effects of weight loss on bone health.

Although diet and physical activity are the primary variables that explain the obesity and
osteoporosis epidemic, other factors are now being considered as contributors.

Endocrine disruptors (ED) are “exogenous agents that interfere with the production, release,
transport, metabolism, binding, action or elimination of the natural hormones in the body
responsible for the maintenance of homeostasis and the regulation of developmental processes”
(U.S. Environmental Protection Agency Endocrine Disruptors Research [186]. The group of molecules
identified as ED is highly heterogeneous and includes heavy metals such as cadmium and lead and
several synthetic chemicals generally adopted in the solvents and lubricants industry. They may also
be found in plastic compounds, plasticizers, pharmaceutical agents and pesticides. Evidence from
epidemiological and animal-based studies indicates that exposure to these chemicals in utero and
during early life may result in birth defects, behavioral disorders and cancer [187]. In 2011, the National
Toxicology Program sponsored a workshop whose aim was to review environmental substances that
may be implied in the obesity epidemics. The workshop also supported the “developmental obesogen”
hypothesis, which suggests that chemical exposures may alter neural development that regulates
feeding behavior later in life and predispose some individuals to gain weight despite their efforts to
limit caloric intake and increase levels of physical activity [188]. Bone is an endocrine target tissue
highly sensitive to numerous ED [189]. Data from in vitro and in vivo studies indicate that tributyltin
chloride (TBT) can disrupt the process of bone deposition and remodeling [190–192]. Similarly, TBT
seems to stimulate adipogenesis and ectopic adipocyte formation through PPAR-γ activation [193,194].

Finally, obesity seems to enhance a negative effect of ED on bone. In fact, a recent study has
shown a significant association between blood cadmium levels and osteoporosis in obese males
compared to non-obese ones. The authors hypothesized that simultaneous exposure to cadmium and
obesity-induced inflammatory state lead to impaired bone formation due to oxidative stress [195].

Environmental factors are responsible for the increased incidence of obesity and osteoporosis
and play an important role in the cross-talk between these two conditions. Both over-nutrition, with
consequent obesity, and weight loss are associated with qualitative and/or quantitative bone tissue
alterations. Advice for weight reduction and/or lifestyle changes with the aim of reducing obesity
related comorbidities needs to be encouraged, but it should be balanced with proper exercise and
adequate calcium intake to prevent osteoporosis.

Very limited studies, published mostly within the last few decades, indicate that bone and adipose
tissues are negatively affected by exposure to persistent ED. The mechanisms behind the deleterious
effects of ED on these tissues need further evaluation.

6. Anti-Obesity Drugs and Bone Metabolism

The incretin system includes a large family of gastrointestinal hormones, most of their
physiological effects being achieved by Glucose-dependent Insulinotropic Peptide (GIP) and
glucagon-like peptide-1 (GLP-1) [196]. The effect of these peptides consists in reducing blood
glucose levels by inhibiting glucagon release, decreasing gastric emptying and food intake and
potentially enhancing insulin secretion from beta cells. GIP is secreted by K-cells in the proximal
regions of the small intestine (duodenum and proximal jejunum) [197], whereas GLP-1 is produced
by L-cells, localized primarily in the distal ileum and colon [198]. During post-prandial phase, gut
endocrine cells release GIP and GLP-1 in response to nutrient assumption [199]. Physiologically,
GIP and GLP-1 are quickly degraded by dipeptidyl peptidase-4 (DPP-4). Instead, GLP-1 receptor
analogues, such as liraglutide, used as treatment for diabetes, are resistant to DPP-4 degradation
resulting in extended half-life. Furthermore, liraglutide has been recently approved as a treatment
to reduce body weight in non-diabetic patients. It has been observed that incretins influence
bone metabolism in several ways. Incretins may regulate cellular proliferation of progenitor bone
forming mesenchymal cells [200]. Furthermore, GLP-1, through GPI/IPG-coupled receptor, is able
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to interact with osteoblasts [201], stimulating osteoblast proliferation [198] and enhancing collagen
type I expression and ALP activity [202]. GLP-1 administration, or its analogue enzyme exendin-4,
has resulted in increased trabecular bone mass in diabetic rats [203–205], but also in non-diabetic
osteoporotic OVX rats [206,207]. Contrasting data has been collected relating to the effects of
GLP-1 or GLP-2 analogue therapy on BMD in human subjects. In post-menopausal women treated
with GLP-2, it has been observed a dose-dependent increase in total hip BMD [208], whereas after
exenatide treatment, compared to insulin glargine, no differences in terms of BMD have been found
in metformin-treated patients [209]. Recently, Gilbert et al. have investigated the effect of liraglutide
treatment, and after 2 years no detrimental effect on BMD in diabetic post-menopausal women
have been observed [210]. In a recent study, it has been found that treatment with a long-acting
GLP-1 analogue prevented bone loss after a weight reduction due to a low-calorie diet compared to
low-calorie diet al.one. Furthermore, after treatment with GLP-1 analogue, bone formation markers,
such as P1NP, have increased [211]. Two meta-analysis have investigated the effects of GLP-1 agonists
on fracture risk.

Mabilleau and colleagues found that GLP-1 agonists do not affect fracture risk [212]. However,
the total number of fractures reported was only 19 (GLP-1 agonist, 13; comparator, 6) [212]. Recently,
Su et al. have observed that different GLP-1 analogues showed different fracture risks. Specifically,
liraglutide has been associated with a significant decrease in fracture risk (MH-OR = 0.38, 95% CI
0.17–0.87); on the other hand, exenatide was correlated with more fracture events (MH-OR = 2.09,
95% CI 1.03–4.21) [213].

Orlistat is an inhibitor of intestinal lipases, resulting in reduced intake of lipids through the bowel.
Very few studies have investigated the effect of Orlistat on bone metabolism and the authors have
not found any effect on bone mass [214,215]. However, Gotfredsen et al. observed a malabsorption of
vitamin D and calcium and suggested an increased bone turnover [215].

In summary, few studies investigated the effects of GLP-1 analogues and orlistat on bone
metabolism. Regarding GLP-1 analogues, the available evidence seems to indicate that they do not
have any detrimental effect on bone health. To the other hand, Orlistat seems not to have any effect on
bone metabolism, but more studies should be conducted to investigate its impact on bone metabolism.

7. Weight Reduction and Bone Health. Is It Actually Worthwhile?

Given the controversial association between obesity and bone health, the question is whether
weight loss is beneficial or unsafe for bone quality and density. Bone mobilization and decrease of
mineral content and density are generally associated with weight loss, either obtained with nutritional
intervention or bariatric surgery [216,217].

Several factors can influence the risk of bone loss such as initial body weight, age, gender, level of
physical activity and conditions of dieting like the extent of energy restriction and specific levels of
nutrients intake. The bone response to weight reduction varies among different populations. Weight
loss in miscellaneous populations including pre, peri and post-menopausal women, and/or men leads
to a loss of total body bone mineral density (BMD; 0%–2.5%) and content (BMC; 3%–4%) as well
as variable losses at regional bone sites (1%–13%) [216,218,219]. In more homogenous populations,
studies have shown more consistent findings. For example, in postmenopausal women a 4%–13%
weight reduction led to 1%–4% bone loss and a rise in bone turnover compared with a weight-stable
group [170,220–222]. Older overweight or lean women close to menopause (mean age 48 years
old) responded to a moderate weight reduction (5%) in a similar manner to that described for
postmenopausal women, showing some bone loss (0.8% at the hip) [170]. Weight loss studies in
premenopausal women (mean age of 45 years old) showed either a small decrease in total body and
regional BMD and BMC of 0.5%–1.8% [223,224], or no bone changes in controlled trials [225,226]. In
an interventional trial with middle-aged men, moderate weight loss (7%) caused a 1% bone loss [227].
Epidemiologic studies of elderly men (mean: 70 years of age) demonstrated that weight loss is an
important predictor of BMD decrease [172] and leads to an increased incidence of osteoporosis [228].
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It can be speculated that greater weight loss (average 14%) during a relatively short period of
time (3–4 months) results in significant bone weakening [224,229], while a more modest weight loss
over a longer period of time (6 months) results in little (1%) [223] or no bone loss [225,226] at least in
premenopausal women.

Weight regain is associated with regain of bone in pre- [216,230] but not in post-menopausal
women [231] suggesting that the endocrine system of older age does not support bone growth in the
context of positive energy imbalance [232].

As mentioned before, physical activity is a crucial factor in the weight loss-bone health correlation.
Villareal et al. have demonstrated that weight loss induces bone weakening which is significantly
prevented by exercise training in obese elderly (>65 years) individuals [181]. However, the mechanism
for this observation remains unclear. Sclerostin, an inhibitor of bone formation, increases in states
of unloading and may act in the weight loss related bone alterations. Physical activity may partially
help reducing the negative effect of weight loss on bone metabolism preventing weight loss related
sclerostin increase in elderly individuals [233]. Exercise training as an add-on to weight loss therapy
prevents bone turnover markers increase and hip BMD reduction in obese subjects [182].

There is not enough evidence in literature about the influence of weight loss in children on bone
mass and quality to allow generalizations on this population. Although it seems to be established that
bone loss occurs with weight loss in older women and perhaps in older men, it remains unclear whether
there this effect could be applied to younger individuals or children with weight reduction [234].

In summary, a great deal of evidence has suggested that weight loss is generally associated with a
decrease of mineral content and density. However, recent findings appear to show that a combination
of weight loss and exercise training significantly prevents this weight loss related effect in obese older
adults. This could be an important consideration in establishing an appropriate treatment in this
population. However, the mechanisms underlying such observations remains unclear and further
studies are needed to clarify this effect.

8. Conclusions

Available studies have provided contrasting findings: some authors suggest that obesity has
detrimental effects on bone health, while others have revealed its potential protective role. Regardless,
a “U” shape relationship seems to exist between BMI and fracture risk. Indeed, the higher the BMI,
the lower the protection of weight on bone. Mostly, abdominal/visceral obesity is associated with
lower BMD. In particular, systemic inflammation due to several conditions such as aging, insulin
resistance/metabolic syndrome/diabetes and sexual hormone deficiency appear to impair the balance
of body composition leading to bone loss.

What might be considered is to add markers of metabolic health, such as waist circumference,
fasting plasma glucose, lipid and C-reactive protein serum concentrations to identify obese subjects
with higher risk of fracture.

It is important to pay attention to lifestyle modifications and/or treatments that may lead to
plentiful and fast weight loss because it may be associated with a significant bone mass loss. This loss
may be limited by associating the diet to proper exercise and adequate calcium intake.

Unfortunately, obesity is a complex disease of multifactorial aetiology, with its own
pathophysiologies and comorbidities such as diabetes mellitus that can lead to bone fragility. Although
in vitro studies are able to investigate the effect of each adipokine on bone metabolism, it is very hard
to study how obesity can affect bone system in vivo.

As obesity increases fracture risk independently of BMD, in vivo bone material properties
assessment might represent a useful tool to provide more information about the risk of fracture
in these kind of subjects [235].

Furthermore, most of the studies that have investigated the effect of obesity on bone health in
human subjects are observational ones; therefore, they can suggest but not demonstrate the potential
correlation between obesity and bone metabolism.
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Larger and robust pre-clinical and clinical randomized control trials are needed to better
understand the relation between obesity and bone health.
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