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Abstract: Rare earth element La-doped TiO2 (La/TiO2) was synthesized by the sol-gel method.
Benzohydroxamic acid was used as the objective pollutant to investigate the photocatalytic activity
of La/TiO2. The physicochemical properties of the prepared materials were characterized by X-ray
diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, specific surface
area and porosity, scanning electron microscopy and transmission electron microscopy. As a result,
the doping of La could inhibit the crystal growth of TiO2, increase its specific surface area and expand
its response to visible light, thus improving its photocatalytic activity. La/TiO2 with the doping ratio
of 0.75% calcined at 500 ◦C, showing the highest photocatalytic activity to degrade benzohydroxamic
acid under the irradiation of 300 W mercury lamp. About 94.1% of benzohydroxamic acid with
the original concentration at 30 mg·L−1 was removed after 120 min in a solution of pH 4.4 with an
La/TiO2 amount of 0.5 g·L−1. Furthermore, 88.5% of the total organic carbon was eliminated after
120 min irradiation. In addition, after four recycling runs, La/TiO2 still kept high photocatalytic
activity on the photodegradation of benzohydroxamic acid. The interfacial charge transfer processes
were also hypothesized.

Keywords: rare earth doped; La/TiO2; characterization; benzohydroxamic acid; photocatalytic
degradation; mineralization

1. Introduction

In the Gannan area of China, ion-type rare earth ore is widely distributed. Benzohydroxamic acid
is a high-effect chelating collector of oxidized ore [1], which is widely used in the flotation of lead
oxide ore, copper oxide and rare earth ores [2–4]. It belongs to the aromatic alkyl hydroxamic acid,
due to the existence of the π-π conjugated effect, which enhances the stability of the chelate compound
by increasing the electron cloud density of atomic oxygen. Benzohydroxamic acid has physiological
toxicity due to its benzene ring structure, which increases the COD (Chemical oxygen demand) content
of mineral processing wastewater [5]. At the same time, N element content is also increased, which
would cause the eutrophication when accumulated in the water. Besides, benzohydroxamic acid is
difficult to decompose, and it would remain for a few years or an even longer time once released into
the water environment. Eventually, it would bring harm to the water environment and would need to
be removed.
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Photocatalytic technology has a great application potential in sewage treatments [6]. Among
the various semiconductor photocatalyst materials, TiO2 has been the most promising and widely
used photocatalyst due to its unique optical property, strong oxidizing power, nontoxicity, low cost,
and chemical stability [7]. However, the wide technological use of TiO2 is impaired by its wide
band-gap (3.2 eV), which only uses about 5% of the solar light [8,9], and the recombination
of photogenerated electron-hole pairs is easy to happen. These drawbacks largely restrict its
photocatalytic efficiency [10,11]. Thus, the improvement of photo-catalytic efficiency is still a major
challenge in the photocatalysis research field. Doping with ions in TiO2 lattice has been proven to
be an efficient route to enhance photocatalytic activity [12]. The rare earth element has the special
4f electronic structure, which is able to produce a multi-electron configuration. Its oxide has many
characteristics, such as crystal form, strong adsorption selectivity, electronic conductivity and thermal
stability [13,14]. Some research has shown that the doping of rare earth ions could effectively improve
the photocatalytic activity of TiO2 [15–17]. La-doped anatase TiO2 (101) surface tended to engender
oxygen vacancies. The photoelectric conversion efficiency of dye-sensitized solar cells fabricated from
1 mol% La-doped TiO2 reached 6.72%, which improved efficiency by 13.5% compared with that of the
cells fabricated from pure TiO2 [18]. Grujic-Brojcin et al. reported that La-doped TiO2 had shown a
higher rate of degradation than pure TiO2, with a maximum rate for 0.65 mol% La loading [19]. Li et al.
studied the catalytic degradation of 4-chloroophenol with La/TiO2. The results showed that the 10 wt%
La/TiO2 has the highest percentage of 4-CP degradation (99.0%) [20]. The enhanced photocatalytic
activity of La-doped TiO2 might be mainly due to the smaller particle size, larger specific surface area
and total pore volume, as well as higher pore structure complexity.

Therefore, numerous studies have been focused on the photocatalytic activities of rare earth doped
TiO2 in recent years [21–23], but there are few studies in the treatment of flotation reagents. With the
development of mining, mineral processing waste water has become the main source of pollution in
the areas of the mine and its surroundings, especially the residual organic flotation reagent, which has
high toxicity and high pollution. As far as we know, there is no similar report on the photodegradation
of benzohydroxamic acid by the photocatlaytic oxidation technique.

In this study, La doped TiO2 nanoparticles were prepared by the sol-gel method, and their
intrinsic characteristics were analyzed by using X-ray diffractometer (XRD), X-ray photoelectron
spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET),
scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The photocatalytic
activity of La-doped TiO2 samples were evaluated by the degradation rate of benzohydroxamic acid.
At the same time, the effects of doping ratio of La, calcination temperature, dosage of La/TiO2,
pH value, light intensity and other factors on the photocatalytic activity of La/TiO2 were investigated.

2. Materials and Methods

2.1. Materials

The reagents used in this study were analytical grade: lanthanum nitrate (La(NO3)3·6H2O)
and tetrabutyl titanate (Ti(OC4H9)4) were purchased from National Medicine Group Chemical
Reagent Co. Ltd., Shanghai, China. Anhydrous ethanol (CH3CH2OH) and acetic acid (CH3COOH)
were purchased from Tianjin Damao Chemical Reagent Factory, Tianjin, China. Benzohydroxamic acid
(C7H7NO2) was purchased from Shanghai EKEAR Bio@Tech Co. Ltd., Shanghai, China (the structure
was listed as Figure S1 in the Supplementary Materials). All the experimental solutions were prepared
with deionized water.

2.2. Preparation and Characterization

In accordance with previous literatures and studies [24–26], the La/TiO2 catalyst was synthesized
by the sol-gel process with the following procedure. A mixture solution of 10 mL tetrabutyl
titanate dissolved in 15 mL anhydrous ethanol, with stirring for 30 min, was noted as solution
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A. Another solution containing 10 mL ethanol, 2 mL acetic acid, 2 mL deionized water, and metal
salts (La(NO3)3·6H2O) in the required stoichiometry was noted as solution B. Solution B was added
dropwise to solution A under acute agitation to form a transparent, homogeneous sol. The wet gel
of La/TiO2 was obtained by continuous stirring. After ageing at room temperature for 2 days and
then drying at 90 ◦C, the xerogel was formed. The xerogel was crushed to get fine powder and further
calcined in a furnace under air atmospheres. Heating rates were 5 ◦C·min−1 for all samples with 6 h
holding time at different temperatures (400 ◦C, 450 ◦C, 500 ◦C) and a cooling rate of 10 ◦C·min−1 to
achieve the La/TiO2 nano-photocatalyst. The rare earth La-doping ratio was set to 0%, 0.25%, 0.50%,
0.75% and 1% according to the mass fraction of La to TiO2.

La/TiO2 was characterized with an X-ray diffractometer (XRD) (RigakU Miniflex, Tokyo, Japan)
by using monochromatized Cu Kα radiation (λ = 0.15418 nm) under 50 kV and 80 mA with the
2θ altering from 10◦ to 80◦. The X-ray photoelectron spectroscopy (XPS) analyses of the samples
were performed on a ESCALAB 250XI Thermo type multi-function imaging electronic spectrometer
(Thermo Scientific, Surrey, UK), monochromatic Al Kα (hv = 1486.6eV), 150 W power, 500 µm beam
spot. UV-vis diffuse reflectance spectra were achieved by using a UV-vis spectrophotometer (UV-2550,
Shimadzu Co. Ltd., Kyoto, Japan), the absorption spectra were referenced to BaSO4, and the scanning
range was 200–700 nm. The specific surface area and average pore size of La/TiO2 were measured
by a low temperature N2 physical adsorption apparatus (Micromeritics ASAP 2460, Micromeritics
Instrument Corp., Norcross, GA, USA). Scanning electron microscopy (SEM) images were obtained
by using a TES-CAN VEGA TS-5130SB (Tescan Company, Brno, Czech Republic), the light source
of electron-beam was tungsten lamp, and the voltage was 10–30 kV. The morphology of the catalyst
was analyzed by a G2-20 Tecnai transmission electron microscope (FEI, Hillsboro, TX, USA). The total
organic carbon (TOC) was detected by the total organic carbon analyzer (Vario TOC, German Elementar
Company, Hanau, Germany). The FTIR spectra of the composite samples (as KBr pellets) were
recorded in transmittance mode using a Nicolet iS5 type Fourier transform infrared spectrometer
(Nicolet Instrument Corporation, Madison, WI, USA). The scanning range was 400–4000 cm−1.

2.3. Photocatalytic Degradation of Benzohydroxamic Acid

The photocatalytic degradation reaction was performed in the light-chemical reaction apparatus
(Xujiang Electro-mechanical Plant, Nanjing, China). At first, the suspension was magnetically stirred
for 30 min in the dark to ensure the adsorption-desorption equilibrium of benzohydroxamic acid on
the catalysts. Then, the irradiation was provided by lamps of different intensity and different ranges of
radiation (100 W mercury lamp, 300 W mercury lamp, and 500 W xenon lamp). Approximately
5 mL of reaction solution was taken at given time intervals and centrifuged. At last, UV-vis
spectrophotometry was used to measure the absorbance of benzohydroxamic acid under wavelength
of 229 nm. The removal efficiency (R) was calculated by Equation (1):

R(%) =
C0 − Ct

C0
× 100% (1)

where C0 is the initial concentration of benzohydroxamic acid, in mg·L−1, and Ct is the concentration
at reaction time t (min), in mg·L−1. All the experiments were performed twice at least to control the
errors of the experiments.

3. Results and Discussion

3.1. Characterization

3.1.1. XRD

The XRD patterns of different doping amounts of La (a) and different calcination temperatures (b)
of La/TiO2 are shown in Figure 1. The major peaks at 2θ values of 25.21◦, 36.75◦, 37.53◦, 38.40◦,
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47.87◦, 53.53◦, 54.86◦, 62.37◦, 68.30◦, 70.03◦ and 74.63◦ corresponded to diffractions of the (101), (103),
(004), (112), (200), (105), (211), (204), (116), (220), (215) and (301) planes of anatase TiO2, respectively
(JCPDS card NO.21-1272) [27]. It is observed that the diffraction peak of pure TiO2 is relatively narrow,
while it became broader and the relative intensity decreased with the increasing of the La doping
amount, indicating a systematic decrease in grain sizes and the increase of specific surface area.
The ionic radius of La3+ is 0.106 nm, which is larger than that of Ti4+ (which is 0.068 nm), so the doping
ions would be difficult to get into the TiO2 lattice. The crystallite sizes of the samples were calculated
by the Scherrer formula, Equation (2):

D =
kλ

βcosθ
(2)

where D is crystallite size; k is Scherrer constant, k = 0.89; λ is wavelength of X-ray; β is full width at
half maximum of the peak (in radians); and θ is angle of diffraction (in degrees).
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Figure 1. X-ray diffractometer (XRD) patterns of the samples: (a) La3+ with different dopant amounts
calcined at 500 ◦C; (b) 0.75% La/TiO2 at different calcined temperatures.

The crystallite size of pure TiO2 is 22 nm, and that of 0.75% La/TiO2 is 13 nm. As a result,
the doping of La could inhibit the crystal growth of TiO2. Compared with pure TiO2, there is no
new phase for the doped catalyst, indicating that La3+ might be in the form of small oxide clusters
highly dispersed on the surface of TiO2, which would hinder the growth of TiO2 particles. The oxide
also easily becomes light interception sub-trapping centers and ultimately affects the photocatalytic
activity [28].

3.1.2. XPS

The survey spectrum Figure 2a shows the predominant peaks corresponding to Ti, O and C.
The strength of La is not obvious due to the low doping amount. A carbon element may come from
the pollution of the X-ray photoelectron energy spectrum instrument. As seen from Figure 2b, after La
doped, the main peaks at 853.92 and 836.79 eV are well in accordance with the standard XPS peaks
of La3+. Figure 2c,d shows the Ti2p XPS spectra of pure TiO2 and 0.75% La/TiO2. The XPS spectrum
of Ti2p for La/TiO2 could be fitted as two peaks that are composed by Ti2p1/2 and Ti2p3/2, which
implied that almost all of the Ti atoms exist in the form of +4 valences. The peaks of pure TiO2 are
at 464.43 eV and 458.69 eV, but the peaks are at 464.41 eV and 458.65 eV after doping. As seen from
Figure 2e,f, different peaks appear after the fitting of O1s, which indicates that the samples of oxygen
exist in different forms. The fitted strong peak of O1s located at 529.91 eV was the lattice oxygen in
TiO2. The weak peak at 531.48 eV corresponded to the peak of adsorbed oxygen on the surface of
TiO2. After doped, the peaks of the O1s spectrum shifted slightly to 529.92 eV and 531.58 eV, while the
binding energy of Ti2p was smaller than that of pure TiO2. This might be due to the combination of La
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and Ti, which forms new chemical bonds of Ti-La, resulting in the electronic transfer from titanium
atom to lanthanum atoms. The valence state of Ti4+ ions is slightly reduced when incorporated into
the TiO2 lattice [29]. In addition, the doping of La combined with oxygen to form La2O3 on the surface
of the sample. Since the ionic radius of La3+ is larger than that of Ti4+, it is difficult for La3+ to replace
Ti4+ to form a stable solid solution [30]. However, Ti4+ could enter the lattice of La2O3, leading to the
charge imbalance of the TiO2 lattice and production of Ti3+ [31]. It is well known that the adsorption
of oxygen is very important for trapping the excited electron to suppress the recombination with hole.
Thus, the doped catalyst has higher activity than the non-doped counterpart.
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Figure 2. X-ray photoelectron spectroscopy (XPS): (a) survey spectra; (b) La3d; (c) Ti2p of pure TiO2;
(d) Ti2p of La/TiO2; (e) O1s of pure TiO2; (f) O1s of La/TiO2.

3.1.3. UV-vis DRS

Figure 3 shows the UV-vis DRS of pure TiO2 and 0.75% La/TiO2 catalysts in the range of
200–700 nm. The data plots of absorption square versus energy in the absorption edge region are further
estimated in the inset of Figure 3. The spectra of La/TiO2 indicate a little red shift in the band-gap
transition compared with pure TiO2. A red shift of this type can be attributed to the charge-transfer
transition between rare earth ions of 4f electrons and the TiO2 conduction or valence band. The light
response range extends to the visible light, and the electron-hole pairs increased by the enhancement
of light absorption ability. So, the photocatalytic activity might be improved [32,33]. The square of the
absorption coefficient was linear with energy in the absorption edge region. Band-gap energies were
deduced via extrapolating a straight line to the abscissa axis. The band-gap energy can be calculated
by Equation (3) [34].

ahv = A(hv − Eg)
n
2 (3)

where a, h, v, A and Eg represent the absorption coefficient, Planck’s constant, light frequency,
a constant, and band-gap energy, respectively. The value of n is determined by the type of optical
transition of the semiconductor (n = 1) for direct transition, and n = 4 for indirect transition.
The band-gap energies of pure TiO2 and 0.75% La/TiO2 were estimated to be 3.09 eV and 3.34 eV,
respectively. This showed that the doping of La could narrow the band-gap of TiO2 and reduce the
band-gap energy, which is important to slow down the recombination rate of the electron-hole pairs
and ultimately enhance the photocatalytic activity [35].
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Figure 3. UV-vis diffuse reflectance spectroscopy (DRS) of pure TiO2 and 0.75% La/TiO2.

3.1.4. Specific Surface Area and Porosity Analysis

As seen from Figure 4, the N2 adsorption-desorption isotherms are characteristic of the typical
Langmuir IV isotherm with hysteresis loop [36,37], which indicate that the synthesized samples
have a mesoporous structure. The N2 adsorption-desorption isotherms of pure TiO2 and 0.75%
La/TiO2 show the H2-type hysteresis loop with uniform particle accumulation in the hole. Generally
speaking, it is considered as an inkbottle shaped channel with a small mouth and large cavity [38].
The BJH (Barrett-Joyner-Halenda) curve showed that the samples were with relatively narrow pore
size distribution, and the mesoporous ranges from 2–10 nm. The most probable pore size of pure TiO2

was 6.99 nm, and the specific surface area was 10 m2·g−1. However, the most probable pore size of
0.75% La/TiO2 was 6.21 nm, and the specific surface area was 49 m2·g−1. The specific surface area of
0.75% La/TiO2 was significantly larger than that of pure TiO2. The relatively high surface area of La3+

doped samples confirmed that the frameworks of TiO2 have better adsorption ability. This may be due
to the linkage between the rare earth ions and titanium by oxygen bridge, which effectively enhances
the specific surface area of TiO2 [39]. The larger surface area, the more surface reaction sites, which is
beneficial to improve the photocatalytic activity.
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Figure 4. N2 adsorption-desorption isotherms and pore size distributions (inset) of pure TiO2 (a) and
0.75% La/TiO2 (b).

3.1.5. Microstructure Analysis

Figure 5a,b shows the particulate morphology of pure TiO2 and the 0.75% La/TiO2. They display
an irregular structure and contain a mixture of shaped particles [40]. The particle size of La/TiO2
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was significantly smaller than that of pure TiO2, and the dispersion was better than that of pure TiO2.
The doping of La may have decreased the particle size, increased the surface area and dispersion,
which is in accordance with the results of XRD.
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Figure 5c,d shows a high-resolution transmission electron microscopy (HRTEM) diagram of pure
TiO2 and the 0.75% La/TiO2. In Figure 5c, the lattice fringe spacing of pure TiO2 is 0.349 nm and
0.209 nm, corresponding to the lattice planes (101) and (004) of anatase phase, respectively. In Figure 5d,
the lattice fringe spacing of 0.75% La/TiO2 is mainly 0.352 nm and 0.237 nm. The average grain size
of TiO2 was about 13–22 nm, which is consistent with the results of XRD analysis. The clear crystal
lattice fringe suggests that the sample has good crystallinity. The fast Fourier transform (FFT) image
in the inset of Figure 5d indicates that the sample is in a well-organized mesophase [41,42]. The FFT
pattern also suggests the single crystal diffraction point, obviously. This suggests that the prepared
mesostructure is a cubic phase oriented along the (101) and (004) directions, respectively [43,44].

3.2. Photocatalytic Degradation of Benzohydroxamic Acid

3.2.1. Effect of La3+ Doping Amount

The effects of different La3+ doping amounts on photocatalytic degradation of benzohydroxamic
acid are as shown in Figure 6.

As observed in Figure 6a, the adsorption of benzohydroxamic acid on La/TiO2 is negligible.
The photocatalytic activity of La/TiO2 is higher than that of pure TiO2. The degradation efficiency
of the target pollutant first increased and then decreased as the doping amount of La from 0.00%
to 1.00%, and 0.75% La/TiO2 indicated the highest photocatalytic activity. The increasing of doped
La3+ amount would lead to an expansion of TiO2 lattice, which might produce crystal defects and
distortion. Then, energy band structure would change and the recombination rate of electron-hole
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pairs would decrease. However, there would be too many defects due to the lattice distortion when
excess La3+ was doped, and the photocatalytic activity would be inhibited. The degradation results
give that the optimal doping ratio is 0.75%, which corresponded to the results of UV-vis DRS. In brief,
the appropriate La doping amount not only avoids the waste of rare earth elements, but also improves
the photocatalytic activity. In addition, the mineralization of benzohydroxamic acid was up to
88.5% by 0.75% La/TiO2, as depicted in Figure 6b. Zhou and Hu studied the biodegradation of
benzonhydroxamic acid. They needed five or more days to degrade more than 85% of the pollutant
under the conditions of additional nutritions [45,46]. So, the degradation of benzohydroxamic acid by
photocatalytic oxidation with TiO2-based catalysts has a significant advantage.
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Figure 6. (a) Effect of different La doping ratio on the photodegradation of benzohydroxamic acid by
La/TiO2; (b) TOC mineralization rates of 0.75% La/TiO2, pure TiO2 and blank. Reaction conditions:
C (benzohydroxamic acid) = 30 mg·L−1, C (catalyst dosage) = 0.3 g·L−1, 300 W mercury lamp, calcined
temperature at 500 ◦C.

3.2.2. Effect of Light Intensity

The effects of different light intensity on photocatalytic degradation of benzohydroxamic acid are
as shown in Figure 7.
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Figure 7. Effect of light intensity on photocatalytic degradation of benzohydroxamic acid. Reaction
conditions: C (benzohydroxamic acid) = 30 mg·L−1, C (catalyst dosage) = 0.3 g·L−1, 0.75% La/TiO2,
calcined temperature at 500 ◦C.

As can be seen from Figure 7, the degradation rate of benzohydroxamic acid under the irradiation
of a mercury lamp is better than under a xenon lamp. The light intensity of the 300 W mercury lamp
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and the 100 W mercury lamp were 5.6 mW·cm−2 and 0.46 mW·cm−2, respectively, while the light
intensity of the 500 W xenon lamp was 39.5 mW·cm−2. The wavelength distribution of the mercury
lamps and the xenon lamp is listed in Table S1 and Figure S2 respectively in the Supplementary
Material. The photocatalytic activity increased with the increase of light intensity under the same light
source. Because the light-response range of La/TiO2 is mainly in the ultraviolet or near ultraviolet band,
the number of photons increased with the increase of light intensity, and holes increased accordingly.
This produced much more ·OH. So the degradation rate of benzohydroxamic acid increased.

3.2.3. Effect of Catalyst Dosage

Figure 8 shows the variations in the ratio of degradation at different dosages of photocatalyst
ranging from 0 to 0.7 g·L−1. It can be seen that the photocatalytic degradation efficiency increases
with an increasing amount of the 0.75% La/TiO2 photocatalyst and reaches the highest value when the
concentration is 0.5 g·L−1. There are three reasons to explain this: (1) the smaller dosage of La/TiO2

generates less electron-hole pairs, which leads to the lower photocatalytic activity; (2) the availability
of active sites increase with the increase of La/TiO2 dosage; (3) overload of the photocatalysts would
decrease the light penetration and increase radiation scattering by the suspension catalyst and finally
reduce the degradation rate.
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Figure 8. Effect of La/TiO2 dosage on photocatalytic degradation of benzohydroxamic acid. Reaction
conditions: C (benzohydroxamic acid) = 30 mg·L−1, 300 W mercury lamp, 0.75% La/TiO2, calcined
temperature at 500 ◦C.

3.2.4. Effect of Initial pH Value of Solution

As can be seen from Figure 9, the pH values have different effects on the degradation of
benzohydroxamic acid when the pH value was adjusted by a different regulator. In general, the highest
photocatalytic activity can be reached when the pH of benzohydroxamic acid solution is 4.43 (original
pH value of 30 mg·L−1 benzohydroxamic acid solution). The basic solution adjusted by NaOH almost
shows no effect on the degradation of benzohydroxamic acid. However, there exists an interesting
phenomenon: the degradation of benzohydroxamic acid was suppressed at stronger acidic conditions
with HNO3 as the regulator (Figure 9a), while there was almost no change with HCl as the regulator
(Figure 9b). In order to clarify the difference, another experiment using two anions including Cl− and
NO3

− in their sodium salt form was designed to investigate different effects on the photodegradaton
of benzohydroxamic acid by La/TiO2 (the relative figure is listed as Figure S3 in the Supplementary
Materials). As the result, NO3

− indicates obviously inhibitory effect compared with Cl−. As seen from
the structure of benzohydroxamic acid (Figure S1), there exist N-containing functional groups in the
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molecular. NO3
−, added from HNO3 or NaNO3, would compete the adsorptive sites on the surface of

La/TiO2 with the N-containing functional groups from the target pollutant.
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Figure 9. Effect of initial pH value on photocatalytic degradation of benzohydroxamic acid: (a) the pH
value was adjusted by HNO3 and NaOH; (b) the pH value was adjusted by HCl and NaOH). Reaction
conditions: C (benzohydroxamic acid) = 30 mg·L−1, C (catalyst dosage) = 0.5 g·L−1, 300 W mercury
lamp, 0.75% La/TiO2, calcined temperature at 500 ◦C.

3.2.5. The Reusability of Photocatalyst

Except for the activity of photocatalysts, the reusability is meaningful to investigate for their
practical application. Therefore, four successive recycling tests for the degradation of benzohydroxamic
acid by La/TiO2 were performed. As shown in Figure 10, the removal efficiencies were 93.9%, 93.6%,
90.7%, and 92.7% for the first to the fourth runs, respectively. The degradation efficiency decreased
about 3.2% after four cycles. A gradually decreasing trend can be found from the results of degradation
efficiency, but the differences among the fourth runs were not obvious, which indicates that La/TiO2

possesses a good stability and reusability in the photodegradation of benzohydroxamic acid.
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Figure 10. Recycle runs in the photocatalytic degradation of benzohydroxamic acid by La/TiO2.
Reaction conditions: C (benzohydroxamic acid) = 30 mg·L−1, C (catalyst dosage) = 0.5 g·L−1, 300 W
mercury lamp, 0.75% La/TiO2, calcined temperature at 500 ◦C.

3.2.6. Fourier Transform Infrared Spectroscopy (FTIR) Analysis and Interfacial Charge
Transfer Processes

Figure 11 shows the FTIR spectra of 0.75% La/TiO2 (Curve a) and after 2 hours’ photocatalytic
degradation of benzohydroxamic acid by 0.75% La/TiO2 (Curve b). The following information could
be given by the analysis of FTIR spectra [47,48]: the characteristic peak of TiO2 is 400–800 cm−1,
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caused by the stretching vibration and bending vibration of Ti-O-Ti and Ti-O bond; the absorption
located at 3435 cm−1 characterizes the hydroxyl groups of Ti-OH at weak surface active sites, with
physisorbed water molecules bound by weak hydrogen bonds with OH– groups of TiO2 surfaces; the
characteristic peaks of 1117, 1269 and 1722 cm−1 corresponding to the Ti-O-C, the C-O, and C=O in
Curve b are stronger than those in Curve a; 730 cm−1 may be a long carbon chain of CH2 in Curve b;
stretching vibration of CH3 groups is around 2926 cm−1 and 2961 cm−1. All the information above
could suggest that the benzene ring in benzohydroxamic acid had been fractured, and some alkanes or
ester compounds had been generated by the photocatalytic reaction.
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Figure 11. Fourier Transform Infrared Spectroscopy (FTIR) spectra of samples: (a) 0.75% La/TiO2;
(b) photocatalytic degradation of benzohydroxamic acid by 0.75% La/TiO2 after 2 h.

Figure 12 illustrates the possible interfacial charge transfer processes. Element La exists in the
stable form of La3+ as described in the section of XRD and XPS, which might trap the photoexcited
electrons to produce La2+. However, La2+ is relatively unstable: the electrons can be easily detrapped
and transfer to O2 adsorbed on the surface of TiO2 to produce the ·O2

− [49]. ·O2
− and the photoexcited

holes would react with H2O, OH−, or H2O2 to produce ·OH. Then, benzohydroxamic acid would be
oxided to products including CO2 and H2O. The doped La3+ could increase the electron transfer from
the surface of the catalyst and decrease the recombination of photogenerated electrons and holes.
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4. Conclusions

La-doped TiO2 photocatalysts were synthesized by the sol-gel method. XRD diffraction peaks
of doped TiO2 were broader and the relative intensity was weaker than pure TiO2. It might improve
the thermal stability of the anatase phase of TiO2, suppress particle aggregation, grain growth of
TiO2 and increase the specific area of TiO2. The red shift of La/TiO2 in the band-gap transition
could reduce gap energy of TiO2 and improve the response strength and threshold value of TiO2 for
visible light and extend its absorption side band. La/TiO2 also had a larger specific surface area and
a more regular shape in morphology. Furthermore, 0.75% La/TiO2 (500 ◦C) indicated the highest
photocatalytic degradation ability to benzohydroxamic acid: the removal rate and mineralization
efficiency of benzohydroxamic acid reached 94.1% and 88.5%, respectively, at the conditions of pH
4.43, 30 mg·L−1 of benzohydroxamic acid, 0.5 g·L −1 of catalyst, and the irradiation of 300 W mercury
lamp. The doping of La3+ could reduce the recombination of photoexited electrons and holes, resulting
in the improvement of removal efficiency of benzohydroxamic acid by La/TiO2.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/13/10/997/s1,
Table S1: The emission range of 100 W and 300 W Mercury, Figure S1: Structure of benzohydroxamic acid,
Figure S2: The emission range of the 500 W xenon lamp, Figure S3: Effect of inorganic anions Cl− and NO3

− on
photocatalytic degradation of benzohydroxamic acid.
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