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Abstract: Dichlorprop-P and bentazone have been widely used in the prevention and control of
weeds in wheat field ecosystems. There is a concern that pesticide residues and metabolites remain
on or in the wheat. Thus, the study of the determination and monitoring of their residues in
wheat has important significance. A rapid, simple and reliable QuEChERS (Quick, Easy, Cheap,
Effective, Rugged and Safe) method was modified, developed and validated for the determination
of dichlorprop-P, bentazone and its metabolites (6-hydroxy-bentazone and 8-hydroxy-bentazone)
in wheat (wheat plants, wheat straw and grains of wheat) using high-performance liquid
chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The average recoveries of
this method ranged from 72.9% to 108.7%, and the limits of quantification (LOQs) were 2.5–12 µg/kg.
The dissipation and final residue of four compounds in three provinces (Shandong, Jiangsu and
Heilongjiang) in China were studied. The trial results showed that the half-lives of dichlorprop-P and
bentazone were 1.9–2.5 days and 0.5–2.4 days in wheat plants, respectively. The terminal residues in
grains of wheat and wheat straw at harvest were all much below the maximum residue limit (MRL)
of 0.2 mg/kg for dichlorprop-P and 0.1 mg/kg for bentazone established by the European Union
(EU, Regulation No. 396/2005).
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1. Introduction

Wheat, the leading source of vegetable protein in human food, is one of the most important food
crops in the world, but the impact of field weeds, plant diseases and pests on wheat production is
a big issue. To control these negative factors, pesticides play an important role, being introduced on
a regular basis [1]. Among those, bentazone and dichlorprop-P have been applied to protect wheat
from weeds.

Bentazone, 3-(1-Methylethyl)-1H-2, 1, 3-benzothiadiazin-4(3H)-one-2, 2-dioxide, is a diazosulfide
herbicide of broad spectrum, effective and low toxicity. It has been used to control broadleaf weeds
and nutgrass flatsedge in a variety of crops. For example, bentazone is applied on wheat to prevent
buglossoides arvense and galium aparine [2]. Bentazone is a fatty acid synthesis inhibitor that works
via the inhibition of acetyl CoA carboxylase [3]. In plants, two derivatives hydroxylated at the 6
and 8 position of the aromatic ring are found besides the unchanged parent compound. In addition,
6-hydroxy-bentazone and 8-hydroxy-bentazone are included in the definition of bentazone residues
for compliance with the Maximum Residue Limit (MRL), which was reported by the Joint Meeting
on Pesticide Residues (JMPR) [4], the Codex Alimentarius Commission (CAC) [5] and the European
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Union (EU) [6]. China [7], the CAC [5] and the EU (Regulation No. 396/2005) [6] all legislated that the
MRL of bentazone was 0.1 mg/kg.

Dichlorprop-P (2,4-dichlorophenoxypropanoic acid, or 2,4-DP), a component of many common
weed killers, is widely used for the control of broadleaf weeds, annual and perennial weeds in cereals,
pastures and forestry [8]. The residue definition for the dichlorprop established by the EU (Regulation
No. 396/2005) was the sum of dichlorprop (including dichlorp-P) and its conjugates, with the MRL
of dichlorprop-P in wheat being 0.2 mg/kg [6]. There is a growing awareness and concern that
some pesticide residues and metabolites remaining on or in the harvested crop could be edible [9].
Therefore, it is necessary to establish a reliable and sensitive simultaneous determination procedure
for dichlorprop-P, bentazone and its metabolites (6-hydroxy-bentazone and 8-hydroxy-bentazone) to
ensure public health. The chemical structures of four analytes are shown in Figure 1.
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but few papers covered the analysis of 6-hydroxy-bentazone and 8-hydroxy-bentazone. Moreover, 
these methods are tedious, complicated and expensive due to the use of a large amount of organic 
solvent, a series of steps for cleanup or preconcentration. In many studies, bentazone requires 
derivatization (e.g., with pentafluorobenzyl bromide (PFBBr) [12,18,19], diazomethane [20,21], and 
so on) prior to analysis. The derivatization needs a fair amount of sample manipulation and is 
time-consuming, which affects the progress of residual experiments to a certain extent. Recently, the 
Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method introduced by Anastassiades [22]  
has been an attractive alternative method for sample preparation. It is based on an extraction with 
organic solvent followed by a partitioning step and then cleaning up by dispersive solid-phase 
extraction (d-SPE) [23]. The QuEChERS multiresidue procedure replaces or omits some complex 
analysis steps commonly employed in traditional methods. The QuEChERS method now serves as a 
template for sample preparation, which could be modified depending on the analytes properties, 
matrix composition, equipment and analytical technique available in the laboratory. 
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In recent years, some sample preparation methods have been reported, with solid phase
extraction (SPE) [10–13], liquid-liquid extraction [14], supercritical fluid extraction (SFE) [15,16], and
gel permeation chromatograph (GPC) [17] being widely adopted for the detection of bentazone and
dichlorprop-P. However, most of them reported the determination of bentazone and dichlorprop-P, but
few papers covered the analysis of 6-hydroxy-bentazone and 8-hydroxy-bentazone. Moreover, these
methods are tedious, complicated and expensive due to the use of a large amount of organic solvent,
a series of steps for cleanup or preconcentration. In many studies, bentazone requires derivatization
(e.g., with pentafluorobenzyl bromide (PFBBr) [12,18,19], diazomethane [20,21], and so on) prior to
analysis. The derivatization needs a fair amount of sample manipulation and is time-consuming,
which affects the progress of residual experiments to a certain extent. Recently, the Quick, Easy,
Cheap, Effective, Rugged and Safe (QuEChERS) method introduced by Anastassiades [22] has been
an attractive alternative method for sample preparation. It is based on an extraction with organic
solvent followed by a partitioning step and then cleaning up by dispersive solid-phase extraction
(d-SPE) [23]. The QuEChERS multiresidue procedure replaces or omits some complex analysis steps
commonly employed in traditional methods. The QuEChERS method now serves as a template
for sample preparation, which could be modified depending on the analytes properties, matrix
composition, equipment and analytical technique available in the laboratory.
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Liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) has become
more and more popular for multiresidue analysis because of its high specificity and excellent separation
for the target compounds. HPLC–MS/MS with triple quadrupole instruments in multiple reaction
monitoring (MRM) mode is the traditional method to increase selectivity and improve sensitivity [24].
It also has been proven that HPLC–MS/MS in combination with QuEChERS is a rapid, highly sensitive
and efficient method for the determination of pesticide residues [25,26].

The dissipation rate of a pesticide after application is a useful tool to evaluate the behavior of
its residues [27]. Moreover, a preharvest interval (PHI) is required by MRL regulations to ensure
the dissipation of a pesticide below the proposed MRL at harvest [28]. With the increasing use of
dichlorprop-P and bentazone in wheat, the study of determination and monitoring of their residues in
wheat has important significance. However, to the best of our knowledge and based on the available
literature, there are no dissipation and residue studies of dichlorprop-P and bentazone in wheat.

The objective of the study was based on the QuEChERS method and was to develop and
validate a rapid method for the analysis of dichlorprop-P, bentazone, 6-hydroxy-bentazone and
8-hydroxy-bentazone in wheat (wheat plants, wheat straw and grains of wheat). The dissipation
dynamics of dichlorprop-P and bentazone in wheat plants were also studied, as well as the terminal
residue in wheat straw and grains of wheat.

2. Materials and Methods

2.1. Materials and Reagents

Standard bentazone (purity was 99.7%), 6-hydroxy-bentazone (purity was 99.2%),
8-hydroxy-bentazone (purity was 99.5%), and dichlorprop-P (purity was 99.7%) were purchased from
Ehrenstorfer GmbH, Augsburg, Germany; The individual stock standard solutions (1000 mg/L) of
four analytes were dissolved with acetonitrile and stored at ´20 ˝C, respectively. The individual work
standard solutions (100 mg/L) were also prepared for daily use and stored at ´20 ˝C. Acetonitrile was
supplied by Fisher Scientific (Pittsburgh, PA, USA) in HPLC grade. Formic acid (98% purity) was
purchased from Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. Anhydrous magnesium
sulfate (MgSO4) and sodium chloride (NaCl) purchased from Beijing Reagent Company (Beijing,
China) were baked at 110 ˝C for 8 h. The Agela Cleanert C18 (40–60 µm), Primary secondary
amine (PSA) and graphitized carbon black (GCB) were from Agela Technologies, Tianjin, China.
The formulation, 566 g/L dichlorprop-P bentazone soluble liquid (SL), was kindly provided by BASF,
Beijing, China. The 0.1% formic acid water solution was prepared before sample extraction. Ultrapure
water was obtained from Aquapro Ultrapure Water System (Aquapro International Company LLC,
Chongqing, China).

2.2. Field Trials

The field experiments, including the dissipation and residue experiments, were carried out at three
different locations, Shandong Province (North China, the temperate continental monsoon climate),
Jiangsu Province (East China, the subtropical monsoon climate) and Heilongjiang Province (Northeast
China, the temperate continental monsoon climate) in the year 2015 according to the “Guideline
on Pesticide Residue Trials”, published by the Ministry of Agriculture, People’s Republic of China
(NY/T 788–2004).

There were four treatments including three dichlorprop-P bentazone treatments and one control
treatment. The design of the field experiments for residue and dissipation was shown in Table 1.
Each treatment consisted of three replicate plots and each experimental plot was 30 m2. No pesticide
was used during the whole period of wheat growth in the control treatment. The buffer area of 30 m2

was used to separate the plots of different treatments.
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Table 1. Design of the field experiments for dichlorprop-P and bentazone residue and dissipation in wheat (grains of wheat, wheat plants and wheat straw).

Treatments Dosage of Application (g a.i./ha) Times of Application Experiments Days after the Last Application

Serial number Areas (m2)
1 30 ˆ 3 2547 1 Grains of wheat/wheat straw residue Harvest
2 30 ˆ 3 3280.5 1 Grains of wheat/wheat straw residue Harvest

3 30 ˆ 3 3280.5 1 Dissipation in wheat plants 2 h, 1 day, 2 days, 3 days, 5 days, 7 days,
10 days, 14 days, 21 days, 30 days

4 30 0 - Control treatment Before harvest and harvest
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In order to investigate the dissipation of dichlorprop-P and bentazone in wheat plants, the
formulation of dichlorprop-P¨bentazone (566 g/L) (SL) was dissolved in water and sprayed with
a JACTO-HD400 internal pump backpack sprayer at active constituent 3820.5 g a.i./ha (gram of active
gradient per hectare, 1.5 times of the recommended high dosage) on the stems and leaves of wheat.
The experiment was carried out when weeds were at the 2–5 leaf stage. About 1 kg of wheat plant
samples were collected randomly from several points in each plot at 2 h, 1, 2, 3, 5, 7, 10, 14, 21 and
30 days after spraying. The final residue experiments were performed at two dosage levels with
2547 g a.i./ha (recommended high dosage) and 3820.5 g a.i./ha (1.5 times recommended high dosage).
Both the low and high dosage treatments were each sprayed one time when weeds were at 2–5 leaf
stage. About 1.0 kg of wheat straw samples and 2.0 kg of grains of wheat were collected randomly
from several points in each plot at the harvest time. Collected samples of wheat plants and wheat
straw (1.0 kg) were cut into small pieces using a knife and were homogenized with a blender (Philips,
Shanghai, China). Samples of grains of wheat (2.0 kg) were crushed with a high-speed grinder (Jiawei
Instrument, Guangzhou, China). All samples were stored in a deep freezer at ´20 ˝C until analysis
within 2 months.

2.3. Sample Pretreatment

Frozen wheat samples were thawed at room temperature. Grains of wheat (5.0 g), wheat plants
(2.0 g) and wheat straw (2.0 g) samples were weighed into a 50 mL plastic centrifuge tube. Then, 5 mL
formic acid water (0.1%, v/v), 10 mL acetonitrile and 3.0 g NaCl were added into the tubes, and samples
were subsequently extracted with a vortex mixer for 2 min and centrifuged for 5 min at 3800 rpm.

The supernatant acetonitrile layer of 1 mL was transferred into a 2 mL centrifuge tube with
100 mg anhydrous MgSO4 and vortexed for 30 s, then centrifuged at a relative centrifugal force (RCF)
of 9168ˆ g for 1 min. The upper layer was filtered through a 0.22 µm organic filter membrane to
an auto-sampler vial for HPLC-MS/MS analysis.

2.4. HPLC-MS/MS Conditions

The HPLC–MS/MS analysis was achieved using an Agilent 1200 HPLC series (Agilent
Technologies, Santa Clara, CA, USA) and an Agilent 6410B triple-quadrupole mass spectrometer
equipped with an electrospray ionization interface (ESI˘). A HPLC reverse-phase C18 column
(50 mm ˆ 2.1 mm ˆ 3.5 µm, Agilent, Santa Clara, CA, USA) was employed for the separation of
dichlorprop-P, bentazone, 6-hydroxy-bentazone and 8-hydroxy-bentazone at 30 ˝C. The mobile phase
was acetonitrile and 0.1% formic acid water (v/v = 90/10) at a flow rate of 0.25 mL/min, and the
injection volume was 5 µL. The total run time was 2.5 min. The HPLC–MS/MS was performed in
negative multiple-reaction monitoring (MRM) mode. The desolvation gas (N2) temperature was set
at 350 ˝C with the gas flow at 8.0 L/min, and the nebulizer pressure at 35 psi. The parameters were
optimized individually for each target compound (Table 2).

Table 2. HPLC-MS/MS parameters of dichlorprop-P, bentazone, 6-hydroxy-bentazone and
8-hydroxy-bentazone.

Compound tR (min)
High-Performance Liquid Chromatography Coupled with Tandem Mass

Spectrometry (HPLC-MS/MS)

Quantification
Ion Transition

Collision
Energy (V)

Confirmatory
Ion Transition

Collision
Energy (V)

Fragmentor
(V)

Dichlorprop-P 0.74 233.1–161.1 5 233.1–125.2 25 70

Bentazone 0.70 239.2–132.2 20
239.2–197.1 15

125239.2–175.2 15

6-hydroxy-bentazone 0.64 255.2–148.1 20
255.2–213.2 15

130255.2–121.1 25

8-hydroxy-bentazone 0.65 255.1–191.2 10
255.1–148.1 20

120255.1–106.2 20
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2.5. Statistical Analysis

The dissipation patterns of dichlorprop-P and bentazone in the wheat plants were fitted to the
first-order kinetics equation

C “ C0e´kt (1)

and half-life of residue was calculated by

t1/2 “ pln 2q{k (2)

where t is the time (day) after pesticide application, C represents the concentration (mg/kg) of
the pesticide residue at the time of t, C0 represents the initial concentration (mg/kg) and k is the
degradation rate constant in day´1. t1/2 is defined as the time required for the pesticide residue level
to fall to half of the initial residue level after application. Systat Sigmaplot v12.0 software (Syatat
Software Inc., San Jose, CA, USA) was used in the statistical process of fitting k.

3. Results and Discussion

3.1. Optimization of HPLC-MS/MS Conditions

The composition of the mobile phase is an important parameter in adjusting retention time,
selectivity, and peak shape in HPLC separation [29]. In this work, the acetonitrile-water and
methanol-water mobile phase had been tested. Sharper peaks and better resolution were obtained
using the acetonitrile-water system. In addition, different acetonitrile proportion (90%, 80%, 70%)
had also been tested and, when the mobile phase was set at 90/10 (v/v) mixture of acetonitrile and
water (containing 0.1% formic acid), a high response, well-shaped peaks and a short run time could be
achieved, which was shown in Figure 2.
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In this study, ESI in negative mode was selected since that four compounds are all acidic and
easily lose H+. The [M´H]+ ion was chosen as a precursor ion for bentazone and its metabolites



Int. J. Environ. Res. Public Health 2016, 13, 534 8 of 14

(6-hydroxy-bentazone and 8-hydroxy-bentazone) and [M´2H]+ was for dichlorprop-P because of
its high relative intensity in a full scan, and then fragmentor of each precursor was optimized after
running in SIM mode. After that, the product ions of each compound was selected and the collision
energy for each ion transition was optimized. All compounds were analyzed in MRM mode (Table 2).

3.2. Optimization of Sample Pretreatment

One objective of our study was to establish a modified QuEChERS approach for the determination
of dichlorprop-P, bentazone and its metabolites (6-hydroxy-bentazone and 8-hydroxy-bentazone) in
wheat. The QuEChERS method, including solvent extraction, salting out, liquid-liquid partitioning,
and d-SPE cleanup, has become a generic sample preparation technique for a variety of applications in
pesticide residue analysis in the past several years [30]. In this work, different parameters affect the
QuEChERS method, such as sample weight, extracting solvent and cleanup sorbent. A different sample
weight (2.0 g, 5.0 g, 10.0 g) had also been tested and when grains of wheat was 5.0 g, wheat plants and
wheat straw 2.0 g, satisfactory results could be achieved. Acetonitrile or ethyl acetate is often used as
the extraction solvent for multi-residue analysis [22,31,32]. According to physicochemical properties
of four analytes, acetonitrile was chosen as the extraction solvent. Besides that, to develop a reliable
multi-residue method that can sufficiently extract acidic pesticides from cereals, the pH of the extraction
is also important and should be suitably controlled. There are many published methods [33–35] for
the analysis of acidic herbicides in cereals and related matrices recommended extraction with acidified
solvent because acidic herbicides were more stable at low pH. Other authors reported that extract
acidic herbicides with alkaline hydrolysis which could break up any covalent bond between the matrix
components and acidic pesticides [36]. In this work, a simple study was conducted to compare formic
acid water with ammonia water. The results showed that there was no significant difference for
the recovery of dichlorprop-P, while low recoveries (<70%) of bentazone, 6-hydroxy-bentazone and
8-hydroxy-bentazone were obtained when adding ammonia water to samples. Thus, formic acid water
was chosen in this step. Then, NaCl was added and vortex extracted for 2 min, which was satisfied for
the extraction of all the target compounds in three different kinds of matrices.

In the following cleanup procedure, d-SPE was adopted, which was a quick and easy method used
in the QuEChERS procedure [37]. Three adsorbents bondesil-primary secondary amine (PSA), C18 and
graphitized carbon black (GCB) were considered in this study. PSA is a weak anion exchanger which
can remove various organic acids and fatty acids, as well as the target acidic pesticides. Therefore, PSA
could not be chosen as an adsorbent to clean up the four compounds. Cleanup efficiencies of 50 mg
C18 and 100 mg MgSO4, 50 mg GCB and 100 mg MgSO4, 100 mg MgSO4 for 1 mL of mixed standard
solution of wheat plants (0.1 mg/L) were tested, respectively. After being vortexed for 30 s, the
recoveries were as follows: for bentazone they were 41.4%, 67.7% and 84.9%; for 6-hydroxy-bentazone
they were 45.7%, 47.5% and 100.2%; for 8-hydroxy-bentazone they were 45.1%, 32.9% and 91.5%, and;
for dichlorprop-P they were 81.4%, 31.3% and 79.6%. This proved that C18 has some adsorption for
bentazone and that GCB significantly adsorbs the four target compounds. Satisfactory recovery results
and well-shaped peaks were obtained when 100 mg MgSO4 was used. Thus, only 100 mg MgSO4 was
used for cleanup in this work.

3.3. Method Validation

3.3.1. Calibration, LOD and LOQ

In this study, the matrix-matched calibration method was used to avoid possible matrix effects.
Known pesticide amounts were added to the three representative extracts from control plots (grains
of wheat, wheat plants and wheat straw) to obtain the final working matrix standard solution.
The linearity for dichlorprop-P was studied in the range of 0.01–2.5 mg/kg in grains of wheat,
0.02–2.0 mg/kg in wheat plants and wheat straw; simultaneously, bentazone and its metabolites was
0.005–1.0 mg/kg in grains of wheat, 0.002–0.2 mg/kg in wheat plants and wheat straw. Good linearity
was obtained with the correlation coefficient (R2) higher than 0.99.
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The limit of detection (LOD) and the limit of quantification (LOQ) were defined as the
concentration with a signal-to-noise ratio (S/N) of 3 and 10 [22]. As shown in Table 3, the LODs
of the target compounds ranged from 0.8 µg/kg to 4 µg/kg and the LOQs were 2.5–12 µg/kg.

Table 3. The calibration curves, coefficient of determination (R2) matrix effect and the limit of
detection (LOD)/limit of quantification (LOQ) of dichlorprop-P, bentazone, 6-hydroxy-bentazone
and 8-hydroxy-bentazone in wheat (grains of wheat, wheat plants and wheat straw).

Compound Matrix Matrix-Matched
Calibration Curve R2 LOD (µg/kg) LOQ (µg/kg)

Dichlorprop-P Grains of wheat Y = 30939X ´ 1515.9 0.9911 2 7
Wheat plants Y = 32278X´486.86 0.9995 4 12
Wheat straw Y = 23968X + 196.11 0.9999 2 7

Bentazone Grains of wheat Y = 89621X ´ 1369.4 0.9959 1 3
Wheat plants Y = 77068X + 12.216 0.9997 3 9
Wheat straw Y = 48882X ´ 95.561 0.9995 3 9

6-hydroxy-bentazone Grains of wheat Y = 150628X ´ 731.53 0.9989 2 7
Wheat plants Y = 144706X ´ 80.588 0.9998 1 3
Wheat straw Y = 124585X ´ 178.16 0.9999 0.8 2.5

8-hydroxy-bentazone Grains of wheat Y = 309797X + 853.47 0.9996 2 6
Wheat plants Y = 360626X ´ 477.38 0.9995 3 9
Wheat straw Y = 264981X ´ 168.88 0.9996 1 4

3.3.2. Accuracy

Recovery studies were performed to evaluate the accuracy of the proposed by spiking the
blank samples at three different concentration levels. Each spiking level was repeated five times
for the calculation of RSD (relative standard deviation), which were used to show the precision of
the method [38]. The EU SANTE/11945/2015 guidance document stipulates the average recovery
in the range 70%–120%, with RSD less or equal 20% per each spiking level as the acceptance criteria
for the validation of pesticide residue analytical methods [39]. As shown in Table 4, the mean
recoveries of dichlorprop-P, bentazone, 6-hydroxy-bentazone and 8-hydroxy-bentazone in the range of
72.9%–107.4%, 76.1%–108.7%, 74.8%–94.0% and 75.2%–107.4%, with RSDs ranging from 2.5% to 11.4%,
1.0% to 10.7%, 1.3% to 9.2% and 1.6% to 8.0%, respectively, indicating good accuracy and precision of
this approach.

Table 4. Recoveries (n = 5) and relative standard deviations (RSDs) of dichlorprop-P, bentazone,
6-hydroxy-bentazone and 8-hydroxy-bentazone in wheat (grains of wheat, wheat plants and
wheat straw).

Compound Matrix Fortified Level (mg/kg) Average Recovery (%) RSD (%)

Dichlorprop-P

Grains of wheat
0.1 85.9 7.0
1 85.0 5.7
5 72.9 4.0

Wheat plants
0.1 82.0 6.3
1 96.1 4.0
5 82.9 11.4

Wheat straw
0.1 107.4 8.0
1 82.1 5.1
5 98.6 2.5

Bentazone

Grains of wheat
0.01 84.6 7.6
0.1 93.6 3.1
0.5 76.1 1.0

Wheat plants
0.01 82.0 10.7
0.1 96.1 3.8
0.5 82.9 3.7

Wheat straw
0.01 108.7 9.6
0.1 96.2 2.2
0.5 87.0 3.4
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Table 4. Cont.

Compound Matrix Fortified Level (mg/kg) Average Recovery (%) RSD (%)

6-hydroxy-bentazone

Grains of wheat
0.01 92.9 2.9
0.1 81.4 9.2
0.5 84.7 1.3

Wheat plants
0.01 90.8 1.4
0.1 94.0 4.3
0.5 74.8 4.2

Wheat straw
0.01 87.5 5.8
0.1 89.7 3.3
0.5 84.9 3.5

8-hydroxy-bentazone

Grains of wheat
0.01 86.8 5.4
0.1 88.9 7.1
0.5 79.5 6.3

Wheat plants
0.01 85.0 7.6
0.1 95.9 4.5
0.5 75.2 5.7

Wheat straw
0.01 107.4 8.0
0.1 82.1 5.1
0.5 84.5 1.6

3.4. Dissipation of Dichlorprop-P and Bentazone in Wheat Plants

Figures 3 and 4 showed the dissipation trends of dichlorprop-P and bentazone in wheat plants
at different locations. As shown in Figure 3, the initial concentrations of dichlorprop-P in wheat
plants were 2.26, 2.40 and 6.07 mg/kg in Shandong, Jiangsu and Heilongjiang. The difference in
initial concentrations may be caused by different planting densities at the three sites or uneven
spraying. At 30 days after application, the concentrations of dichlorprop-P were all reduced by more
than 97% with the residue all <0.1 mg/kg (the lowest spiking level concentration) at the three sites.
The dissipation dynamics of dichlorprop-P could be described by the first-order kinetics equation
C = 2.5275e´0.3690t (Shandong), C = 4.2685e´0.2958t (Jiangsu) and C = 5.3620e´0.2723t (Heilongjiang)
with correlation coefficients (R2) of 0.9709, 0.9768 and 0.9604, respectively. The climates of the three
experiment locations are different, but the t1/2 of dichlorprop-P were similar (1.9, 2.3 and 2.5 days at
Shandong, Jiangsu and Heilongjiang, respectively), which showed that the dissipation of dichlorprop-P
in wheat plant is not affected very much by the weather.

In Figure 4, the dissipation of bentazone in wheat plants is presented. The initial concentrations of
bentazone in wheat plants were 3.75, 3.37 and 4.95 mg/kg at Shandong, Jiangsu and Heilongjiang. The
difference from dichlorprop-P is that bentazone demonstrated a faster rate of dissipation. At 14 days
after application, the concentrations of bentazone were all reduced by more than 97% at the three sites.
At 30 days, bentazone residues were both <0.01 mg/kg (the lowest spiking level concentration) in
Shandong and Heilongjiang and 0.09 mg/kg in Jiangsu. The fist-order kinetics equation of bentazone
were C = 3.9357e´0.4241t (Shandong), C = 5.2689e´0.2942t (Jiangsu) and C = 4.9098e´1.3394t (Heilongjiang)
with correlation coefficients (R2) of 0.9900, 0.9791 and 0.9692, respectively. The dissipation half-life of
bentazone in wheat plants calculated from the regression equation was 1.6, 2.4 and 0.5 in Shandong,
Jiangsu and Heilongjiang, respectively, which showed that the dissipation of bentazone in wheat plants
is possibly affected by differences in weather conditions among sites.
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3.5. Terminal Residue of Four Analytes in Wheat Straw and Grain of Wheat

The terminal residue of four analytes applied at the two dosage levels (2547 g a.i./ha and
3820.5 g a.i./ha) were all below their lowest spiking level concentration. The results indicated that
the terminal residue of dichlorprop-P in wheat was far below the MRLs (0.2 mg/kg established by
EU) and bentazone (sum of bentazone, 6-hydroxy-bentazone and 8-hydroxy-bentazone) was below
0.1 mg/kg (established by EU, CAC, China). The residue data suggests the safe application of
dichlorprop-P¨bentazone at the recommended dosage to protect wheat from broadleaf weeds and
nutgrass flatsedge.

4. Conclusions

In this work, a sensitive and fast analytical method based on QuEChERS and HPLC-MS/MS
for the simultaneous determination of dichlorprop-P, bentazone, 6-hydroxy-bentazone and
8-hydroxy-bentazone in grains of wheat, wheat plants and wheat straw was developed and validated.
With respect to linearity, recovery, sensitivity and repeatability, the developed method showed
satisfactory validation results. This method was used to study dichlorprop-P and bentazone dissipation
in wheat plants, as well as four analytes residues in grains of wheat and wheat straw. The results
showed that the dissipation of dichlorprop-P and bentazone in wheat plants was fast, with half-lives
of 1.9–2.5 days and 0.5–2.4 days, respectively. The final residues in grains of wheat and wheat straw
were all lower than the MRL of four analytes.
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