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Abstract: Collecting a fine scale of microclimate data can help to determine how physical
characteristics (e.g., solar radiation, albedo, sky view factor, vegetation) contribute to human exposure
to ground and air temperatures. These data also suggest how urban design strategies can reduce
the negative impacts of the urban heat island effect. However, urban microclimate measurement
poses substantial challenges. For example, data taken at local airports are not representative of
the conditions at the neighborhood or district level because of variation in impervious surfaces,
vegetation, and waste heat from vehicles and buildings. In addition, fixed weather stations cannot
be deployed quickly to capture data from a heat wave. While remote sensing can provide data
on land cover and ground surface temperatures, resolution and cost remain significant limitations.
This paper describes the design and validation of a mobile measurement bicycle. This bicycle
permits movement from space to space within a city to assess the physical and thermal properties
of microclimates. The construction of the vehicle builds on investigations of the indoor thermal
environment of buildings using thermal comfort carts.
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1. Introduction

Over the last century, the average air temperature in the United States has increased by 0.7 ˝C to
1.1 ˝C [1]. While this increase should be of concern, and spur international action to reduce greenhouse
gas emissions, air temperatures in a city are frequently 1.0 to 3.0 ˝C warmer than rural locations [2,3]. In
addition, temperatures can vary by several degrees Celsius among the neighborhoods of a city because
of variations in impervious surfaces, vegetation, and waste heat from vehicles and buildings [4,5].
While data taken by airport weather stations are reliable indicators of regional weather patterns,
and are often used as the basis for heat health warning systems [6], these data are not necessarily
representative of microclimatic conditions [7].

While techniques like remote sensing can provide block-level estimates of land surface
temperature, this information is less useful for estimating human exposure to air temperature, a
critical variable for planning public health responses to heat wave events [8]. Therefore, collecting
a fine scale of microclimatic data is necessary to establish how physical characteristics (e.g., solar
radiation, albedo, sky view factor, vegetation) contribute to local variations in exposure. Collecting
these data suggest how urban design strategies (e.g., shading, light colored pavements, street tree
planting) can reduce human exposure to temperature on hot days (>27 ˝C) [9].

Int. J. Environ. Res. Public Health 2016, 13, 159; doi:10.3390/ijerph13020159 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2016, 13, 159 2 of 19

The following paper describes the design and construction of the bicycle system, explains
the testing and validation procedures used during the summer of 2012, and presents results from
Cuyahoga County, Ohio, USA. Cleveland and its suburbs are the focus of this research because several
national-level assessments of heat vulnerability identified the region as being extremely susceptible
to high temperatures due to significant quantities of impervious surfaces, a lack of tree cover, a low
percentage of homes with air-conditioning, a high rate of poverty, and an aging population [10–12].

The introduction is organized into three sections. The first part discusses the link between the
physical characteristics of the built environment and increased ground surface and air temperatures.
The second portion describes the use of mobile measurement systems to analyze thermal comfort
and the urban canopy layer. The third and final section of the introduction introduces the research
questions that guided the research.

1.1. Urban Heat Islands

Since the 1830s, studies in Europe, North America, and Asia have investigated the urban heat
island (UHI) effect [13], though the first article to use the term “heat island” was not published until
1958 [2,14]. UHIs are broadly defined as the temperature difference between urbanized areas and their
rural surroundings [15]. UHIs are a byproduct of all human settlements regardless of their size; they
are an important topic for research because they increase temperature exposure during heat waves,
increase electrical demand associated with air-conditioning, and increase ground-level smog [16].

This research focuses on ground surface and urban canopy layer UHIs because they increase
human thermal exposure during extreme heat events. The following subsections outline how these
UHIs form, measurement techniques, and their impacts on the urban climate [17].

1.1.1. Surface Heat Islands

Ground surface heat islands are primarily a daytime phenomenon that form under several
conditions: (1) when the albedo of land covers is reduced (e.g., when vegetated area is converted
to concrete); (2) when thermal properties of materials increase storage of heat during the daytime;
(3) when pollution creates a greenhouse effect that reduces radiative losses; and (4) when urban
canyons decrease longwave radiation loss at night [16]. According to Oke [18], these ground surface
heat islands are important to the overall energy balance of the urban climate because they modify air
temperatures in the urban canopy layer, exchange energy with the lowest layers of the atmosphere,
and directly impact human thermal by increasing mean radiant temperature.

Ground surface heat islands are typically measured by remote sensing equipment like satellites.
For example, Lo and Quattrochi [19] used the Landsat visible, near infrared, and thermal wavelength
data to develop statistical relationships between vegetation and ground surface temperatures in Atlanta.
They found that surface temperatures and the normalized differential vegetation index (NDVI) were
negatively correlated, which suggests that the concrete and asphalt that replaced forest and cropland
had increased ground surface temperatures. Using Landsat, IKONOS, and Aqua satellite-based
datasets, Imhoff et al. [2] found that impervious surface area explains 70% of the total variation in land
surface temperature for thirty-eight of the most populous cities in the United States.

Under calm, cloudless conditions, the average difference in daytime surface temperatures between
urban and rural sites is 10 to 15 ˝C; the difference in nighttime surface temperatures is less at 5 to
10 ˝C [15]. The magnitude of ground surface UHIs varies seasonally due to changes in the sun’s
altitude, weather conditions, and vegetative cover. Surface UHIs are typically the greatest in the
summer [18]. Although the primary impact of ground surface heat islands is a warming of the air, they
also increase radiative gain to buildings, thereby increasing air-conditioner usage.

1.1.2. Urban Canopy Layer Heat Islands

Urban canopy layer heat islands form under similar conditions to ground surface UHIs [20].
However, two additional factors cause localized warming of the air: (1) anthropogenic heat is released
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by the combustion of fuels from mobile and stationary sources; (2) a reduction of evaporating surfaces
puts more energy into sensible rather than latent heat [16]. Canopy layer heat islands are the
temperatures directly related to human temperature exposure occurring from roughly one meter
above the ground to the average height of the surrounding buildings.

Measurement of air temperature in the urban canopy layer is difficult because most developed
areas do not conform to standard guidelines for site selection and instrument exposure [7]. Of particular
concern is the impact of local waste heat sources like building air-conditioning equipment, industrial
sites, or vehicle exhaust if the goal is a representative measurement for a large area [4]. Recent
efforts by Stewart (2011) have encouraged authors to report critical information about equipment
type, calibration, and screen height to facilitate cross-comparison of studies; newly developed land
cover classifications will also help to accurately define the source area of sensors. For stationary
measurements of the canopy layer, most studies use either a weather station or microdataloggers to
make observations of the local air temperature.

Canopy layer UHIs are weak during the day but become stronger after sunset due to the release
of stored heat from the built environment. The timing and intensity depends on the season, prevailing
weather conditions, and the properties of urban surfaces. Canopy layer heat islands are less intense
than surface heat islands; air temperatures are on average only 1–3 ˝C warmer than in rural locations
in temperate cities [2,3].

1.2. Mobile Measurement of the Thermal Environment

Data from airport weather stations do not have the resolution necessary to support microclimate
studies at the district or neighborhood scale. While remote sensing can provide data on ground
surface temperatures, vegetation levels, and albedo, limitations of aerial imagery include timing, cost,
and spatial resolution. Additional fixed weather stations are expensive, are difficult to site, require
permission for installation, are subject to vandalism and theft, and cannot be deployed quickly to
capture data from a heat wave [7]. Due in part to these limitations, researchers have developed mobile
measurement systems to analyze human thermal comfort and the urban canopy layer.

1.2.1. Human Thermal Comfort

Moving measurement equipment from space to space on wheels, also called a “thermal comfort
cart”, is a simple way to gather data from inside buildings to assess human thermal comfort. At
one end of the cost spectrum, Kwok [20] describes the use of a simple push cart to transport handheld
tools to evaluate thermal comfort in tropical classrooms. At the other end, Benton and colleagues [21]
describe a portable thermal comfort field measurement system that gathered inputs from more than
ten thermal environmental sensors and stored the results to a laptop.

While the complexity of these systems varies, the results from field studies of thermal
comfort are comparable to one another because they typically reference American National
Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers
(ANSI/ASHRAE) Standard 55 to determine transducer height, accuracy, and response time [22].
However, a review of building thermal comfort research has revealed a lack of information on human
response to conditions in semi-conditioned transitional spaces like passageways, courtyards, atria, and
arcades. To address this gap, Potvin [23] investigated urban arcades using a backpack-based system,
comparing thermal environmental conditions to established thermal comfort models. Building on this
research, Chun and Tamura [24] used a cart to ferry equipment through a shopping mall, department
store, and train station in Japan while surveying subjects. Their research showed that mobile methods
could be extended to cover larger distances (~1 km) and semi-conditioned spaces, helping to bridge a
gap in research between the indoor and outdoor thermal environments.
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1.2.2. Urban Canopy Layer

Mobile measurement of the urban canopy layer provides a simple way to gather data along a
transect that spans urban and rural land uses. Mobile surveys are commonly used in urban climate
studies to assess air temperature within canopy layer UHIs [25,26]; they can also be used as part of a
larger observation network [27]. Automobiles, vans, or light trucks are the most common platform
for these studies; temperature sensors are typically attached in front of the engine or to the roof or to
avoid thermal contamination [28,29]. Advantages of mobile surveys include high temporal resolution
of data, low cost compared to the expense of installing multiple stationary weather stations, and no
need to cross-calibrate sensors and data from multiple sites [30].

Although using carts to study indoor thermal comfort and using automobile transects to analyze
the urban canopy layer are both well-established approaches within their respective literatures, until
recently few efforts bridged the gap between these micro- and mesoscale methods. Melhuish and
Pedder [31] were the first to demonstrate that UHIs could be measured at very little cost by using
handheld equipment transported by bicycle. Heusinkveld et al. [32] constructed a high-end mobile
platform on a Dutch cargo tricycle to measure mean radiant and air temperatures in Rotterdam; their
data were used to validate a thermal comfort model [33].

Brandsma and Wolters [34] split the difference between these two approaches by collecting air
temperature data using a microdatalogger attached to the front of a bicycle. Over a three-year period,
they collected data along a 14-kilometer-long transect in Utrect to describe the magnitude of the local
UHI. They then used a regression model to predict the mean and maximum UHI intensity using local
land covers as independent variables. This study had the greatest influence on this research; it showed
how a bicycle could be used to obtain high-resolution observations of the UHI along a transect.

Finally, Coseo [9] used an industrial tricycle to transport a full weather station with a telescoping
three-meter measurement mast to measure the microclimates of eight neighborhoods in Chicago,
Illinois. While all of these studies demonstrate the utility of using cycles to take measurements, the
methodology is still evolving, and their remains challenges such as accounting for the movement of
the equipment during testing. The following sections of this paper present the use of a bicycle to gather
ground and air temperature data along an urban-to-rural transect in Northeastern Ohio.

2. Experimental Section

Cuyahoga County is located in the humid, mid-latitude zone of the United States at approximately
41.5˝N and 81.7˝W. The average temperature in July is 23.1 ˝C with a high of 28.1 ˝C; the average
temperature in January is ´2.2 ˝C with a low of ´5.7 ˝C [35].

The northern border of Cuyahoga County is Lake Erie; this large body of freshwater moderates
temperatures in the height of summer. Although this heat sink provides a protective effect for Greater
Cleveland, the frequency of heat waves in the Midwest has increased over the last sixty years [36].
In addition, the magnitude of heat stress in the region is projected to grow because of local increases in
humidity [37]. Therefore, understanding how factors like land cover moderate local temperatures is
an important first step in reducing heat-related morbidity and mortality.

2.1. Mobile Measurement System Design

Although other studies have used bicycles as a platform to analyze the urban canopy layer,
these studies gathered air temperature and relative humidity with either handheld equipment or
microdataloggers attached to the bicycle. To the best of our knowledge. this is the first time a
research-grade weather station has been installed on a bicycle to gather multiple types of data
(e.g., ground surface temperature, solar radiation, sky view factor) for analysis. A secondary goal
was determining the amount of equipment that could be carried, whether a bicycle was a suitable
platform for this type of analysis, and what limitations non-motorized transportation imposed on the
investigation of rural-to-urban transects.
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Because meteorological equipment needed to be at least 1.25-meters above grade to avoid
interference from the ground [7], and the equipment needed to be moved up to 50 kilometers per
transect, a cargo bicycle was chosen as a base for the equipment. Cargo (or trekking) bicycles are
commonly used for bicycle touring with large amounts of camping equipment. They differ from
standard bicycles in that they have a heavier-duty frames, spokes, and brakes, as well as longer
wheelbases to improve stability under load.

Figure 1 illustrates the final configuration of the equipment on the cargo bicycle; Table 1 presents
the specifications for each piece of equipment. A thermocouple unit, hygrometer unit, and GPS unit
were installed at the top of a 2.0-meter-tall aluminum tower constructed of extruded aluminum sections.
The GPS unit collected latitude, longitude, and speed, and provided a time stamp to synchronize
fisheye images taken by a camera to determine sky view factor. A four component net radiometer
and infrared radiometer were installed off the back of the bicycle 1.25 meters above the ground to
gather information about incoming and outgoing short- and longwave radiation and ground surface
temperature. All of the equipment took a reading once every second; the datalogger averaged the
measurements for each minute and stored it to an onboard solid state hard drive.
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Figure 1. Image of the bicycle-based mobile measurement system: (1) GPS; (2) relative humidity and
air temperature; (3) air temperature; (4) sky view factor camera location (not shown); (5) datalogger
and barometric pressure; (6) ground surface temperature; (7) four component net radiometer.

The aluminum bar installed horizontally off of the back of the bicycle was an attempt to move the
net radiometer and infrared radiometer as far away as possible from the bicycle to reduce interference;
a 1.0-meter distance balanced the bicycle weight from front to back to prevent tipping when ascending
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or descending hills. A bicycle trailer was not suitable for this purpose because the equipment might
be damaged on rough pavement (the net radiometer contained a platinum fine wire thermistor that
could easily be damaged). A watertight box contained the datalogger and a barometer to measure
atmospheric pressure. Both the tower and datalogger box were connected to a bicycle rack using
standard pannier hardware that facilitated quick assembly on site.

Table 1. Equipment installed on the mobile measurement system.

Description Location Accuracy

Air Temperature BetaTherm 100K6A1IA Thermistor
in 6-Plate Radiation Shield Top of mast, 2 m ˘0.2 ˝C

Relative Humidity Campbell CS215 Top of mast, 2 m ˘0.2 ˝C, ˘4% RH

Incoming/Outgoing
Solar Radiation Hukseflux NR01 Net Radiometer Off back of mast, 1.25 m ˘2.5%, ISO Second Class

Incoming/Outgoing
Longwave Radiation

Ground Surface Temperature Apogee SI-111 Infrared Radiometer Off back of mast, 1.25 m ˘0.2 ˝C

Latitude/Longitude
Garmin GPS16X-HVS Top of mast, 2 m <3 m with DGPS correction

Time 1 µs

Wind Speed N/A

Barometric Pressure Vaisala PTB110 In datalogger enclosure ˘0.3 hPa at +20 ˝C

Sky View Factor
Nikon D5100 w/Sunex 5.6 mm

Fisheye Lens Front Bicycle Rack Not Specified

Nikon GP-1
Datalogger Campbell CR3000 Rear Bicycle Rack Varies by Input Type

Datalogger Enclosure Campbell PWENC 12/14 N/A

Total Weight Bicycle: ~15 kg, Equipment: ~30 kg

Table format adapted from Benton et al. [21]. Data provided by Campbell Scientific, Inc., and individual
sensor manufacturers.

Sky View Factor Measurement

A common parameter used to characterize the geometry of urban canyons is the sky-view
factor (SVF), a measure of the degree to which the sky is obscured by the surroundings for a given
point. Several authors have described the use of fisheye lenses for measurement of SVF [38,39], and
Frazer et al. [40] described the advantages of digital- over film-based systems. However, the design
of this SVF measurement system was most influenced by Grimmond et al. [41], who used a digital
camera with a fisheye lens to gather SVF data in Bloomington, Indiana.

This system used a newer version of the same Nikon camera, the D5100, which had an on-board
intervalometer to take an image every minute. In addition, an accessory GPS unit synchronized the
photography with the datalogger data collection cycle and geocoded each image. A fixed f/5.6 Sunex
5.6 mm fisheye lens was used for imagery because it had a 185˝ field of view and no moving parts that
could be damaged by vibration.

The photographic equipment was placed in an air- and watertight plastic box with a clear acrylic
dome on the top. The plastic case contained protective foam in case the apparatus fell off the bike.
In the box on the front of the bike, the camera lens was 0.75 meters above the ground. As the lens
had a high fixed f-stop, every image was in focus and had a good depth of field with a shutter speed
of 1/1000 s.

Because the camera was facing toward the sky, solar radiation tended to overheat the interior of
the box and the camera. A reusable icepack was chilled in a refrigerator and placed in the box prior to
each transect to keep the camera cool. In addition, white electrical tape was placed around the base of
the clear plastic dome to reflect as much solar radiation as possible without obstructing the image.

The camera collected a hemispherical image every minute of the transect. After each ride, it was
necessary to crop out the half of the image that was obscured by the rider and equipment. A computer
code was developed to automate the cropping, reduce the file size, and convert the image to black and
white for analysis. After all of the images were processed, they were input into the SkyViewFactor
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Calculator software, version 1.1 [42]. Using the time and geocode on each image, it was possible to
match the SVF data with the other meteorological data gathered by the bicycle.

2.2. Route Selection

To test the limitations of the bicycle, a number of bicycle paths in Cuyahoga County were selected
with a variety of land covers, topographies, distances from Lake Erie, and paving types. The Cleveland
Metroparks and the Cuyahoga Valley National Park maintained the bicycle paths; both organizations
required research permits and liability insurance prior to the first ride. Based on a walk-through of
each site, the transects were limited to the four paths presented in Figure 2.

Because one goal of the research was to correlate air temperature with land cover (i.e., impervious
surfaces, bare soil, grass, forest, and water) the bicycle was used on days immediately before or after a
Landsat 7 acquisition date. However, the data was post-processed, cloud cover and gaps in the data
made the satellite information unusable. A 10-meter resolution land cover analysis recently completed
by the Cuyahoga County Geographical Information Systems (GIS) Department [43] was substituted
for the satellite data.
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Department (2012), U.S. Census Bureau (2010), National Land Cover Database (2006).

To randomize the collection of data, a random number table was used to select the path and
direction for each ride. Every attempt was made to ride the paths during the hottest part of the day,
typically in the late afternoon. Due to safety concerns, the bicycle was not operated at night. In total,
twelve rides were completed on the bicycle paths where the data was deemed usable.

2.3. Data Quality Control and Reference Air Temperatures

For the air temperature analysis, it was necessary to have an air temperature from a local
station to control for daily weather conditions. Data was used from site CND01 because it recorded
measurements every 6 min, limiting the need for interpolation between data points.

According to the NOAA National Data Buoy Center website, the CND01 weather station is
located at 41.542˝N and 81.637˝W. Air temperature on site is measured at 3.9 m above the ground;
wind speed is gathered at 7.77 m above the ground [44]. Before using data from this weather station, a
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site visit was conducted to ensure that the measurement equipment was not subject to contamination
from local heat sources like automobile exhaust or air-conditioning equipment.

2.4. Data Processing

The data from the bicycle was linked with the reference air temperature data from station CND01
using the timestamp. This data was input into GIS software to begin examining spatial relationships
among the data. Using the latitude and longitude data associated with each measurement point, the
data points were geolocated on the Canal Towpath and then overlaid onto the 10-meter resolution
land cover from the Cuyahoga County GIS Department.

Local ground and air temperatures under the canopy layer are affected by land covers; this is
frequently called the “source area” or “footprint” of the measurement [7]. Source areas are often
assumed to have a circular or elliptical shape [4,34]. To facilitate comparsion of the results with those of
Brandsma and Wolters [35] and Coseo and Larsen [4], circles were selected with radii varying from 25
to 600 m. An ellipse was also selected that was 500 m long and 300 m wide, with the long axis of the
ellipse facing upwind at each point. GIS software was then used to extract the fraction of each of the
five land covers around each measurement point.

3. Results and Discussion

Because of the day-to-day variability of weather, it was necessary to control for local conditions
and unobserved phenomena during each ride. To this end, several control variables were included in
the analysis. These variables included the reference air temperature from station CND01, the speed of
the bicycle, dummy variables for each of the four rides, and five latitude and longitude variables to
account for spatial autocorrelation.

Before performing a statistical analysis, a bivariate analysis was conducted to understand the
relationship among the independent variables and the ground surface temperature on the four rides
on the towpath. Table 2 presents the correlation among these variables. The 11 significant bivariate
correlations (p < 0.001) were (1) reference air temperature (0.130); (2) incoming solar radiation (0.696);
(3) albedo (´0.308); (4) sky view factor (0.297); (5) dummy variable for the second ride on 25 July 2012
(0.253); (6) dummy variable for the third ride on 25 July 2012 (´0.297); (7) latitude (0.260); (8) longitude
(´0.234); (9) latitude to the second power (0.260); (10) longitude to the second power (0.234); and
(11) latitude multiplied by longitude (´0.255). Neither the dummy variable for the fourth ride nor
the speed of the bicycle were statistically significant. The bivariate correlations help to clarify the
relationship among variables before proceeding to a regression model.

Although there was high correlation among all five of the latitude and longitude variables, they
are only used as a control for spatial autocorrelation and are not statistically significant in the final
regression model. Any inflation in the variance and standard error would be limited to these spatial
variables. While several of these variables could have been omitted to reduce multicollinearity among
the spatial variables—for example, by using only latitude and longitude as a control—it was important
to include latitude and longitude to the second power because the variation in observations might
not vary linearly. Latitude multiplied by longitude was included to account for any interactive effect
between latitude and longitude, since the towpath route is oriented NNW to SSE. This approach is
consistent with those of other studies that include spatial variables in regression models, for example
Immergluck and Smith [45] and Galster et al. [46].
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Table 2. Bivariate correlations among physical characteristics and ground surface temperature.

Ground
Surface Temp.

Reference
Air Temp. Solar Rad. Albedo SVF Bicycle

Speed
Ride 2

Dummy
Ride 3

Dummy
Ride 4

Dummy Lat. Long. Latitude2 Longitude2

Reference
Air Temp. 0.130 ***

Solar Rad. 0.696 *** ´0.164 ***
Albedo ´0.308 *** 0.529 *** ´0.123 ***

SVF 0.297 *** ´0.309 *** 0.417 *** ´0.292 ***
Bicycle Speed ´0.005 ´0.201 *** 0.045 ´0.229 *** 0.161 ***

Ride 2 Dummy 0.253 *** 0.416 *** 0.318 *** 0.437 *** ´0.208 *** ´0.252 ***
Ride 3 Dummy ´0.297 *** 0.108 ** ´0.095 ** ´0.024 ´0.012 0.102 ** ´0.400 ***
Ride 4 Dummy ´0.060 ´0.857 *** 0.135 *** ´0.541 *** 0.341 *** 0.199 *** ´0.340 *** ´0.309 ***

Latitude 0.260 *** ´0.619 *** 0.209 *** ´0.614 *** 0.491 *** 0.225 *** ´0.375 *** ´0.237 *** 0.687 ***
Longitude ´0.234 *** 0.655 *** ´0.186 *** 0.625 *** ´0.444 *** ´0.196 *** 0.380 *** 0.263 *** ´0.733 *** ´0.977 ***
Latitude2 0.260 *** ´0.619 *** 0.209 *** ´0.614 *** 0.491 *** 0.224 *** ´0.375 *** ´0.237 *** 0.687 *** 1.000 *** ´0.977 ***

Longitude2 0.234 *** ´0.655 *** 0.186 *** ´0.625 *** 0.444 *** 0.196 *** ´0.380 *** ´0.263 *** 0.733 *** 0.977 *** ´1.000 *** 0.977 ***
Lat. ˆ Long. ´0.255 *** 0.632 *** ´0.204 *** 0.619 *** ´0.481 *** ´0.218 *** 0.378 *** 0.245 *** ´0.703 *** ´0.998 *** 0.987 *** ´0.998 *** ´0.987 ***

** p < 0.01, *** p < 0.001.
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3.1. Ground Surface Temperature Regression Analysis

Drawing on the results of the bivariate correlation and a review of the literature, the hypothesis
was that incoming solar radiation, albedo, and sky view factor would explain the variation in ground
surface temperatures along each transect. To test this hypothesis, an ordinary least squares (OLS)
regression was performed to determine the explanatory power of the independent variables on ground
surface temperature.

The hypothesis was tested with three models. Model 1 included only the independent variables
and a control for bicycle speed. Model 2 utilized all of the variables from the first model and added
three dummy variables to control for unobserved phenomena on each ride. Model 3 included
five spatial variables based on the latitude and longitude of each observation to control for spatial
autocorrelation. Results from the regression analysis appear in Table 3.

Model 1, which includes reference air temperature, incoming solar radiation, albedo, sky view
factor, and the bicycle speed, explains 71.8% of the variation in ground surface temperature. The
model is statistically significant, with an F-statistic of 382.64. (The F-statistic is a test statistic for linear
regression models that helps with evaluating the statistical significance of a model and its components.)
With the exception of sky view factor, all of the independent variables are statistically significant
(p < 0.01).

Including the dummy variables for each of the four rides gives Model 2 an adjusted R2 of 0.845,
an improvement of 0.127 over Model 1. This model is also statistically significant, with an F-statistic of
511.90. In the second model, all of the variables are significant except sky view factor and the control
variable for bicycle speed (p < 0.001).

Table 3. Regression analysis for ground surface temperatures on the canal towpath.

Model 1 Model 2 Model 3

β SE t´Statistic β SE t´Statistic β SE t´Statistic

Reference Air Temperature 1.300 *** 0.060 21.52 1.007 *** 0.078 12.91 1.023 *** 0.076 13.50
Incoming Solar Radiation 0.014 *** 0.000 33.32 0.016 *** 0.000 40.31 0.015 *** 0.000 40.57

Albedo ´36.350 *** 1.723 ´21.09 ´37.589 *** 1.367 ´27.50 ´34.011 *** 1.441 ´23.61
Sky View Factor 0.367 0.415 0.89 0.180 0.326 0.55 ´0.277 0.336 ´0.83

Bicycle Speed ´0.168 ** 0.065 ´2.59 ´0.082 0.049 ´1.67 ´0.068 0.049 ´1.41
Ride 2 Dummy ´2.475 *** 0.239 ´10.35 ´2.011 *** 0.241 ´8.34
Ride 3 Dummy ´5.162 *** 0.208 ´24.73 ´4.632 *** 0.217 ´21.31
Ride 4 Dummy ´3.927 *** 0.389 ´10.09 ´4.839 *** 0.411 ´11.78

Latitude ´2780.866 28945.53 ´0.10
Longitude 3650.522 41717.6 0.09
Latitude2 143.972 247.177 0.58

Longitude2 50.716 380.544 0.13
Latitude ˆ Longitude 111.713 581.365 0.19

Constant 7.363 *** 1.467 5.02 15.643 *** 1.861 8.41 205958.3 1222943 0.17
n 759 759 759
F 382.64 511.90 340.32

Adjusted R2 0.718 0.845 0.856
Change in R2 0.127 0.011

** p < 0.01, *** p < 0.001.

Adding the five latitude/longitude variables to control for spatial autocorrelation in Model 3
improves the adjusted R2 to 0.856, an improvement of 0.011 over Model 2. However, the F-statistic of
the model drops to 340.32, likely because five additional variables that are not statistically significant
were added to the model. In this third model, only the reference air temperature, solar radiation and
albedo are statistically significant (p < 0.001), and they have similar coefficient values to Model 2.
This may mean that spatial variables could be omitted from a ground temperature model; however,
further analysis of additional rides would be necessary to test this claim.

Figure 3 compares the ground surface temperature as measured by the equipment on the bicycle
and as predicted by Model 2. From the lowest temperatures recorded (~20 ˝C) through approximately
40 ˝C, there is a strong fit in the model. Above 40 ˝C, Model 2 has a tendency to underpredict the
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ground surface temperature; this may mean that other factors such as soil type, soil moisture, pavement
thickness, time of day, or other factors lead to higher temperature pavement.
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Figure 3. Comparison of ground surface temperature as measured by the bicycle and as predicted by
Regression Model #2.

3.2. Air Temperature Bivariate Correlations

Before performing a statistical analysis, a bivariate analysis was conducted to understand the
relationship among the independent variables and the air temperatures on three rides on the towpath.
The fourth ride was omitted from 16 September 2012 because the air temperatures were low; the
primary interest was in the relationship among physical characteristics and air temperatures on hot
days (>27 ˝C). Table 4 presents the correlations among these variables.

The fractions of forest and water were calculated from the Cuyahoga land cover database as
the percentage of each land cover in an ellipse that was 500 m long and 300 m wide with the long
axis oriented upwind from the observation [4,7]. While the Cuyahoga County land cover database
characterized land covers for five types (impervious, barren, grass, forest, and water), impervious and
grass land covers had a similar coefficient that increased air temperature. Very few of the observations
(<5%) had bare soil in the upwind ellipse. Therefore, these three land covers (impervious, barren,
grass) were folded into one classification called “impervious” for the analysis.

The 11 significant bivariate correlations (p < 0.025) were (1) the reference air temperature at station
CND01 (0.734); (2) ground surface temperature (0.232); (3) fraction water (´0.142); (4) bicycle speed
(´0.114); (5) dummy variable for the first ride on 27 June 2012 (0.199); (6) dummy variable for the
second ride on 25 July 2012 (0.235); (7) latitude (´0.003); (8) longitude (´0.011); (9) latitude to the
second power (´0.003); (10) longitude to the second power (´0.011); and (11) latitude multiplied
by longitude (0.005). The fraction of forest in the upwind ellipse was not statistically significant.
The bivariate correlations helped to clarify the relationship among variables before proceeding to a
regression model.
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Table 4. Bivariate correlations among physical characteristics and measured air temperature.

Measured
Air Temp.

Reference
Air Temp.

Ground
Surface Temp.

Fraction
Forest

Fraction
Water

Bicycle
Speed

Ride 1
Dummy

Ride 2
Dummy Lat. Long. Latitude2 Longitude2 Lat. x Long.

Measured Air Temp. 1

Reference Air Temp. 0.734 *** 1

Ground Surface Temp. 0.232 *** 0.050 1

Fraction Forest ´0.090 0.111 * ´0.209 *** 1

Fraction Water ´0.142 ** ´0.026 ´0.140 ** ´0.119 * 1

Bicycle Speed ´0.114 * ´0.117 * ´0.017 ´0.181 *** ´0.005 1

Ride 1 Dummy 0.199 *** 0.013 0.028 ´0.189 *** ´0.058 0.010 1

Ride 2 Dummy 0.235 *** 0.360 *** 0.316 *** 0.207 *** ´0.124 ** ´0.220 *** ´0.507 *** 1

Latitude ´0.003 ´0.169 *** 0.470 *** ´0.402 *** ´0.305 *** 0.170 *** 0.160 *** ´0.041 1
Longitude 0.011 0.157 *** ´0.487 *** 0.397 *** 0.268 *** ´0.160 *** ´0.209 *** 0.082 ´0.976 *** 1
Latitude2 ´0.003 ´0.169 *** 0.470 *** ´0.402 *** ´0.305 *** 0.169 *** 0.161 *** ´0.041 1.000 *** ´0.976 *** 1
Longitude2 ´0.011 ´0.157 *** 0.487 *** ´0.397 *** ´0.268 *** 0.160 *** 0.209 *** ´0.082 0.976 *** ´1.000 *** 0.976 *** 1

Latitude ˆ Longitude 0.005 0.166 *** ´0.476 *** 0.402 *** 0.298 *** ´0.168 *** ´0.173 *** 0.051 ´0.999 *** 0.986 *** ´0.999 *** ´0.986 *** 1

* p < 0.025, ** p < 0.01, *** p < 0.001.
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3.3. Air Temperature Regression Analysis

Drawing on the results of the bivariate correlation and a review of the literature, reference air
temperature, ground surface temperature, and land cover types were hypothesized to explain the
variation in air temperatures along each transect. To test this hypothesis, an ordinary least squares
(OLS) regression was performed to determine the explanatory power of the independent variables
on air temperature. Because of the day-to-day variability of weather, it was necessary to control for
local conditions and unobserved phenomena during each ride. To this end, several control variables
were included in the analysis. These variables included reference air temperature from station CND01,
the speed of the bicycle, dummy variables for each of the four rides, and five latitude and longitude
variables to account for spatial autocorrelation.

The hypothesis was tested with three models. Model 1 included only the independent variables
and a control for bicycle speed. Model 2 used all of the variables from the first model and added
two dummy variables to control for unobserved phenomena on each ride. Model 3 included five spatial
variables based on the latitude and longitude of each observation to control for spatial autocorrelation.
The analysis was limited to temperatures over 27 ˝C because of an interest in the relationship among
the independent variables and air temperature on the hottest days to help quantify exposure during
heat waves. Results from the regression analysis appear in Table 5.

Table 5. Regression analysis for measured air temperature on the canal towpath.

Model 1 Model 2 Model 3

β SE t´Statistic β SE t´Statistic β SE t´Statistic

Reference Air Temperature 0.490 *** 0.020 24.520 0.483 *** 0.021 22.590 0.479 *** 0.020 23.520
Ground Surface Temp. 0.014 *** 0.003 4.620 0.014 *** 0.003 4.330 0.020 *** 0.003 5.940

Fraction Forest ´0.476 *** 0.090 ´5.320 ´0.387 *** 0.090 ´4.310 ´0.249 * 0.104 ´2.410
Fraction Water ´0.875 *** 0.215 ´4.060 ´0.771 *** 0.212 ´3.640 ´0.677 ** 0.215 ´3.150
Bicycle Speed ´0.022 0.012 ´1.860 ´0.019 0.012 ´1.670 ´0.013 0.011 ´1.150

Ride 1 Dummy 0.171 *** 0.039 4.440 0.226 *** 0.037 6.070
Ride 2 Dummy 0.016 0.047 0.330 ´0.009 0.045 ´0.210

Latitude 11795.720 6127.608 1.930
Longitude ´25575.51 ** 9797.343 ´2.610
Latitude2 277.327 *** 57.064 4.860

Longitude2 ´48.836 83.202 ´0.590
Latitude ˆ Longitude 425.646 *** 124.343 3.420

Constant 16.930 *** 0.483 35.050 16.931 *** 0.512 33.070 ´1287504 *** 309841.4 ´4.160
n 448 448 448
F 139.73 109.51 80.31

Adjusted R2 0.608 0.630 0.680
Change in R2 0.022 0.05

* p < 0.025, ** p < 0.01, *** p < 0.001.

Model 1, which includes reference air temperature, ground surface temperature, fraction forest,
and fraction water, explains 60.8% of the variation in air temperature. With the exception of bicycle
speed, all of the independent variables are statistically significant (p < 0.001). Including the dummy
variables for each of the four rides improves the adjusted R2 of Model 2 to 0.630, an improvement of
0.022 over Model 1. However, the F-statistic declines from 139.73 to 109.51. In the second model, all of
the independent variables are statistically significant; the control variable for bicycle speed and the
dummy variable for the second ride are the only factors that do not achieve statistical significance at
the 0.001 level.

Adding the five spatial variables to control for autocorrelation in Model 3 improves the adjusted
R2 to 0.680, an improvement of 0.05 over Model 2. However, the F-statistic of the model drops further
to 80.31, likely because five variables with limited statistical significance were added to the model.
However, it was important to control for spatial autocorrelation because observations near one another
could skew the direction of the coefficients and their value. In this third model, all of the independent
variables are statistically significant at the 0.025 level.
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Figure 4 compares the air temperature as measured by the equipment on the bicycle and as
predicted by Model 3. Similar to the ground temperature regression models, this model has a tendency
to underpredict the highest air temperatures. This is likely because air temperature can fluctuate in
very short distances due to things like waste heat emissions while components of the regression model
(i.e., reference air temperature, land cover) change slowly over a transect.Int. J. Environ. Res. Public Health 2016, 13, 159 
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Testing Diameters of Source Areas

Although the model presented in the last section used an upwind 500 m-by-300 m ellipse to
quantify land cover, several radii of circles were tested around each observation point to determine
their contribution to air temperature. This analysis was conducted to compare results with the findings
of Brandsma and Wolters [35], the only other study that used a bicycle to gather air temperature data
to quantify a canopy layer UHI.

Table 6 presents the results of this analysis; note that the control variables including bicycle speed
and latitude/longitude have been omitted from the table for clarity. Overall, the models explained
between 67.4 and 70.1 percent of the variation in air temperature. While the model with a 500 m radius
of land cover had the highest R2 at 0.701, there was only one model in which all of the dependent
variables were statistically significant and the coefficient was in the expected direction: the model
that used the upwind ellipse in the calculation. This model explained 68.0% of the variation in air
temperature. In addition, the F-statistic was higher for the ellipse model than the 500 m radius model.

These findings confirm that the ellipse shape was the best fit for the OLS regression model for
three reasons. First, while land covers are somewhat homogenous around each observation point,
they are not necessarily symmetrical upwind and downwind of each observation. For example, the
Cuyahoga River and Ohio and Erie Canal are adjacent to the path along parts of the route; if one used
a large radius circle (~500 m), they would be included in almost every observation, which would
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reduce the statistical power of this independent variable. Second, while a circle takes into account
the surrounding source areas of land covers, it is not directional in nature. Because the ellipse varies
with wind direction, the regression model “assigns” this warming to a land cover type. Finally, the
towpath runs along the southeast edge of the county. Several of the observations fell outside the land
cover database provided by the county; this is why the number of observations in Table 6 varies. If the
number of all of the land cover observations were consistent, these results might be different; for
example, there might be greater variation in R2 and F-statistic among the models.

Table 6. Comparison of radii used for air temperature OLS regression analysis.

500 m
Radius

400 m
Radius

300 m
Radius

200 m
Radius

100 m
Radius

50 m
Radius

25 m
Radius

500 m ˆ 300 m
Ellipse

n 263 273 286 435 494 499 503 448
F 52.29 53.43 55.20 75.87 86.85 88.08 88.58 80.31

Adjusted R2 0.701 0.698 0.695 0.674 0.676 0.677 0.677 0.680
β β β β β β β β

Reference Air
Temperature 0.454 *** 0.460 *** 0.468 *** 0.476 *** 0.474 *** 0.474 *** 0.473 *** 0.479 ***

Ground
Surface

Temperature
0.019 *** 0.019 *** 0.020 *** 0.020 *** 0.020 *** 0.020 *** 0.021 *** 0.020 ***

Fraction
Forest ´0.512 ´0.447 ´0.311 ´0.367 ** ´0.218 ´0.166 ** ´0.079 *** ´0.249 *

Fraction
Water 0.180 ´0.521 ´0.479 ** ´0.264 ´0.429 ´0.221 ´0.032 ´0.677 **

* p < 0.025, ** p < 0.01, *** p < 0.001.

3.4. Discussion

Incoming solar radiation, albedo, and sky view factor were hypothesized to explain the variation
in ground surface temperatures along each transect. An OLS regression model that incorporated spatial
effects to control for autocorrelation was found to be statistically significant. The results indicate that
for a 600 W/m2 reduction in incoming solar radiation, roughly equivalent to being in the shade instead
of the full sun, there would be an 8.4 ˝C drop in the ground surface temperature. Solar radiation
ranged from approximately 100 to 900 W/m2 on the towpath transects. For every 10% increase in
albedo, roughly the difference between asphalt paving and concrete, there was a corresponding 3.4 ˝C
drop in the ground surface temperature. On the towpath rides, variations in solar radiation and albedo
led to greater-than ´30 ˝C shifts in the ground surface temperature.

Although sky view factor is frequently mentioned in studies of the UHI effect, it was not found to
be statistically related to ground surface temperature in the model. This may be because solar radiation
and sky view factor were positively correlated, and therefore one of the two variables had to drop
from the model. It may also be due to the unique nature of the towpath route, which passed through
low-rise commercial/industrial spaces and natural areas as opposed to a typical downtown.

Second, it was hypothesized that reference air temperature, ground surface temperature, and land
cover types would explain the variation in air temperatures along each transect. An OLS regression
model that incorporated spatial effects to control for autocorrelation was found to be statistically
significant. The results indicate that for a 10 ˝C increase in the ground surface temperature, there is a
0.2 ˝C increase in the local air temperature. This demonstrates a link between local ground surface
temperatures and air temperature; the selection of paving materials has a significant effect on both
surface and atmospheric UHIs. However, one might expect this relationship to be stronger; the ratio
relating air and ground surface temperature would likely change if data was taken on days with
a higher air temperature (>29 ˝C). These results may also indicate that waste heat from industrial
facilities or highways may play a larger role than expected in determining local air temperatures,
consistent with Coseo and Larsen [4].

Temperatures recorded downwind from a forest were 0.25 ˝C cooler than those recorded over
impervious, bare soil, or grass land covers. Water also provided a cooling effect that was roughly
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2.7 times stronger than that of a forest. However, very large areas of forest or water were necessary to
achieve a drop in the local air temperature; roughly 11.8 hectares of water (29.16 acres) produced only a
0.67 ˝C drop in the local air temperature. These results help to understand how land cover may impact
human exposure to temperature; with these results the city or county can direct tree planting programs
in areas with lower tree canopy or high quantities of impervious surfaces. They may also choose
to focus on heat mitigation programs in neighborhoods further away from the protective cooling of
Lake Erie.

Overall, the bicycle performed well as a platform to gather data to analyze ground and surface
temperatures. It allowed one to reach locations that would be inaccessible by automobile and was
less expensive than setting up multiple research-grade weather stations. In addition, riding a bicycle
helped in the validation of land cover data, something that would be difficult to accomplish from the
confines of an automobile. Using a bicycle may also improve the validity of results because the data
are not subject to contamination from vehicle exhaust.

However, bicycles do have significant limitations, such as safety concerns, heat stress, rider fatigue,
and difficulty scaling steep terrain. Interpretation of weather data from mobile measurement systems
is also more difficult than interpreting results from static weather stations, though collecting data with
one set of sensors avoids the need to cross calibrate equipment. Although the cost of building the
bicycle is lower than purchasing multiple research grade weather stations, or getting custom remote
sensing data from satellites or airplanes, the cost is still significant. Future work could other setups to
gather mobile data, like Brandsma and Wolters [35] who simply attached a datalogger to a bicycle, or
using other low-cost datalogging systems to produce a similar analysis.

Limitations of the Study

Like any study, this research has a number of limitations. First, due to a Scan Line Corrector failure
on Landsat 7 the satellite imagery originally intended for land cover analysis contained significant
gaps. An estimated 22 percent of each scene was lost; the data gaps occur along the edge of each
image acquired by the satellite [47]. While it is possible to patch together one or more images to create
complete scenes, most of the Landsat 7 images taken during the summer of 2012 also had cloud cover
that obscured the land cover below, making the patching process unreliable. For these two reasons, the
Cuyahoga County’s 2011 land cover classification was used. While the classification was consistent
with current aerial photographs and the experience riding along the canal, in future investigations of
microclimates it would be helpful to have up to date land cover data since it may vary year to year.

Second, it would be helpful to ride the bicycle more times and with a higher temporal resolution
to establish strong statistical relationships among all of the data. As a comparison, Brandsma and
Wolters [35] completed 183 transects along a 14-km route in Utrecht over the course of three years,
taking air temperature and relative humidity measurements every second. For future studies, the plan
is to consolidate rides on one path with the widest range of land covers, such as the Canal Towpath,
and to take measurements on a wide range of high heat days. The temporal resolution of the data will
also be increased to once per second, and the bicycle will be ridden at night to determine the maximum
heat island effect.

4. Conclusions

Assessing human exposure to high temperature will require understanding both how average
temperatures are expected to shift with global warming and how local temperatures are modified
by the urban heat island effect. Although airport weather stations and remote sensing all help
to estimate ground surface and air temperatures in a city, finer scale data is needed to support
preventative programs at the neighborhood-level like cooling centers or the planting of street trees to
reduce temperatures.

Using a bicycle, a fine scale of microclimate data was collected to determine how physical
characteristics (e.g., solar radiation, albedo, sky view factor, vegetation) contributed to local variations
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in ground and air temperatures. This bicycle expanded on a methodology used by the building science
and urban climate communities. Solar radiation and albedo explain the variation in ground surface
temperatures along a transect in Cuyahoga County, Ohio. In turn, the ground surface temperature and
land cover types explained the variation in air temperatures.

Bicycles are a viable and low-cost alternative to stationary weather stations, microdataloggers,
and automobile-based measurements of microclimates. Because of its relatively low cost, city planners
may want to develop similar systems to estimate exposure in their own cities. However, additional
work is needed to standardize measurement protocols to allow for comparative studies.
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