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Abstract: Highly accurate data on the spatial distribution of ambient fine particulate matter (<2.5 µm:
PM2.5) is currently quite limited in China. By introducing NO2 and Enhanced Vegetation Index
(EVI) into the Geographically Weighted Regression (GWR) model, a newly developed GWR model
combined with a fused Aerosol Optical Depth (AOD) product and meteorological parameters
could explain approximately 87% of the variability in the corresponding PM2.5 mass concentrations.
There existed obvious increase in the estimation accuracy against the original GWR model without
NO2 and EVI, where cross-validation R2 increased from 0.77 to 0.87. Both models tended to
overestimate when measurement is low and underestimate when high, where the exact boundary
value depended greatly on the dependent variable. There was still severe PM2.5 pollution in many
residential areas until 2015; however, policy-driven energy conservation and emission reduction not
only reduced the severity of PM2.5 pollution but also its spatial range, to a certain extent, from 2014 to
2015. The accuracy of satellite-derived PM2.5 still has limitations for regions with insufficient ground
monitoring stations and desert areas. Generally, the use of NO2 and EVI in GWR models could more
effectively estimate PM2.5 at the national scale than previous GWR models. The results in this study
could provide a reasonable reference for assessing health impacts, and could be used to examine the
effectiveness of emission control strategies under implementation in China.

Keywords: nationwide ambient PM2.5; MODIS (Moderate Resolution Imaging Spectroradiometer)
AOD; satellite-derived NO2 column density; enhanced vegetation index; geographically
weighted regression

1. Introduction

Numerous previous studies reported that atmospheric particulate matter emitted from
both anthropogenic and natural sources exert influences on climate change and environmental
deterioration [1,2]. Many epidemiological studies have shown that exposure to fine suspended particles
with aerodynamic diameter less than 2.5 µm (PM2.5) are linked with cardiovascular and respiratory
diseases [3–6]. With vast consumption of energy and rapid economic development, China has suffered
from severe PM2.5 pollution and the related social problems have caused wide concerns [7,8]. Although
an air quality monitoring network has been established in China since 2013, large-scale estimation of
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PM2.5 is not practical due to the limited spatial coverage of the monitoring stations [9]. Consequently,
there exists an urgent need to acquire a spatially resolved characterization of human exposure to PM2.5

at the national scale in China [10].
In order to make up for the blanks in ground measurements, methods using remote sensing by

satellite have been adopted to estimate ground-level PM2.5 mass concentrations [11,12]. There exists
a direct relationship between the atmospheric particles and satellite-derived Aerosol Optical Depth
(AOD) because AOD represents the quantity of light removed from a beam by the role of aerosol
scattering or absorption during its path [13–16]. Previous studies proposed establishing empirical
models to correlate ground-level PM2.5 and satellite derived AOD (e.g., linear, nonlinear, and
logarithmic models) [13,17–19]. Superior models have been established for better predicting the PM2.5

concentrations combined with meteorological parameters or based on atmospheric transport models,
such as the mixed effects model (MEM) [20], the artificial neural network model (ANN) [17,21,22],
and the chemical transport model (CTM) [23]. Since the correlation between AOD and PM2.5 should
vary along with the spatial context due to different geographical areas possessing different aerosol
types [9,24,25], the Geographically Weighted Regression (GWR) model, which better constrains the
spatial variability in a large-region regression, has been adopted to estimate geographical elements
in large regions [26,27]. The particulate matter vertical distribution has been additionally taken
into consideration from a physics perspective, which could improve the correlation between PM2.5

and AOD [28]. Moreover, previous study of the GWR model combined with physical corrections
indicated that the atmospheric vertical feature could be embedded in the GWR model via Planetary
Boundary Layer Height (PBLH) for better estimation accuracy of atmospheric particulates at the
national scale [29]. Nevertheless, these statistical models rely greatly on observation from satellites
and meteorological parameters, and anthropogenic emissions need additionally consideration, such as
traffic density [30].

In this study, the molar concentration of OMI-NO2 (Ozone Measuring Instrument) and
MODIS-EVI (Moderate Resolution Imaging Spectroradiometer) were introduced into the GWR model,
considering that these two variables can be measured via satellites at a large spatial scale. A different
GWR model was then established to predict PM2.5 concentrations at the national scale using fused
MODIS-AOD based on a dark target and deep blue algorithm, meteorological parameters, daily
tropospheric NO2 molar concentration, and fixed 16-day composite EVI. For quantitatively evaluating
the model performance, a leave-one-out cross-validation was adopted to demonstrate the relationship
between measured PM2.5 and estimated PM2.5, and results from the previous GWR model without
NO2 and EVI were also provided for contrast. Moreover, the two-year annual spatial distribution of
the satellite-derived PM2.5 at the national scale was demonstrated, analyzed, and discussed.

2. Materials and Methods

2.1. Ground PM2.5 Measurements

Hourly ground-level PM2.5 measurements in China from 1 January 2014 to 31 December 2015
were collected primarily from the official website of the China Environmental Monitoring Center
(CEMC) [31] As demonstrated in Figure 1, more than 1300 air quality monitoring stations have been
built up covering residential cities in all provinces of China by the end of 2014. According to the
officially released documents of the Chinese Ministry of Environmental Protection (MEP), the PM2.5

data were measured using the tapered element oscillating microbalance method (TEOM) or the
beta-attenuation method, combined with periodic calibration [32].
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Figure 1. Spatial distribution of PM2.5 monitoring stations (solid red dots) from which data were 
gathered in this study. 

2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products 

The MODIS aboard the NASA Earth Observing System (EOS) satellite, Aqua, was shown to 
provide aerosol products with assured quality when compared with other satellite sensors [33–36]. 
In this study, we use the Collection 6 (C6) aerosol products because these products have generally 
been proven to attain fine accuracy by validation against ground monitoring observations of sun 
photometers from the Aerosol Robotic Network (AERONET) in China [37,38]. The Aqua AOD 
datasets used in this study, which were retrieved based on the relationship between the radiation 
value of specific bands over land and the aerosol optical depth, were distributed in Hierarchical Data 
Format (HDF) format from the NASA Goddard Space Flight Center [39] at the national scale 
(longitude (73°40’–135°2.5’ E), latitude (3°52’–53°33’ N)). The second generation Deep Blue (DB) was 
expanded to cover brighter desert/urban areas and vegetated land surfaces, which preferably makes 
up for deficiencies in the Dark Target (DT) algorithms [40,41]. However, the spatial resolution of the 
Aqua Level 2 AOD using DB algorithms is 10 × 10 km, while the spatial resolution of the Aqua Level 
2 AOD using DT algorithms reaches 3 × 3 km. Thus, the AOD datasets were fused by 3 km DT AOD 
and 10 km DB AOD, based on the concept of complementary advantages, in order to make merging 
AOD possess advantages on both spatial resolution and spatial coverage [42]. Moreover, only 
retrievals reaching the required quality assurance (QA) were used (corresponding to flag QA = 3 for 
DT; flag QA = 2 or QA = 3 for DB), ensuring the accuracy of the fused AOD. 

2.3. Aerological and Surface Meteorological Parameters 

Aerological parameters, including PBLH, and surface meteorological parameters, consisting of 
surface relative humidity, u-components, and v-components of surface winds, surface temperature, 
and surface atmospheric pressure, were collected from the National Centers for Environmental 
Prediction (NCEP) reanalysis datasets with 1° spatial resolution. Atmospheric product and land 
surface data taken every six hours are available in the NCEP datasets, which are available on its 
website [43].  

Figure 1. Spatial distribution of PM2.5 monitoring stations (solid red dots) from which data were
gathered in this study.

2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products

The MODIS aboard the NASA Earth Observing System (EOS) satellite, Aqua, was shown to
provide aerosol products with assured quality when compared with other satellite sensors [33–36].
In this study, we use the Collection 6 (C6) aerosol products because these products have generally
been proven to attain fine accuracy by validation against ground monitoring observations of sun
photometers from the Aerosol Robotic Network (AERONET) in China [37,38]. The Aqua AOD datasets
used in this study, which were retrieved based on the relationship between the radiation value of
specific bands over land and the aerosol optical depth, were distributed in Hierarchical Data Format
(HDF) format from the NASA Goddard Space Flight Center [39] at the national scale (longitude
(73◦40′–135◦2.5′ E), latitude (3◦52′–53◦33′ N)). The second generation Deep Blue (DB) was expanded
to cover brighter desert/urban areas and vegetated land surfaces, which preferably makes up for
deficiencies in the Dark Target (DT) algorithms [40,41]. However, the spatial resolution of the Aqua
Level 2 AOD using DB algorithms is 10 × 10 km, while the spatial resolution of the Aqua Level 2 AOD
using DT algorithms reaches 3× 3 km. Thus, the AOD datasets were fused by 3 km DT AOD and 10 km
DB AOD, based on the concept of complementary advantages, in order to make merging AOD possess
advantages on both spatial resolution and spatial coverage [42]. Moreover, only retrievals reaching
the required quality assurance (QA) were used (corresponding to flag QA = 3 for DT; flag QA = 2 or
QA = 3 for DB), ensuring the accuracy of the fused AOD.

2.3. Aerological and Surface Meteorological Parameters

Aerological parameters, including PBLH, and surface meteorological parameters, consisting of
surface relative humidity, u-components, and v-components of surface winds, surface temperature, and
surface atmospheric pressure, were collected from the National Centers for Environmental Prediction
(NCEP) reanalysis datasets with 1◦ spatial resolution. Atmospheric product and land surface data
taken every six hours are available in the NCEP datasets, which are available on its website [43].
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2.4. Satellite-Derived EVI and NO2 Data

The Enhanced Vegetation Index (EVI), which is calculated by surface reflectance in near-infrared,
red, and blue bands, is an optimized vegetation index to represent vegetation biomass. The EVI,
instead of the normalized difference vegetation index (NDVI) data, was adopted in this study to
simply characterize the reduction effect by vegetation on PM2.5 concentrations because the EVI is more
sensitive to variations in regions having high biomass, which is an obvious advantage over NDVI [44].
Although the calculation of EVI is similar to NDVI, the distortions caused by atmospheric particles in
the reflected light have been corrected, and the EVI product barely becomes saturated when scanning
regions containing large amounts of chlorophyll [45]. EVI data with 1 km spatial resolution and 16-day
temporal resolution was collected from the NASA LAADS website [39].

The daily tropospheric column density of NO2 were collected from the NASA OMI level 2
nitrogen dioxide dataset with 0.25◦ spatial resolution [46]. The OMI NO2 algorithm could compute
accurate vertical column densities from NO2 slant column densities, retrieved by spectral fitting.
Since NO2 is a short-life trace gas and has a tight relation to anthropogenic emissions and energy
consumption [47–50], we utilized the satellite-derived NO2 molar concentration as a simplified proxy
of anthropogenic emissions.

2.5. Data Integration

From the perspective of time, the Aqua MODIS and Aura-OMI passes the equator at
approximately 1:30 p.m. local time, thus all the aerological and surface meteorological variables
were correspondingly selected around 2:00 p.m. local time (corresponding to UTC = 6:00 a.m.).
Moreover, the daily NO2 dataset and 16-day EVI dataset were respectively utilized to represent the
daily extent of anthropogenic emissions and vegetation coverage for 16 days. In addition, a Kriging
resampling approach was applied to ensure spatial consistency of all independent variables, which
were demonstrated in Table 1 in detail. Moreover, the meteorological parameters and AOD values
were both selected from the pixel in which the ground-level monitor is located.

Table 1. Relevant Level 2 SDS titles and contents for Aqua MODIS AOD at 550 nm.

Data Source Temporal
Resolution

Spatial
Resolution

Spatial Resolution
after Resampling

PM2.5 Ground-level Measurement 1 h - -
DT-AOD Aqua-MODIS 1 day 3 km 3 km
DB-AOD Aqua-MODIS 1 day 10 km 3 km

Meteorological Parameters NCEP Reanalysis 6 h 100 km 3 km
NO2 Aura-OMI 1 day 25 km 3 km
EVI Aqua-MODIS 16 days 1 km 3 km

DT: Dark Target; DB: Deep Blue; EVI: Enhanced Vegetation Index; AOD: Aerosol Optical Depth; MODIS:
Moderate Resolution Imaging Spectroradiometer; NCEP: National Centers for Environmental Prediction;
OMI: Ozone Measuring Instrument; SDS: Safety data sheet.

2.6. Model Development, Comparison, and Validation

Because previous research has shown that the relationship between AOD and PM2.5 obviously
varies according to the spatial context, and the correlation coefficients could lead to poor accuracy
of estimation when using global parameters [36]. To solve this problem, a GWR model has been
established in this study, and the adaptive Gaussian bandwidth search method was utilized to
accommodate the uneven distribution of ground-monitoring stations. The structure of the GWR
model developed in this study is expressed in the following equation:
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PM2.5,l,d = β0,l,d + β1,l,dRevisedAODl,d + β2,l,dSTl,d + β3,l,dRHl,d + β4,l,dPSl,d

+β5,l,dWSl,d + β6,l,dNO2,l,d + β7,l,dEVIl,d
(1)

where the PM2.5,l,d (µg/m3) is the ground-level PM2.5 concentration at location l on day d; β0,l,d denotes
the intercept at location l on day d; β0,l,d to β7,l,d represent location-specific slopes; Revised_AODl,d
(no unit) is the Aqua-MODIS AOD fused products revised by PBLH (m) at location l on day d.
As demonstrated in previous studies, physics corrections based on vertical distribution could make
remarkable improvement in the relationship between AOD and PM [29,51]. Because the ground
monitoring stations measured mass concentration data of near ground PM2.5, optical parameters for
the ambient atmosphere should be measured instead of satellite-derived AOD that characterizes the
entire atmospheric column. STl,d, RHl,d, PSl,d and WSl,d are the surface temperature (K), surface relative
humidity (%), atmospheric pressure (Pa), and surface wind speed (m/s), respectively, at location l
on day d. NO2,l,d represents the column molar concentration of NO2 at location l on day d, and EVIl,d
represents the enhanced vegetation index at location l on 16-day d.

Moreover, to examine the effectiveness of introducing NO2 and EVI into the GWR model as
representatives of the anthropogenic emissions and the reduction effect by vegetation on PM2.5.
As a contrast, a GWR model without parameters of NO2 and EVI was established using the same
meteorological factors:

PM2.5,l,d = β0,l,d + β1,l,dRevised_AODl,d + β2,l,dSTl,d + β3,l,dRHl,d + β4,l,dPSl,d + β5,l,dWSl,d (2)

In addition, a 10-fold cross validation analysis [52] was conducted to validate the quality of
the model by comparing the estimated PM2.5 against the monitoring values. The entire dataset was
randomly split into 10 folds, with around ten percent of the total data in each subset, and the model
was then fitted by nine folds with one fold set for validation in each cross-validation circle. This
process was completely repeated 10 times so as to validate every fold. Furthermore, the estimation
equation, decision coefficient R2, and mean absolute error (MAE, µg/m3) were calculated to evaluate
the model performance.

3. Results and Discussion

3.1. Descriptive Statistics

The histograms and descriptive statistics of all the variables in the GWR model are illustrated
in Figure 2, including the dependent variable and independent variables. It demonstrates that,
apart from the surface air pressure displaying a bimodal distribution, which is possibly caused by
the obvious elevation difference in southwest China, the remaining variables were approximately
log-normal distributed. Overall, the mass concentrations of PM2.5 ranged from 1 to 864.5 µg/m3 with
an annual average of 50.38 µg/m3 and standard deviation (Std. Dev.) of 45.33 µg/m3. The AOD
frequency histograms have a shape similar to the measured PM2.5 with an annual average AOD value
of 497.49 and Std. Dev. of 470.72. Considering the Chinese standard of ambient air quality [53],
the averaged mass concentration of PM2.5 ranging from 2014 to 2015 exceeded the level 2 standard
(35 µg/m3).
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The mass concentrations of PM2.5 and corresponding estimations were obtained across China 
from 1 January 2014 to 31 December 2015. The original GWR model, the compared GWR model only 
adding NO2, the compared GWR model only adding EVI, and newly developed GWR model were 
tested using the same datasets. There existed 119,885 pieces of data added to the model, and the cross-
validation (CV) results for the GWR model are shown in Figure 3. The R2 of the CV validation 
increased from 0.77 to 0.78 when only adding NO2, with MAE decreased from 15.81 μg/m3 to 15.08 
μg/m3. In addition, the R2 of the CV validation increased from 0.77 to 0.82 when only adding EVI, 
with MAE decreased from 15.81 μg/m3 to 13.83 μg/m3. It showed that the introduction of NO2 into 
the GWR model slightly improved the performance of model, while the introduction of EVI into the 
GWR model could substantially improve the performance of model. The R2 of the CV validation 
increased from 0.77 to 0.87 when adding two parameters, which means that both parameters are 
relevant to the new developed GWR model. This two-year estimation result could account for 
approximately 87% of the variability in the corresponding PM2.5 mass concentrations, which was 
relatively great at the national scale when comparing to other studies in China (cross validation R2 
achieved 0.64 and 0.79 in annual average, respectively) [38,54]. Moreover, the MAE calculated from 
the new model decrease from 15.81 μg/m3 to 11.84 μg/m3 against the original model, indicating that 
PM2.5 estimated using the GWR model with NO2 and EVI agreed better with the measurements. 
Moreover, according to the linear regression results, the regression line (solid black) of the new model 
better fit the actual line (dotted black), which illustrates that the introduction of NO2 and EVI into 
GWR model could improve the estimation of PM2.5, since it could achieve higher R2 and better 
consistency with measurements. 

Figure 2. Histograms and descriptive statistics for PM2.5, AOD, Planetary Boundary Layer Height
(PBLH), wind speed, surface relative humidity (RH), surface temperature, surface air pressure,
NO2 column density, and EVI in the model fitting.

3.2. Model Fitting, Validation, and Comparison

The mass concentrations of PM2.5 and corresponding estimations were obtained across China from
1 January 2014 to 31 December 2015. The original GWR model, the compared GWR model only adding
NO2, the compared GWR model only adding EVI, and newly developed GWR model were tested using
the same datasets. There existed 119,885 pieces of data added to the model, and the cross-validation
(CV) results for the GWR model are shown in Figure 3. The R2 of the CV validation increased
from 0.77 to 0.78 when only adding NO2, with MAE decreased from 15.81 µg/m3 to 15.08 µg/m3.
In addition, the R2 of the CV validation increased from 0.77 to 0.82 when only adding EVI, with MAE
decreased from 15.81 µg/m3 to 13.83 µg/m3. It showed that the introduction of NO2 into the GWR
model slightly improved the performance of model, while the introduction of EVI into the GWR model
could substantially improve the performance of model. The R2 of the CV validation increased from
0.77 to 0.87 when adding two parameters, which means that both parameters are relevant to the new
developed GWR model. This two-year estimation result could account for approximately 87% of the
variability in the corresponding PM2.5 mass concentrations, which was relatively great at the national
scale when comparing to other studies in China (cross validation R2 achieved 0.64 and 0.79 in annual
average, respectively) [38,54]. Moreover, the MAE calculated from the new model decrease from
15.81 µg/m3 to 11.84 µg/m3 against the original model, indicating that PM2.5 estimated using the
GWR model with NO2 and EVI agreed better with the measurements. Moreover, according to the
linear regression results, the regression line (solid black) of the new model better fit the actual line
(dotted black), which illustrates that the introduction of NO2 and EVI into GWR model could improve
the estimation of PM2.5, since it could achieve higher R2 and better consistency with measurements.
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GWR model with vertical corrected AOD and meteorological parameters (a); results of GWR model 
only adding NO2 (b); results of GWR model only adding EVI (c); and results of new GWR model 
adding NO2 and EVI (d). The solid line and dotted line are the regression line, and y = x reference line, 
respectively. 

However, the slope of the linear fitting equation was less than 1.0 and the intercept was positive, 
which suggests that the model is inclined to overestimate when the measurements of PM2.5 are less 
than around 60 μg/m3, and to underestimate when the measurements of PM2.5 are larger than 
approximately 60 μg/m3. Furthermore, the demarcation point, which was calculated by the point of 
intersection of linear fitting line and y = x reference line, was roughly equal in both GWR models. 
This phenomenon was probably caused by a mechanism of the GWR model that the coefficients of 
variables tend to be similar when they are geographically close to each other; therefore, the estimated 
values seem to be slightly averaged in a small region. Therefore, the particular value at an intersection 
point depends on the measured value of the dependent variable (PM2.5) to a large extent. 

3.3. Annual Estimation of PM2.5 Mass Concentration 

The estimated annual averaged PM2.5 mass concentrations in 2014 and 2015 are illustrated in 
Figure 4. From a macro perspective, the spatial distributions of PM2.5 are generally consistent from 
the year 2014 to 2015. The highest values of PM2.5 were observed in the Jing-Jin-Ji Region (including 
Beijing, Tianjin, and Hebei), followed by Central China (including Hunan, Hubei, and Henan), and 
the Xinjiang Autonomous Region. In the Jing-Jin-Ji Region, the annual averaged PM2.5 mass 
concentrations were generally higher than 80 μg/m3 in 2014, and higher than 60 μg/m3 in 2015. High 
levels of industrialization and urbanization, as well as the activities of dense human populations, 
have led to severe PM2.5 pollution in these areas [55,56]. Based on the World Health Organization 
(WHO) Air Quality Interim Target (IT) levels, WHO IT-1 set the PM2.5 mass concentration standard 
of 35 μg/m3 [57], which means that most of regions in the North China Plain still suffer from severe 
fine particulate pollution. The situation is similar in central China, where most regions slightly 

Figure 3. Scatter plot of model fitting and cross-validation for the GWR model: results of classical
GWR model with vertical corrected AOD and meteorological parameters (a); results of GWR model
only adding NO2 (b); results of GWR model only adding EVI (c); and results of new GWR model
adding NO2 and EVI (d). The solid line and dotted line are the regression line, and y = x reference
line, respectively.

However, the slope of the linear fitting equation was less than 1.0 and the intercept was positive,
which suggests that the model is inclined to overestimate when the measurements of PM2.5 are
less than around 60 µg/m3, and to underestimate when the measurements of PM2.5 are larger than
approximately 60 µg/m3. Furthermore, the demarcation point, which was calculated by the point
of intersection of linear fitting line and y = x reference line, was roughly equal in both GWR models.
This phenomenon was probably caused by a mechanism of the GWR model that the coefficients of
variables tend to be similar when they are geographically close to each other; therefore, the estimated
values seem to be slightly averaged in a small region. Therefore, the particular value at an intersection
point depends on the measured value of the dependent variable (PM2.5) to a large extent.

3.3. Annual Estimation of PM2.5 Mass Concentration

The estimated annual averaged PM2.5 mass concentrations in 2014 and 2015 are illustrated
in Figure 4. From a macro perspective, the spatial distributions of PM2.5 are generally consistent
from the year 2014 to 2015. The highest values of PM2.5 were observed in the Jing-Jin-Ji Region
(including Beijing, Tianjin, and Hebei), followed by Central China (including Hunan, Hubei, and
Henan), and the Xinjiang Autonomous Region. In the Jing-Jin-Ji Region, the annual averaged PM2.5

mass concentrations were generally higher than 80 µg/m3 in 2014, and higher than 60 µg/m3 in 2015.
High levels of industrialization and urbanization, as well as the activities of dense human populations,
have led to severe PM2.5 pollution in these areas [55,56]. Based on the World Health Organization
(WHO) Air Quality Interim Target (IT) levels, WHO IT-1 set the PM2.5 mass concentration standard of
35 µg/m3 [57], which means that most of regions in the North China Plain still suffer from severe fine
particulate pollution. The situation is similar in central China, where most regions slightly exceeded



Int. J. Environ. Res. Public Health 2016, 13, 1215 8 of 12

the WHO IT-1 standard until 2015. The cleanest regions are in Tibet, Yunnan, and Hainan, where the
annual average PM2.5 values are generally lower than 20 µg/m3.
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Nevertheless, the policy-driven efforts in energy conservation and emission reduction should
not be ignored. Although there still exists PM2.5 pollution in many residential areas, the apparent
decrease in the overall trend is worth recognition. Not only the severity of PM2.5 pollution but also
the spatial coverage of heavy PM2.5 pollution was alleviated, to a certain extent, from 2014 to 2015,
especially in the North China Plain, Central Plain, scattered regions in the northeastern area and along
the southern coast.

Although the model was demonstrated to estimate the spatial distribution of PM2.5 effectively
in most of areas in China, there still exist estimation errors in several regions. For instance, the mass
concentrations of PM2.5 in the Xinjiang Autonomous Region should be relatively high because the
Tarim Basin, which is located in the southern section of the Xinjiang Autonomous Region, is mostly
covered by the Taklimakan Desert, where dust aerosols come mostly from primal generation and
entrained effects across eastern Asia [58]. However, the prediction results demonstrated that the
annual averaged mass concentration of PM2.5 in the Xinjiang Autonomous Region were less than
70 µg/m3, which was slightly below the measurements. The possible reason for this phenomenon in
the model prediction is the introduction of NO2. As widely acknowledged, the Xinjiang Autonomous
Region is mostly covered by desert, which leads to relatively lower density of NO2 measured by
satellite. Thus, due to the positive fitted coefficients of NO2, the prediction results would be less than
measurements when there was no ground air-quality monitoring station in the desert. Moreover, the
predictions of PM2.5 in 2014 in Tibet, Qinghai, Gansu, northern Inner Mongolia, and western Sichuan
were a little bit overestimated. This overestimation phenomenon primarily resulted from uneven
distribution of the ground level PM2.5 monitoring sites in 2014. There was primary coverage in large
urban centers and sparse coverage in rural areas, especially in the western regions of the country.
Less coverage of ground level PM2.5 monitoring stations in these regions would directly result in the
increase of bandwidth in the GWR model, further leading to the consequence that regional modeling
would be influenced primarily by the farther surrounding areas. Since the GWR model adopts an
adaptive bandwidth searching method, the bandwidth will increase when the ground stations are
sparse, further decreasing the effects of model performance. However, along with construction of
the Chinese air-quality monitoring network, the situation was alleviated in 2015, and this issue will
gradually be resolved. In the current data conditions, the model could only achieve anticipative
efficacy of estimation in eastern China.
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4. Conclusions

The estimation of mass concentrations of PM2.5 at the national scale was conducted using a GWR
model, by introducing NO2 and EVI, combined with fused Aqua MODIS AOD and meteorological
parameters. According to the results of 10-fold cross-validation, the introduction of NO2 and EVI as
independent variables in the GWR model obviously improved the quality of estimation, where the
decision coefficient R2 increased from 0.77 to 0.87, and MAE decreased from 15.81 to 11.84 µg/m3

against the results from the original model. Moreover, the newly developed model and original model
both tended to overestimate when the measured value of PM2.5 was less than around 60 µg/m3,
but tended to underestimate when the measured value was larger than approximately 60 µg/m3.
In addition, this particular value that marks this boundary, which was calculated from the intersection
point of the linear fitting line and y = x as the reference line, depends on the measurements of dependent
variable (PM2.5) to a large extent.

According to the spatial distribution of annual average PM2.5 mass concentrations in 2014 and
2015, the highest values of PM2.5 arose in the Jing-Jin-Ji Region, followed by Central China and the
Xinjiang Autonomous Region. Furthermore, the NO2 embedded GWR model would be inclined to
underestimate in the desert regions that possess relatively low density of NO2 measured by satellite.
In addition, regional modeling would be influenced more by surrounding areas when the coverage of
ground level monitoring stations is insufficient. Thus, in current data conditions, it is hard to achieve
anticipative performance of estimation in western China. Nevertheless, this situation was alleviated
in 2015 and will gradually be resolved following construction of the air-quality monitoring network
in China.

In general, the introduction of NO2 and EVI into the GWR model could more effectively estimate
PM2.5 at the national scale compared to the original GWR model using satellite-derived AOD and
meteorological parameters. Further research will be conducted on the modeling algorithm and source
apportionment of PM2.5 to achieve better performance. The estimation of PM2.5 mass concentrations
at the national scale could provide a reasonable reference for assessing health impacts in China, and
for examining the effectiveness of the emission control strategies under implementation.
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