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Abstract: Tap water samples were collected from 180 families in four agricultural (KYR: Keyir,
KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang)
in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were
analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health
risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was
more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index
was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic
elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR >
KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water;
for the latter, the total health risk index was greater versus glacier water. Main health risk factors
were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total
trace element–induced health risk (including for DW adults) was higher than acceptable (10−6) and
lower than priority risk levels (10−4) (KYR, YTR, KRW, Y, and B). For DW children, total health risk
reached 1.08 × 10−4, higher than acceptable and priority risk levels (10−4).

Keywords: trace elements; human risk assessment; drinking water; agriculture areas; pastoral
areas; Xinjiang

1. Introduction

Trace elements exist widely in specific concentrations in the natural environment [1]. With the
development of the economy and society human activities, such as mining, smelting, and processing,
have allowed more trace elements to enter the atmosphere, water, and soil, thus resulting in serious
environmental pollution [2]. Pollution from trace elements has become the main source of global
environmental pollution. Their emission into the environment is harmful not only to ecosystems,
but also poses a threat to human health because of refractory characteristics of bioaccumulation [3].
Although essential trace elements are critical for life processes and sustainability, they are only needed
at the trace level [4]. Excess intake of essential trace elements in drinking water may lead to adverse
health effects [5,6]. In particular, elements such as cadmium, chromium, arsenic, and lead have
significant biological toxicity and are harmful to human health [7–9], for example. Cadmium mainly
accumulates in the human hepatic system and kidneys, disturbing estrogen secretion, and is also
carcinogenic [10,11]. Chromium is one of the trace elements with the strongest biological toxicity, and
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can cause people to develop liver and skin cancer. Lead disturbs gonad secretion [12]. Copper is a
necessary trace element for the human body, but if its concentration goes above the necessary amount,
it is harmful to the liver, kidney, digestive system, and brain [13,14]. Zinc can cause serious damage
to the digestive system, nervous system, and blood system [9,15]. Selenium deficiency can accelerate
the body’s aging processes and may lead to cancer, cardiovascular disease, diabetes, Kaschin–Beck
disease, and increasing numbers of other diseases [9,16].

Recently, with the development of agricultural production, there has been broad application of
the chemical fungicides [17]. Residual pesticides circulate through the atmosphere, water, soil, and
biosphere, but some of the pesticides are vestigial in surface water and groundwater [18,19]. They still
cannot be completely removed through the process of modern drinking water treatment (sediment,
filter, disinfection), so the risks that are caused by these vestigial pesticides in drinking water are also
on the rise [20]. The typical source of the drinking water in rural areas in China is well water, which is
easily affected by the environmental pollution factors [15]. There have been some serious phenomena
in most of these rural areas, such as drinking water resources being below normal standards and,
often, heavily polluted [21]. Further problematic phenomena include arbitrary disposal of wastewater
from township enterprises along with substandard water treatment, while the trace elements in the
drinking water exceed the standard [22]. These problems threaten the safety of the drinking water
for rural populations. It has become an urgent need to discover how to improve the condition of the
water supply in order to ensure the safety of drinking water for the vast numbers of people in China’s
rural areas.

Even though China has made substantial efforts to improve the standard of drinking water, the
constraints of limited technical expertise, as well as inadequate laboratory facilities and resources, limits
the ability to monitor water quality to only a few locations or administrative areas in Xinjiang, China.
Moreover, rural and remote areas, where drinking water contamination may be more severe, are often
excluded from monitoring [15,23]. Consequently, regional-scale risk assessments are often unavailable,
and information on the extent of trace contamination and the total population at risk is largely
unknown [24]. Therefore, the comparison of the trace element levels and their effect on the health
of the local people in areas with different sources of drinking water is important, particularly when
taking into account the topography from the different typical agricultural and pastoral areas in Bay
County, Xinjiang, China. For this paper, we analyzed the drinking water from 180 households in typical
agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and animal husbandry regions
(B: Bulong and Y: Yangchang). We compared the trace elements Ni, Zn, Se, Cr, As, Cd, and Pb in the
different regions for content distribution and preliminary evaluation. These trace element–associated
health risk comparisons in the drinking water of different regions were based on China’s health
standards for drinking water (GB574-2006) as well as the health risk model recommended by the
United States Environmental Protection Agency (EPA). It was, thus, the health standards of both China
and the U.S. that provided the basis for determining the trace element exposure level in drinking
water that poses a threat to human health, along with providing the scientific basis for environmental
risk management.

2. Materials and Methods

2.1. Study Area

Bay County is in the southwest of the Xinjiang Uyghur Autonomous Region. It is located in the
middle of the Tianshan Mountains, in the basin of the northern margin of the Queletagh Mountains
and the upstream region of the Weigan River; specifically, it is between 80◦37′39”–83◦02′25” E and
41◦24′08”–42◦38′52” N [25]. There is one county town (Bay County town), and there are three
building towns (Tirek, Sairam, Chaierqi), ten villages (Keyir, Kezili, Tuokesun, Yaturi, Kanqi, Bulong,
Miqiki, Ombax, Daqao, Kariwahi), two state farms (Dawanqi, Yakeriki), one breeding farm, and one
agricultural experiment station in this county. The northwest terrain of Bay County is low, but its
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southeast terrain is high. To the north of Bay County is the grand trunk of the Tianshan Mountains.
It is more than 4500 m above sea level, with plentiful snow and many glaciers which can be found year
round. Bay County is framed by the Queletagh Mountains to the west and south; it is between 1180 m
and 1400 m above sea level.

The total stream of the river, surface water, and total groundwater storage available for exploitation
in the Bay County town are respectively 28.1 million m3, 31.0 million m3, 27.80 million m3, and
11.00 million m3 [26]. Due to the temperate continental climate, there are various water resources such
as Tianshan glacier water, surface river water and spring water, underground confined water and
phreatic water, atmospheric precipitation, and artificial lake water. There are five rivers in Bay County;
from west to east, there are the Muzat River, Kapsilan River, Teliwiqik River, Karsu River, and Kezir
River, all of which are important resources for life and production [27]. The agricultural irrigation
water is rich, and the county’s water consumption is 14.55 million m3. There is also spring water that is
formatted by the upstream riverbed leakage on the hillside [5]. The DW, YTR, KYR, and KRW belong
to the agricultural region and the Y and B belong to the pastoral area. The drinking water source of
the DW agricultural region is the well water, and the sources of the drinking water for the YTR and
KYR agricultural regions are the fountain water. The drinking water source of the KRW agricultural is
mountain water from melting glaciers. The Y pastoral region belongs to the plateau region where the
source of the drinking water is mountain water from melting glaciers. The drinking water source of
the pastoral B region is the fountain water.

2.2. Sample Collection

In July 2015, according to the range of the region’s water supply and population distribution,
we used multi-stage random sampling methods and collected samples of the tap drinking water of
180 families from the water containers of every family from the typical agricultural (Keyir, Kariwah,
Dawanqi, Yaturi) and natural pastoral areas (Bulong, Yangchang) of Bay County (Figure 1). Thereafter,
about 1 L of water was collected in a plastic container and 10 mL of nitric acid was added for
preservation. The acidified drinking water samples were stored at 4 ◦C and analyzed within seven days
of collection. We collected and preserved the water samples in accordance with the GB/T5750.2-2006
Standard Test for Drinking Water.
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2.3. Chemicals and Reagents

Ultra-pure analytical-grade nitric acid with a concentration of 65% was purchased from
Guangzhou Chemical Reagent Factory (Guangzhou, China). Standard solutions of the trace elements
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(Cr, As, Cd, Ni, Zn, Se and Pb) were obtained from the National Institute of Metrology of China (NIM,
Beijing, China).

Instrumental Analysis and Quality Control

Each 10-mL water sample was acidified with 100 µL of nitric acid, and the concentrations of
trace elements were determined using Agilent 7700x inductively-coupled plasma mass spectrometry
(ICP-MS). Optimized instrumental parameters are listed in Table 1. We used ICP-MS and tested the
elements (Cr, As, Cd, Ni, Zn, Se, and Pb).

Table 1. Optimized instrumental parameters of inductively-coupled plasma mass spectrometry.

Parameters Values

RF forward power 1500 W
Plasma gas flow rate 15 L/min
Carrier gas flow rate 0.80 L/min

Auxiliary gas flow rate 0.40 L/min
Nebulizer pump 0.10 rps
S/C tempreture 2 ◦C
Sample depth 8.0 mm

Resolution, 10% peak height 0.6–0.7 amu
Number of sweep 2

Collision cell helium flow rate 5.0 L/min
Cell entrance −40 V

Cell exit −60 V
Octopole bias −18 V

Quadrupole bias −15 V

Online internal standard (concentration) 45 Sc and 72 Ge (200 g/L)
103 Rh and 185 Re (50 g/L)

Standard curve solutions of the trace elements were prepared with 1% of nitric acid ranging from
0.002 to 0.500 µg/L for Se; 0.005 to 3.000 µg/L for Cd; 0.030 to 3.500 µg/L for Cr, As, and Pb; 0.100
to 4.000 µg/L for Ni; and 0.500 to 3000 µg/L for Zn, respectively. The calibration curve regression
coefficients (r2) for individual elements were all above 0.9995. We used the internal standard solutions
for checking the signal drift during instrumental analysis. To authenticate the stability of the detector
response, a moderate concentration of multi-element standard solution was analyzed with each batch
of five samples, and relative standard deviation was less than 10%. Recoveries of the trace elements
were obtained by spiking standard solutions to water samples at two levels (2 µg/L and 10 µg/L),
and the spiked samples were also subjected to the same procedure used for the samples. Recoveries
for all of the elements in the present study were between 83% and 104%. We analyzed the procedural
blank and reagent blank with each batch of five samples to check for potential contamination in the
laboratory. We also defined the limit of detection (LOD) and limit of quantification (LOQ) as three and
ten times the relative standard deviation for 21-reagent blank analysis, respectively.

2.4. Data Analysis

In this study we used descriptive statistics, the Kruskal-Wallis test (StatSoft, Inc., Tulsa, OK, USA),
and a human health risk assessment method [28–30].

2.4.1. Human Health Risk Assessment

According to the toxicological effect, the health risks of exposure to pollutants include carcinogenic
and non-carcinogenic risks. The evaluation models of health risk assessment as recommended by the
U.S. Environmental Protection Agency (EPA) were also used in this study.
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ADDj is the dose of carcinogenic chronic chemical pollutants by everyday drinking, with units of
[mg·(kg·d)−1]. It can be calculated by the following formula:

ADDj =
C× IR× ED× EF

BW × AT
(1)

In Equation (1), C is the average concentration of the chemical pollutants (mg·L−1); IR is for
the average daily water consumption (2.2 L for adults’ and 1 L for children’s average daily water
consumption); ED is the exposure cycle (70 a); EF is the exposure frequency (365 days); BW is the
adult’s body weight (adults, 70 kg; children, 25 kg); AT is the life time (365 days × 70 years).

PAD is the adjustment dose of non-carcinogenic chronic chemical pollutants by the drinking water,
and has units of [mg·(kg·d)−1]. It can be calculated by this formula:

PADig =
R f Dig

10
(2)

In Equation (2), RfD is the reference dose of the non-carcinogenic chronic chemical pollutants,
with units of [mg·(kg·d)−1]. In this study, the safety factor value is 10.

The risk model for health hazards caused by carcinogenic chemical pollutants is expressed as
a risk of cancer caused by exposure to a carcinogen, which is more than a normal level of cancer.
It is generally believed that the carcinogenic compound in water has a linear relationship with its
concentration. The evaluation formula is as follows:

Rc
ig =

1×exp(ADDig×qig)
Y

Rc =
J

∑
J=1

Rc
j

(3)

In Equation (3), R is the annual cancer risk that results from the carcinogenic chemical pollutants
which are ingested by the person (a−1); q is the dose of the chemical pollutant carcinogenic intensity
coefficient (mg·(kg·d)−1)−1; Y is the average life expectancy of 70 years.

The risk model for health hazards caused by non-carcinogenic chemical pollutants is calculated
by the following formula:

Rn
ig =

ADDig×10−6

PADig×Y

RD =
K
∑

K=1
Rc

k

(4)

In Equation (4), R is the annual health risk resulting from the non-carcinogenic chemical pollutants
ingested by the person (a−1).

When we calculate with multiple substances and risk types, we first calculate all of the
carcinogenic and non-carcinogenic risks, and then find the sum. Generally, we do not consider
the synergy reaction and the antagonism reaction:

Rsum = Rc ± Rc (5)

2.4.2. Parameter Values

The International Association for Cancer Research (IARC) and the World Health Organization
(WHO) comprehensively evaluated the chemical pollutants’ carcinogenicity and then formulated the
classification system. Cd, Cr, and As belong to the class of carcinogenic chronic chemical pollutants
and their reference dose value and chemical pollutants carcinogenic intensity coefficients are indicated
in Table 2. Ni, Zn, Se, and Pb belong to the non-carcinogenic chronic chemical pollutants and the values
of the reference doses of the non-carcinogenic chronic chemical pollutants are shown in Table 2 [8]. The
maximum risk acceptance risk level and negligible level of some organizations are listed in Table 3 [31].
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Table 2. The values of the q and RfD of model parameters.

Carcinogenic Chronic
Chemical Pollutants Q Non-Carcinogenic Chronic

Chemical Pollutants RfD

As 15 Cu 5.0 × 10−3

Cd 6.1 Zn 3.0 × 10−4

Cr 41 Hg 1.0 × 10−4

Pb 1.4 × 10−3

Ni 2 × 10−2

Se 5 × 10−3

Unit of the Q: [mg·(kg·d)−1]; Unit of the Q RfD: [mg·(kg·d)−1].

Table 3. The maximum risk acceptance risk level and negligible level of some organizations.

Organization Maximum Acceptable
Risk Level/a−1

Risk Level that Can be
Ignored/a−1 Remarks

U.S. Environmental
Protection Agency 1 × 10−4 - Radical

International Commission
on Radiological Protection 5 × 10−5 - -

Royal Society 1 × 10−6 1 × 10−7 -

Holland Construction and
Environment Department 1 × 10−6 1 × 10−8 Chemical

pollutants

Swedish Environmental
Protection Agency 1 × 10−6 - Chemical

pollutants

3. Results

3.1. Trace Element Concentrations in Drinking Water

Compared to China’s drinking water standard (GB5749-2006), virtually all trace elements in the
drinking water in the present study of the six rural areas could meet the regulation requirements
(Table 4). The water pH ranges from 6.0–7.12. There is no significant difference (p ≥ 0.05) in the water
pH levels among the sampling points. The water pH was within the range recommended by WHO
(6.5–8.5) for all sampling points. All trace elements were detected in tap water, and the concentrations
varied greatly.

Table 4. Descriptive statistics analysis of the trace elements in the drinking water of the Bay
Xinjiang China.

Study Area Water Source Element Min Max Mean SD CV

DW The well water

Cd 0.01 0.138 0.031 0.034 1.067
As 0.716 8.008 2.283 2.023 0.886
Cr 1.796 8.28 3.79 1.868 0.493
Zn 0.517 17.143 4.46 5.42 1.21
Ni 0.537 1.824 0.862 0.432 0.50
Pb 0.004 0.13 0.04 0.04 1.07
Se 0.66 3.787 1.466 1.066 0.727

KYR
Fountain

water

Cd 0.005 0.042 0.01617 0.0089 0.212
As 0.302 8.964 1.4959 2.1919 0.244
Cr 1.592 4.722 2.5243 0.7267 0.154
Zn 0.467 5.183 1.7802 1.240 0.239
Ni 0.624 1.901 1.2216 0.3810 0.2004
Pb 0.006 0.121 0.0454 0.0392 0.324
Se 0.305 1.333 0.7855 0.365 0.274
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Table 4. Cont.

Study Area Water Source Element Min Max Mean SD CV

YTR
Fountain

water

Cd 0.003 0.016 0.0078 0.00434 0.556
As 0.326 0.472 0.3915 0.0405 0.1035
Cr 1.809 4.862 2.53340 1.01244 0.3999
Zn 0.955 24.97 6.9017 7.266 1.0527
Ni 1.475 1.923 1.7457 0.1274 0.072
Pb 0.002 0.023 0.0103 0.00737 0.716
Se 5.68 9.053 7.2455 1.179 0.162

KRW
Mountain
melting

glacier water

Cd 0.013 0.127 0.03369 0.02314 0.686
As 0.522 5.728 1.5786 1.333 0.8445
Cr 0.784 2.133 1.4382 0.2806 0.1951
Zn 0.395 449.048 56.233 115.60 2.055
Ni 0.721 1.73 0.9497 0.2066 0.217
Pb 0.007 0.466 0.0719 0.0879 1.221
Se 0.188 0.796 0.5553 0.1319 0.2375

Y
Mountain
melting

glacier water

Cd 0.011 0.025 0.0175 0.005167 0.295
As 0.466 0.5501 0.5030 0.03417 0.0679
Cr 0.876 1.158 0.9725 0.10908 0.112
Zn 6.865 349.639 96.189 132.75 1.380
Ni 0.674 0.806 0.7063 0.04999 0.070
Pb 0.001 0.009 0.00516 0.0026 0.5108
Se 0.616 1.104 0.7885 0.1668 0.2116

B
Fountain

water

Cd 0.008 0.022 0.0153125 0.00457 0.298
As 0.246 0.451 0.355 0.0606 0.1705
Cr 1.158 3.056 1.737 0.6017 0.346
Zn 0.49 6.835 1.9063 1.946 1.021
Ni 1.012 1.459 1.311 0.1043 0.079
Pb 0.002 0.032 0.007375 0.00683 0.926
Se 2.577 4.565 3.635 0.6233 0.171

DW: Dawanqi; KYR: Keyiri; KRW: Kriwahi; Y: Yangchang; YT: Yaturi; B: Bulong. CV: Coefficient of Variation;
SD: Standard deviation.

It is evident that the mean content of Cr in Dawanqi is higher than that of other regions; the Cr
mean content of the Kyiri and Yaturi is similar and about 2.5 µg/L; the mean content of Cr in the
Bulong, Kariwahi, and Yangchang is similar and about 1–1.7 µg/L (Figure 2). The mean content of
Cd in Keyir, Yatur, Bulung and Yangchang is similar with the mean value of 0.007–0.017 µg/L, but
all are significantly lower than that of Dawanqi and Kariwahi with mean values of about 0.03 µg/L.
There is no significant difference between Dawanqi, Karwahi, and Keyir in As content, which is about
1.5–2.3 µg/L, however these regions have significantly higher levels of As compared to Yatur, Bulung,
and Yangchang which have similar amounts of As (0.3–0.4 µg/L). The Zn content of the Karwahi and
Yangchang regions is higher than that of the other regions, and the mean values are 56.23 µg/L and
96.18 µg/L, respectively. However, the other regions have relatively low levels of Zn content and
have little variance between one another. There is a slight difference in Pb content between Dawanqi,
Kariwahi, and Keyir regions, with the mean value lower than 0.1 µg/L. However, these regions
have relatively higher levels of Pb than that of other regions (YTR, Y, B), which share no significant
difference in Pb. The mean content of Ni in the Dawanqi and Kerwahi regions is very similar, at about
0.9 µg/L; the mean content of Ni in the Keyiri and Bulung regions is also similar at about 1.2 µg/L.
It is noteworthy that the highest level of Ni content is found in the Yaturi region, while the Yangchang
has the lowest levels of Ni, with an average content of 0.7 µg/L. The mean content of Se in the Keyir,
Kerwahi, and Yangchang regions is almost the same, at about 0.55–0.7 µg/L; the order of the Se content
of the other three regions is Yatur > Bulung > Dawanqi.
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Figure 2. The trace element concentrations in the drinking water of Bay County. Boxes with
different letters were significantly different at p < 0.05. Significance was determined by nonparametric
comparison (Kruskal-Wallis test. DW: Dawanqi; KYR: Keyiri; KRW: Kriwahi; Y: Yangchang; YT: Yaturi;
B: Bulong.
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3.2. Human Health Risk Assessment

According to the evaluation of health risk assessment models recommended by the U.S. EPA,
we assessed the level of health hazard risks for the population in four agricultural areas and
two pastoral areas of the Bay County in Xinjiang, China caused by trace elements ingested orally
through drinking water. Two population groups were considered: adults and children.

The median values of incremental lifetime health risks induced by carcinogenic metals of the
DW agriculture region were estimated to be 6.95123 × 10−5, 1.53707 × 10−5, and 8.74299 × 10−8

in adults; and 8.8411 × 10−5, 1.95598 × 10−5, and 1.1127 × 10−8 in children for Cr, As, and
Cd, respectively (Figure 3). The total health risks induced by carcinogenic metals of the DW
agriculture region are 8.50 × 10−5 for adults and 1.08 × 10−4 for children, while the median values
of non-carcinogenic chemical pollutants health hazard risk were estimated to be 6.6667 × 10−8,
1.94 × 10−10, 1.30007 × 10−10, 1.32 × 10−9 in adults; and 8.5005 × 10−8, 2.47 × 10−10, 1.65463 × 10−10,
and 1.68 × 10−9 in children for Zn, Ni, Pb, and Se, respectively (Figures 3 and 4). The total
non-carcinogenic chemical pollutants health hazard risk of the DW agriculture region is 6.83× 10−8 for
adults and 8.71 × 10−8 for children (Figure 4). The total health risks induced by both the carcinogenic
chemical pollutants and the non-carcinogenic chemical pollutants are 8.50387 × 10−5 for adults and
1.0817 × 10−4 for children (Figure 5).
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The median values of incremental lifetime health risks induced by carcinogenic metals of the KYR
agriculture region were estimated to be 4.64 × 10−5, 1.02 × 10−5, and 4.43037 × 10−8 in adults; and
5.9 × 10−5, 1.3 × 10−5, and 5.63864 × 10−8 in children for the Cr, As, and Cd, respectively (Figure 3).
The total health risks induced by carcinogenic metals of the KYR agriculture region are 5.66 × 10−5 for
adults and 7.21× 10−5 for children (Figure 3), while the median values of the non-carcinogenic chemical
pollutant health hazard risk were estimated to be 2.66 × 10−8, 2.74247 × 10−10, 1.45824 × 10−10, and
7.05426 × 10−10 in adults; and 3.39 × 10−8, 3.49042 × 10−10, 1.85594 × 10−10, and 8.97815 × 10−10

in children for Zn, Ni, Pb, and Se, respectively (Figure 4). The total non-carcinogenic chemical
pollutant health hazard risk of the KYR agriculture region is 2.78 × 10−8 for adults and 3.53 × 10−8

for children (Figure 4). The total health risks induced by both the carcinogenic chemical pollutants
and the non-carcinogenic chemical pollutants are the 5.67134 × 10−5 for adults and 7.21532 × 10−5 for
children (Figure 5).

The median values of incremental lifetime health risks induced by carcinogenic metals of the
KRW agriculture region were estimated to be 2.65 × 10−5, 1.06 × 10−5, and 9.22881 × 10−8 in
adults; and 3.36563 × 10−5, 1.35248 × 10−5, and 1.17458 × 10−7 in children for the Cr, As, and Cd,
respectively (Figure 3). The total health risks induced by carcinogenic metals of the KRW agriculture
region are 3.72 × 10−5 for adults and 4.73 × 10−5 for children (Figure 3). The median values of
the non-carcinogenic chemical pollutants health hazard risk were estimated to be 8.4159 × 10−7,
2.13204 × 10−10, 2.30807 × 10−10, and 4.98694 × 10−10 in adults; and 1.0711 × 10−6, 2.71351 × 10−10,
2.93754 × 10−10, and 6.34701 × 10−10 in children for Zn, Ni, Pb, and Se, respectively (Figure 4).
The total non-carcinogenic chemical pollutants health hazard risk of the KRW agriculture region
is 8.43 × 10−7 for adults and 1.07 × 10−6 for children; the total health risks induced by both the
carcinogenic chemical pollutants and the non-carcinogenic chemical pollutants are 3.80 × 10−5 for
adults and 4.84 × 10−5 for children (Figure 5).

The median values of incremental lifetime health risks induced by carcinogenic metals of the
YTR agriculture region were estimated to be 4.65592 × 10−5, 2.63639 × 10−5, and 2.1362 × 10−8

in adults; and 5.92308 × 10−5, 3.3553 × 10−5, and 2.71188 × 10−8 in children for the Cr, As, and
Cd, respectively (Figure 3). The total health risks induced by carcinogenic metals of the YTR
agriculture region are 4.93 × 10−5 for adults and 6.26 × 10−5 for children (Figure 3). The median
values of non-carcinogenic chemical pollutant health hazard risks were estimated to be 1.03 × 10−7,
3.91892 × 10−10, 3.30321 × 10−11, and 6.50616 × 10−9 in adults; and 1.31 × 10−7, 4.99 × 10−10,
4.20 × 10−11, and 8.28 × 10−9 in children for Zn, Ni, Pb, and Se, respectively (Figure 4). The total
non-carcinogenic chemical pollutant health hazard risk of the YTR agriculture region is 1.10 × 10−7 for
adults and 1.40 × 10−7 for children. The total health risks induced by both the carcinogenic chemical
pollutants and the non-carcinogenic chemical pollutants are 4.94 × 10−5 for adults and 6.27 × 10−5 for
children (Figure 5).
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The median values of incremental lifetime health risks induced by carcinogenic metals for the Y
natural pastoral areas were estimated to be 1.79 × 10−5, 3.29 × 10−6, and 4.79 × 10−8 in adults; and
2.277 × 10−5, 4.19081 × 10−6, and 6.1 × 10−8 in children for the Cr, As, and Cd, respectively (Figure 3).
The total health risks induced by carcinogenic metals of the Y natural pastoral areas are 2.12 × 10−5

for adults and 2.70 × 10−5 for children (Figure 3). The median values of non-carcinogenic chemical
pollutants health hazard risk were estimated to be 1.4396× 10−6, 1.58565× 10−10, 1.65695× 10−11, and
7.08041 × 10−10 in adults; and 1.83 × 10−6, 2.0181 × 10−10, 2.10884 × 10−11, and 9.01143 × 10−10 in
children for Zn, Ni, Pb, and Se, respectively (Figure 4). The total non-carcinogenic chemical pollutants
health hazard risk of the Y natural pastoral areas is 1.44 × 10−6 (adults) and 1.83 × 10−6 (children).
The total health risks induced by both the carcinogenic chemical pollutants and the non-carcinogenic
chemical pollutants are 2.26 × 10−5 for adults and 2.88 × 10−5 for children (Figure 5).

The median values of incremental lifetime health risks induced by carcinogenic metals of the
B natural pastoral areas were estimated to be 3.19392 × 10−5, 2.39272 × 10−6, and 4.19374 × 10−8

in adults; and 4.06375 × 10−5, 3.35532 × 10−6, and 5.33749 × 10−8 in children for Cr, As, and
Cd, respectively (Figure 3). The total health risks induced by carcinogenic metals of the B natural
pastoral areas are 3.44 × 10−5 for adults and 4.40 × 10−5 for children (Figure 3). The median
values of non-carcinogenic chemical pollutants health hazard risks were estimated to be 2.85 × 10−8,
2.94 × 10−10, 2.36516 × 10−11, and 2.51429 × 10−8 in adults; and 3.63 × 10−8, 3.75 × 10−10,
3.0102 × 10−11, 3.2 × 10−9, and in children for Zn, Ni, Pb, and Se, respectively (Figure 4). The
total non-carcinogenic chemical pollutants health hazard risks of the B natural pastoral areas are
3.14× 10−8 (adults) and 3.99× 10−8 (children). The total health risks induced by both the carcinogenic
chemical pollutants and the non-carcinogenic chemical pollutants are 3.44052 × 10−5 for adults and
4.3776 × 10−5 for children (Figure 5).

4. Discussion

We can see that the trace elements in the tap water of the six regions were very different with
regard to the content coefficient of variation. We find that while the people in the same region drink tap
water from the same source, there are significant differences between the containers used for saving
water, as well as differences in the materials used for the pipes through which the tap water passes.
Additionally, because people have different habits for getting the drinking water from the tap and
putting it into containers, the result is a significant difference in the heavy metal content of the water.

In recent years, the issue of drinking water polluted by trace elements had received keen attention
around the world, especially in developing countries. For instance, a previous study assessed tap water
quality in one of the villages of Gao Ming Foshan City, Guangdong Province [15]. In that particular
study, the mean concentrations of individual essential trace elements were 0.775 µg/L, 4 µg/L,
0.06 µg/L, 0.375 µg/L, and 0.27 µg/L, for As, Cr, Cd, Pb, and Se, respectively. The concentrations of
As and Se in our research were higher than those in their study, while the other elements maintained
lower levels than those of Foshan, especially for Pb.

We find some similar phenomena in the human health risk assessment of the six regions. Over all
six regions, the value of Cr is highest among the health hazard risk index due to carcinogenic chemical
pollutants, and the value of Zn is highest among the health hazard risk index due to non-carcinogenic
chemical pollutants. The health hazard risk index caused by carcinogenic chemical pollutants is
greater than that caused by non-carcinogenic chemical pollutants, and is consistent with similar studies
performed in China, which concluded that the carcinogenic chemical pollutants health hazard cancer
risk is more severe than the non-carcinogenic chemical pollutants health hazard risk due to heavy
metals in drinking water. The size of the risk index of the carcinogenic chemical trace elements of the
six regions in order is Cr > As > Cd, and that of the risk index of the non-carcinogenic chemical trace
elements of the study areas is Zn > Se. Both health hazard risk indices are greater for children than
for adults.
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In the six regions, comparing the median total cancer risk values associated with exposure to
carcinogenic trace elements via consumption of drinking water, the size of the sum risk index is DW
(adults) > KYR (adults) > YTR (adults) > KRW > (adults) > B (adults) > Y (adults); DW (children)
> KYR (children) > YTR (children) > KRW (children) > B (children) > Y (children). Comparing the
median values of incremental lifetime total non-cancer risks induced by non-carcinogenic metals, the
size of the sum of the risk index is Y (adults) > KRW (adults) > YTR (adults) > DW (adults) > KYR
(adults) > B (adults); Y (children) > KRW (children) > YTR (children) > DW (children) > B (children) >
KYR (children). Comparing the median values of the incremental lifetime total health risk induced by
trace elements in drinking water, the size of the sum risk index is DW (adults) > KYR (adults) > YTR
(adults) > KRW (adults) > B (adults) > Y (adults); DW (children) > KYR (children) > YTR (children)
> KRW (children) > B (children) > Y (children). The incremental lifetime total health risk induced
by trace elements in the drinking water of typical agricultural regions is greater than in the natural
pastoral areas.

Since the incremental lifetime non-cancer risk was less than 10−6, the risk induced by these
non-carcinogenic elements in drinking water is considered inconsequential for people in the following
regions: DW, KYR, YTR, KRW, and B. The trace Cd cancer risk was also less than 10−6, so the risk
that is induced by Cd in drinking water is considered inconsequential for populations of DW, KYR,
YTR, KRW, and B, and the main factors of cancer risk for these populations were Cr and As. Since
the incremental lifetime non-cancer risks induced by Ni, Pb and Se were less than 10−6, the risks
induced by Ni, Pb and Se elements in drinking water are considered inconsequential for those in the Y
region, with the main factor of the non-cancer risk for the Y population was Zn. The cancer risks of
carcinogenic trace Cd were also less than 10−6 for both Y populations, so the risks that are induced
by the Cd in drinking water are considered inconsequential, with the main cancer risks for these
populations being Cr and As. The total value of incremental lifetime health risks induced by the seven
trace elements for the DW adult population reached 8.51 × 10−5, which is higher than the acceptable
risk level (10−6) and lower than the priority risk level (10−4), while the DW children’s population
reached 1.08 × 10−4, which is higher than both the acceptable risk level and the priority risk level
(10−4). The total value of incremental lifetime health risk induced by the seven trace elements for the
KYR adult population reached 5.67 × 10−5, and the KYR children’s population reached 7.21 × 10−5,
with both of them being higher than the acceptable risk level (10−6) and lower than the priority risk
level (10−4). The total value of incremental lifetime health risk induced by the seven trace elements
for the KRW adult population reached 3.80 × 10−5, and the KRW children’s population reached
4.84 × 10−5, with both of them being higher than the acceptable risk level (10−6) and lower than the
priority risk level (10−4). The total value of incremental lifetime health risk induced by the seven trace
elements for the YTR adult population reached 4.94× 10−5, and the YTR children’s population reached
6.27 × 10−5, with both of them being higher than the acceptable risk level (10−6) and lower than the
priority risk level (10−4). The total value of incremental lifetime health risk induced by the seven trace
elements for the Y adult population reached 2.27 × 10−5, and the Y children’s population reached
2.88 × 10−5, with both of them being higher than the acceptable risk level (10−6) and lower than the
priority risk level (10−4). The total value of incremental lifetime health risk induced by the seven trace
elements for the B adult population reached 3.44 × 10−5, and the B children’s population reached
4.40 × 10−5, with both of them being higher than the acceptable risk level (10−6) and lower than the
priority risk level (10−4). This suggests a high potential for health risks from the trace elements in
drinking water, implying that this class of elements requires dedicated attention.

The topography of the six regions is different and, thus, so is the source of the heavy metals.
The drinking water source of the DW agricultural region is the well water, and the source of drinking
water for the YTR and KYR agricultural regions, as well as the pastoral B region is fountain water.
The drinking water source of the KRW agricultural region and the Y pastoral region is mountain water
from melting glaciers.
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The DW, YTR, KYR, and KRW regions are those where the agricultural production activities are
relatively broad; hence, trace elements from pesticides are readily found in their agriculture. Coal and
iron mines operate in the Y Plateau regions, so trace elements from these industries are readily found
in the drinking water; thus, Zn is the main factor of the non-cancer risks for the Y population.

5. Conclusions

All trace elements in the drinking water of the six regions in the present study could meet the
regulatory requirements.

The risk indices of the carcinogenic and non-carcinogenic chemical trace elements in the six regions
are in the order of Cr > As > Cd and Zn > Se, respectively. Both the non-carcinogenic and carcinogenic
chemical pollutant health hazard risk indices for children are greater than for adults.

The carcinogenic chemical pollutants health hazard cancer risk from trace elements is more severe
than that of non-carcinogenic chemical pollutants in the drinking water of the six regions.

The total risk indices of the adults and children of the six areas are in the order of DW > KYR >
YTR > KRW > B > Y. The total health risk for both the adults and children of the agricultural areas
(KYR, YTR, KRW, and DW) is greater than in the pastoral areas (Y and B). The total risk indices in
regions where the drinking water source is well water are greater than the total health risk indices in
regions where the source of the drinking water is fountain water; the source of the fountain water
regions’ total health risk indices is greater than in regions where the source is mountain water from
melting glaciers.

The main factors of the cancer risks in the DW, KYR, YTR, KRW, Y, and B areas are Cr and As.
The non-carcinogenic chemical pollutant health hazard risk and the Cd cancer risk in the drinking
water are considered inconsequential for the people of the DW, KYR, YTR, KRW, and B regions. The Zn
in the drinking water is considered the main non-carcinogenic chemical pollutant health hazard risk
factor for the Y population.

The total health risk for both adults and children induced by the trace elements for KYR, YTR,
KRW, Y, and B regions is higher than the acceptable risk level (10−6) and lower than the priority risk
level (10−4). The total health risk induced by the trace elements for the DW adult is higher than the
acceptable risk level (10−6) and lower than the priority risk level (10−4), while the total health risk
for the population of DW children reached 1.08 × 10−4, which is higher than both the acceptable and
priority risk levels (10−4).
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