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Abstract: Background: We previously proposed a hybrid model combining both the autoregressive
integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN)
models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual
prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby
further certifying the reliability of our hybrid model. Methods: We used the ARIMA, NARNN
and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The
modeling time range included was the annual prevalence from 1956 to 2008 while the testing time
range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE) were used to measure the model performance. We
reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. Results: The
modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained
from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016
demonstrated an initial decreasing trend, followed by an increase. Conclusions: The ARIMA-NARNN
model can be well applied to analyze surveillance data for early warning systems for the control and
elimination of schistosomiasis.
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1. Introduction

Schistosomiasis is an acute and chronic, neglected tropical parasitic disease that is globally
distributed in 78 countries, including Africa, Asia, the Middle East, and South America [1]. The
World Health Organization (WHO) has reported that at least 249 million people required treatment in
2013, while the actual number of treated people in that year was only 42.1 million. This great deficit
underscores both the profound impact that schistosomiasis has on worldwide populations and the fact
that it is often neglected.

In China, HIV/AIDS, tuberculosis, hepatitis B and schistosomiasis have been listed the top 4
infectious diseases [2]. Although prioritized for control and elimination since 2004, schistosomiasis is
still considered a major public health problem today. The government has undertaken some highly
effective and comprehensive strategies to manage schistosomiasis, which include developing and
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implementing the “Outline of mid- and long-term national programme on control and prevention
of schistosomiasis (2004–2015)” as well as the “Outline of key project planning for comprehensive
management of schistosomiasis (2009–2015)” [3]. A total of 184,943 cases of schistosomiasis were
estimated and nine acute cases were reported in 2013 [4]. As compared to data from 2009 [5], the
reduction rates of total cases were 49.44% and 88.31%, respectively, indicating that the national endemic
situation has reached its lowest level in Chinese history. Despite these promising trends, it will still
take a great deal of time to achieve the goal of complete blockage of schistosomiasis transmission and
its resulting total elimination as written in the document entitled “Criteria for control and elimination
of schistosomiasis” [6]. The length of time required for its eradication is due in large part to the fact
that the key natural and social risk factors for transmission have not fundamentally changed.

To better aid the ultimate goal of elimination, forecasting techniques can be used to analyze
the occurrences, development, and future trends of schistosomiasis, so as to guide the basic
measures for control and prevention of schistosomiasis. Forecasting is a particularly powerful tool
to facilitate the development of effective control strategies for schistosomiasis that has frequent
fluctuations. More recently, hybrid forecasting models have been extensively applied in the field of
communicable disease with high predictive performance [7–10]. Autoregressive integrated moving
average (ARIMA) model is a classical linear time series forecasting model, which has been widely
utilized to predict a time series, including many communicable diseases such as tuberculosis [11],
malaria [12], hepatitis [13], hemorrhagic fever [14], dengue fever [15] and influenza [16]. For nonlinear
time series forecasting problems, artificial neural networks (ANNs) have been widely applied in many
different fields [17–21], due to their high fault tolerance performance, self-learning, self-organization,
and ability to approximate any sort of arbitrary nonlinear function [22,23]. Although both ARIMA and
ANNs are superior in modeling a variety of problems, neither can be used indiscriminately in every
type of forecasting situation. Theoretically, combining both the ARIMA and ANNs models would
allow for an improved method for forecasting.

Our team has proposed a new hybrid approach combining both the ARIMA and the
nonlinear autoregressive neural network (NARNN) models to successfully forecast the prevalence of
schistosomiasis in humans of Qianjiang City, China [24]. The purpose of this paper is to further validate
the feasibility of the ARIMA-NARNN hybrid model in prediction of schistosomiasis infections.

2. Methodology

2.1. Data Sources

Schistosomiasis can be found around Hubei Province, China. In 2013, the prevalence of
schistosomiasis in humans of Hubei Province was under 1.00%, reaching the national criteria of
transmission control. Nonetheless, there are still two major challenges. First, areas infested with
Oncomelania snails were about 76,600–77,400 hm2 in 2012, ranking it first in all schistosomiasis endemic
provinces of China. Second, cattle are not customarily raised in captivity in the most endemic areas of
Hubei Province, leading to rampant sanitation and hygiene problems due to animal waste. These two
conditions make adequate control of schistosomiasis infections increasingly difficult.

Yangxin County is located in the southeast region of Hubei Province and has a climate
characterized by subtropical monsoon seasons. The environment and climate are very suitable for
the breeding of snails, which has led to endemic levels of schistosomiasis in Yangxin County. It has
historically been one of the hardest schistosomiasis hit in Hubei Province. Taking into account the
availability and completeness of data collection, we chose Yangxin County as our study area.

According to Chinese criteria, schistosomiasis is a statutory B class infectious disease and has
been monitored according to the “national surveillance scheme of schistosomiasis” [25]. One national
surveillance point and nine provincial surveillance points had been set up in Yangxin County, similar to
those in the city of Qianjiang City [24]. Human prevalence of schistosomiasis is one of the surveillance
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indicators. We obtained the annual report data of prevalence from 1956 to 2012 from the Schistosomiasis
Prevention and Control Office of Yangxin County (Table S1).

2.2. The ARIMA Model

The ARIMA (p, d, q) model [26] is made up of three parts, where p is the order of auto-regression
(AR), d is the order of regular differencing, and q is the order of moving average (MA). Stationarity
is a necessary condition in building an ARIMA model and differencing is often used to stabilize the
time series data. Lagged scatter-plots, autocorrelation function (ACF), partial autocorrelation function
(PACF) plots, or augmented dickey-fuller unit root (ADF) test are used to identify whether or not
the time series is stationary. The modeling process we used included three iterative steps of model
identification, parameter estimation, and diagnostic checking. This three-step model building process
was typically repeated several times until a satisfactory model was finally selected.

We used SAS Software Version 9.2 (North Carolina State University, Raleigh, NC, USA) to develop
the ARIMA model. The SAS procedure can automatically provide the minimal value of Bayesian
information criterion (BIC) and estimate the parameters by the conditional least square method to
choose the optimal model. The Ljung-Box Q-test for diagnostic checking helped to identify whether the
residual series was the white noise. The white noise series would indicate that the information has
been sufficiently extracted, allowing the model to conduct the predictive analysis. In this study, for the
prediction performance comparison, the modeling set used was from 1956 to 2008 and the testing set
from 2009 to 2012. We constructed the ARIMA model using the entire 57 years data set in order to
forecast the future prevalence of schistosomiasis from 2013 to 2016. This information was then used to
compute the residual series as the target series of NARNN.

2.3. The NARNN Model

ANNs are computing systems containing many simple nonlinear units interconnected by
links [23]. NARNN, which is one of the dynamic ANNs based on the feed-forward, back-propagation
network (FFBP) with feedback layers [27], can predict a simple time series given past values of the
same time series. In this paper, we utilized the Neural Network Toolbox of MATLAB Version 7.11
(R2010b, MathWorks, Natick, MA, USA). In this tool, NARNN incorporates a default two-layer FFBP
with a sigmoid transfer function in the hidden layer, a linear transfer function in the output layer, and
utilization of the Levenberg-Marquardt algorithm in training.

Using this tool, dynamic NARNN processing was determined on the best form and the
command-line script was generated automatically. Before modeling, we divided the target series into
a training subset, validation subset, and testing subset using the default random division function.
The ratios for training, validation, and testing were set to 0.80, 0.10 and 0.10, respectively. The training
subset was used for computing the gradient and updating the network weights and biases. The error
on the validation subset was monitored during the training process. When the network began to
overfit the data, the error on the validation subset typically rose. The network weights and biases were
saved at the minimum of the validation set error. When the validation error increased for a specified
number of iterations (we used six iterations in our training), the training was stopped, and the weights
and biases at the minimum of the validation error were returned. We were able to choose the relative
optimal model by using the error autocorrelation plot, the time series response plot, the mean square
error (MSE), and the correlation coefficient (R) between outputs and targets as the indices. We used
trial and error to adjust the parameters feedback delays and hidden units until an optimal model was
generated. In the study, depending on our experience, the hidden units and feedback delays range
included from 10–18 and 3–7 respectively. In total of 45 architectures were tested one by one.

2.4. Developing the Hybrid ARIMA-NARNN Model

We discovered linear relationships in the first stage of modeling the original prevalence data with
the ARIMA model. The estimation of original prevalence yields the forecast value Lt. The ARIMA
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model was then used to generate the residuals et. In the second stage, the NARNN model was used
to model the nonlinear relationships existing in the residuals. The estimation of et yields the forecast

value
^

Nt.

The combined forecasting values of the time series were as follows:
^
y t “

^

Lt `
^

Nt, where
^
y t

was the predicted value by the ARIMA-NARNN model at time t,
^

Lt denoted the estimation of linear

component from the ARIMA model, and
^

Nt denoted the residuals predicted by the NARNN model.
In the study, 4-step-ahead prediction was performed to track the annual prevalence of schistosomiasis
from 2013 to 2016.

2.5. Performance Statistics Index

In order to compare the forecasting performance of the ARIMA, NARNN and ARIMA-NARNN
models, three indices were used to evaluate prediction accuracy: the MSE, mean absolute error (MAE),
and mean absolute percentage error (MAPE). Their calculation formulas were as follows:
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where yt and
^
yt denote the original and the predicted prevalence at time t respectively, and n is the

number of predictions. Good fitness and prediction performance is demonstrated with these three
indices showing as small a value as possible.

3. Results

3.1. ARIMA Model Analysis

The ACF and PACF plots of different original prevalence series (OS) are displayed in Figure 1,
the Figure 1A,B,E, and F which collectively suggest that the series was non-stationary. As shown in
Figure 1C,D,G, and H, most of the correlations fell around zero within their 95% confidence intervals
after one order of differencing, suggesting that the series achieved stationarity.

The results of the ADF test are showed in Table 1. As all the p-values were less than 0.05, we
concluded that there was no unit root, which provided further confirmation that the differenced series
was stationary.

We found the minimum BIC (5, 7) = 0.7895 (using 1956–2008 as the modeling set) and
BIC (5, 7) = 0.6716 (using 1956–2012 as the modeling set), resulting in an order of auto-regression
of p = 5 and the order of moving average of q = 7. The results of the parameter estimations are shown
in Table 2.

All of the estimated parameter values are statistically significant (p < 0.05).The autocorrelation
checks of residuals are presented in Table 3. All the p-values > 0.05, showing that the residuals were all
a white noise series. Based on these residual results, we concluded that the model could be used to
forecast future prevalence of schistosomiasis.

The predicted prevalence of the testing set, spanning from 2009 to 2012, was 0.40%, 0.99%, 0.62%
and ´0.96% respectively. The values of MSE, MAE and MAPE are presented in Table 4. The predicted
future prevalence obtained from the ARIMA ((4), 1, (5)) model, for years 2013 to 2016 was ´1.03%,
´0.80%, ´1.27% and ´0.54%, respectively. We then computed the residual series (RS) from 1956 to
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2008 and the new residual series (NRS) from 1956 to 2012, which were subsequently used as the target
series of the NARNN model.
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Figure 1. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of original
prevalence series (OS). (A) and (B) show ACF and PACF plots of OS (1956–2008). (C) and (D) show
ACF and PACF plots after one order of differencing (1956–2008). (E) and (F) show ACF and PACF plots
of OS (1956–2012). (G) and (H) show ACF and PACF plots after one order of differencing (1956–2012).
Dotted lines indicate 95% confidence intervals.

Table 1. Augmented dickey-fuller unit root (ADF) test of different modeling sets.

Type Lag 1956–2008 1956–2012

t p a t p a

Zero Mean 0 ´9.39 <0.0001 ´9.73 <0.0001
1 ´6.74 <0.0001 ´6.98 <0.0001

Single Mean 0 ´9.60 0.0001 ´9.98 0.0001
1 ´7.04 0.0001 ´7.32 0.0001

Trend 0 ´9.54 <0.0001 ´9.92 <0.0001
1 ´6.98 <0.0001 ´7.27 <0.0001

Note: a, It was considered that there was nonexistent unit root (p < 0.05).
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Table 2. Parameter estimations of different modeling sets from ARIMA model.

Modeling Set Parameter Estimate Standard Error t p a Lag

1956–2008 AR1,1 ´0.33659 0.13474 ´2.50 0.0158 4
MA1,1 ´0.59063 0.11667 ´5.06 <0.0001 5

1956–2012 AR1,1 ´0.33529 0.12856 ´2.61 0.0118 4
MA1,1 ´0.58920 0.11144 ´5.29 <0.0001 5

Note: a, Parameter estimations were considered statistically significant (p < 0.05).

Table 3. The white noise check of residuals from different modeling sets.

Lag 1956–2008 1956–2012

χ2 p a χ2 p a

6 7.19 0.1262 7.66 0.1050
12 13.27 0.2090 13.96 0.1747
18 15.04 0.5219 15.77 0.4691
24 16.92 0.7679 17.66 0.7261

Note: a, The residual series was a white noise series (p > 0.05).

Table 4. Prediction results of three models.

Year Original Values (%) Pridicted Values (%)

ARIMA NARNN ARIMA-NARNN

2009 1.13 0.40 1.75 1.55
2010 0.65 1.00 1.44 0.09
2011 0.42 0.62 1.01 0.34
2012 0.39 ´0.96 0.80 0.38
Error

Modeling MSE(ˆ10 ´4) 2.8272 2.1089 0.7381
MAE 0.0123 0.0095 0.0059

MAPE 0.1223 0.1056 0.0678

Testing MSE(ˆ10 ´4) 0.6267 0.3816 0.1237
MAE 0.0066 0.0060 0.0027

MAPE 1.2791 1.0570 0.3629

3.2. NARNN Model Analysis

The parameters for the optimum NARNN model are shown in Table 5, target series OS with
hidden units 16 and delays 5, RS with hidden units 14 and delays 6, and NRS with hidden units 14 and
delays 5. All R values were greater than 0.85. All MSE values of the training, validation, and testing
subsets were found to be relatively small.

Table 5. Optimum network parameters of different target series.

Target Series a Hidden Units Delays MSE b (ˆ10´4)
R c

Training Validation Testing

OS 16 5 1.2671 4.0469 4.4604 0.9838
RS 14 6 0.5022 1.6596 1.8805 0.8828

NRS 14 5 0.3911 0.4463 0.8199 0.9579

Notes: a, OS = original prevalence series, RS = residual series, NRS = new residual series; b, MSE = mean square
error; c, R = correlation coefficient.
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The error autocorrelation function plots are displayed in Figure 2. The error autocorrelation was
one of the evaluation parameters in the modeling process. As shown in Figure 2, the correlations
except for the one at zero lag, all fell within the 95% confidence limits, demonstrating that the model
was adequate.

Int. J. Environ. Res. Public Health 2016, 13, 355 7 of 12 

 

 
Figure 2. Error autocorrelation plots of different target series from appropriate NARNN model. The 
red dotted line indicate 95% confidence intervals. All the coefficients fell within the 95% confidence 
limits with the exception of the autocorrelation coefficient at zero lag, indicating that the model 
reliably corresponds to the data. OS = original prevalence series, RS = residual series, NRS = new 
residual series. 

The time series response plots are displayed in Figure 3. The outputs are distributed evenly on 
both sides of the response curve and the errors are small in the training, testing, and validation 
subsets. These provided further confirmation that we had chosen the appropriate model. 

Figure 2. Error autocorrelation plots of different target series from appropriate NARNN model. The
red dotted line indicate 95% confidence intervals. All the coefficients fell within the 95% confidence
limits with the exception of the autocorrelation coefficient at zero lag, indicating that the model reliably
corresponds to the data. OS = original prevalence series, RS = residual series, NRS = new residual series.

The time series response plots are displayed in Figure 3. The outputs are distributed evenly on
both sides of the response curve and the errors are small in the training, testing, and validation subsets.
These provided further confirmation that we had chosen the appropriate model.
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Figure 3. Time series response plots of different target series from the appropriate NARNN model.
(A–C) display the inputs, targets, and errors versus time and also give which time points were selected
for training, testing, and validation.

3.3. ARIMA-NARNN Model Analysis

The predicted values by the ARIMA-NARNN model from 2009 to 2012 were 1.54%, 0.09%, 0.34%
and 0.38% respectively. The values of future forecasting from 2013 through 2016 were ´2.11%, ´0.90%,
´0.84%, and ´0.37%, respectively. The predicted change trend from the hybrid model is shown in
Figure 4. The curves of the original and predicted series are very similar, indicating that the hybrid
model was well fitted to the data of schistosomiasis prevalence in humans of Yangxin County.
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The black line represents the original prevalence series (1956–2012) and the red line represents the
predicted prevalence series (1961–2016) from the ARIMA-NARNN model. The black dotted line gives
the criteria of schistosomiasis transmission control in humans.

3.4. Comparison of Results from Forecasting Performance

Table 4 presents the differences in modeling error (from 1956 to 2008) and testing error (from
2009 to 2012) between the original and predicted values using the single ARIMA, single NARNN, and
combined ARIMA-NARNN models. As shown, the hybrid model was the best model, with the lowest
MSE, MAE, and MAPE.

4. Discussion

In this study, we sought to construct a single ARIMA model, a single NARNN model, and a
combined ARIMA-NARNN hybrid model based on the data of human prevalence of schistosomiasis
in Yangxin County. The modeling MSE, MAE, and MAPE were reduced by 52.03%, 44.56% and 60.93%
and the corresponding testing error fell by 80.26%, 59.09% and 71.63% respectively as compared to
using the ARIMA model alone. When compared to the single NARNN model, the modeling MSE,
MAE, and MAPE were decreased by 73.89%, 37.89% and 35.80% and the corresponding testing error
reduced by 67.58%, 55.00% and 65.67%, respectively. Similar to the previous forecasting study in
Qianjiang City, the hybrid model achieved the lowest MSE, MAE and MAPE among the three models,
again demonstrating that the combined ARIMA-NARNN model provided a reliable hybrid forecasting
approach to predict the prevalence of schistosomiasis in humans. Comparison of prediction accuracy
of ARIMA-NARNN model in the two areas, in Yangxin County showed that the modeling error was
significantly higher than that of Qianjiang City, but the testing error was lower than that of Qianjiang
City [24]. The different characteristics of the data from different areas lead to different prediction
accuracies of the hybrid model, therefore it is unreasonable to judge if the hybrid model is more suitable
for certain area only by comparing the errors. In addition, in terms of the prediction accuracies of the
single ARIMA and single NARNN models, they were different between the two areas. In Yangxin
County, the forecasting performance of NARNN model was better than ARIMA model, however, in
Qianjiang City, the forecasting performance of ARIMA model is slightly better than NARNN model.

As shown in Figure 4, the prevalence of schistosomiasis often fluctuated during the 57 years from
1956 to 2012, but with a general decrease in overall development. The 10-year implementation of
the World Bank Loan Project for Schistosomiasis Control (1992–2001) that provided sufficient funds
resulted in great achievements [28]. Although the prevalence decreased to a lower level in 1997 (4.89%),
there was a subsequent increase afterwards, reaching a peak value of 9.97% in 2003. The uptick is
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likely due to multiple causes, including the end of the loan project, the flooding of the Yangtze River
Watershed, increased population mobility, global warming, as well as ecosystem changes caused by
the construction of the Three Gorges Dams and the South–North Water Conversion Project [29–31].
Thereafter, Chinese government took action with a series of integrated control strategies and the
prevalence decreased yearly since 2004 [32]. As a result of the implementation of this new strategy,
by the end of 2010, the prevalence of schistosomiasis was reduced to 0.65%. This met the criteria for
transmission control of human schistosomiasis in China [6], with a prevalence of less than 1.00%. The
predicted prevalence from 2013 to 2016 was also under this criterion. However, these predicted values
showed a slight increase which could be an alert for policymakers to strengthen our current control
programs in order to prevent a rebound of the disease and further achieve the goal of schistosomiasis
elimination. Although the baseline data and the predicted prevalence of schistosomiasis from 2013
to 2016 in Qianjiang City and Yangxin County suggest that the developments of the epidemic trends
of schistosomiasis are different between the two areas, the ARIMA-NARNN hybrid model is still
applicable in the both places.

In our proposed hybrid model, the linear ARIMA model and the nonlinear NARNN model were
jointly used, aimed at capturing different forms of the relationship in the time series data so as to
improve forecasting performance. The empirical results clearly suggest that the ARIMA-NARNN
hybrid model is able to outperform each component model used in isolation. In the first modeling
stage, the ARIMA model dealt with the non-stationary linear component of the original prevalence
series. The best ARIMA models we have established were ARIMA ((4), 1, (5)), which showed that
the predicted values at year t depended not on the previous year t-4, but on the random error at
year t-5. Based on the modeling data 1956–2008 and 1956–2012, the constructed ARIMA models had
the same order parameters and the estimated model parameters were also very close. There was
similar result to the study of Qianjiang. This could be due to the steady downward trend without
fluctuation from 2009 to 2012 in both of these two areas, which had little influence on the ARIMA
model. Although developing the ARIMA model requires constantly rejoining the new actual values,
when the characteristics of the modeling data are similar to those in this study, we can also try to
build the ARIMA model, ignoring the absence of the last few actual time values. In the second stage,
the NARNN model dealt with nonlinearity by modeling the residual series from the ARIMA model.
Target series OS with delays 5, RS with delays 6, and NRS with delays 5 indicates that the predicted
residuals of the corresponding OS, RS, and NRS at year t depended on the previous 5, 6 and 5 years’
values, respectively. We then constructed the ARIMA-NARNN model with the finally predicted yearly
prevalence from 2013 to 2016 at less than zero. To be clear, in the forecasting analysis, the negative
values represent the predicted trend rather than an actual value. If the modeling data were extremely
small, the subsequent corresponding predictions would be negative.

In recent years, hybrid models combining linear and nonlinear components for time series
forecasting have been extensively applied [33–37]. Given the results of our modeling analysis, we
want to highlight the following advantages presented by this work. First, the SAS procedure can
automatically generate the minimum BIC, which breaks up the order process to help set up the ARIMA
model. Second, NARNN model is generally more powerful than static networks developed in some
previous studies of time series forecasting, such as the multilayer perceptron (MLP), back-propagation
neural network (BP), radial basis function neural network (RBF), probabilistic neural network (PNN)
and generalized regression neural network (GRNN) [20,38–40]. The NARNN model which can be
trained to learn time-varying patterns is applicable to the data set in this study. We performed necessary
calculations with an easy-to-use graphical environment in the neural network tool of MATLAB, which
ultimately allowed us to easily design the NARNN model. Our proposed hybrid model is easier to
be mastered than the other models found in the references [33–37], and can improve the applicablity
to the grass-roots workers in control of schistosomiasis. In addition, time series forecasting is a far
easier approach than models associated with the risk factors of schistosomiasis infection including the
distribution of Oncomelania, socio-economic factors, ecology environment, life style, diagnostic tools
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and therapeutic methods [41,42]. However, by eliminating these factors, the time series forecasting
analysis we currently have is incomplete. Another constraint of time series forecasting is its limited
ability to extrapolate—the longer the forecasting time, the lower the prediction accuracy.

5. Conclusions

Our study showed that the combined ARIMA-NARNN model is a reliable tool to forecast
the prevalence of schistosomiasis in humans. Further studies will be needed to develop synthetic
approaches combining various factors and methods of different types to improve the ability of early
warning and prediction of schistosomiasis. Importantly, this model is by no means isolated to use in
schistosomiasis prediction, and could easily be adapted to forecast other communicable diseases.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/13/4/355/s1,
Table S1: Annual prevalence of schistosomiasis in Yangxin County (1956–2012).
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