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Abstract: Regular physical activity reduces the risk of many diseases and improves physical and
mental health. However, physical inactivity is widespread globally. Improving physical activity
levels is a global concern in well-being management. Exercise performance measurement systems
have the potential to improve physical activity by providing feedback and motivation to users.
We propose an exercise performance measurement system for well-being management that is based
on the accumulated activity effective index (AAEI) and incorporates a smartphone-embedded sensor.
The proposed system generates a numeric index that is based on users’ exercise performance: their
level of physical activity and number of days spent exercising. The AAEI presents a clear number
that can serve as a useful feedback and goal-setting tool. We implemented the exercise performance
measurement system by using a smartphone and conducted experiments to assess the feasibility
of the system and investigated the user experience. We recruited 17 participants for validating
the feasibility of the measurement system and a total of 35 participants for investigating the user
experience. The exercise performance measurement system showed an overall precision of 88% in
activity level estimation. Users provided positive feedback about their experience with the exercise
performance measurement system. The proposed system is feasible and has a positive effective on
well-being management.
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1. Introduction

Sufficient physical activity has substantial benefits for health. Regular physical activity such
as fast walking, running, and cycling reduces the risk of coronary heart disease, type 2 diabetes,
and depression, as well as facilitating weight control [1–4]. Moreover, physical activity improves
mental health and reduces cognitive impairment. However, 31.1% of adults worldwide are physically
inactive [1]. Increasing physical activity is a global health care concern.

Wearable health care sensors have potential to improve physical activity levels. An inexpensive,
accurate, and stable device that can assess physical activity in real-world environments can facilitate
the management of personal health. A variety of activity monitoring devices has been developed for
health promotion. Several technologies are available for the measurement and assessment of physical
activity, such as doubly labeled water (DLW), indirect calorimetry, pedometers, accelerometers, heart
rate measuring devices, and global positing systems [3]. For example, walking is a health-boosting
activity, and pedometers can assist in motivating physical activity and tracking progress. A pedometer
can function as an activity sensor, which is used to monitor physical activity for the purpose of health
promotion. The global positioning system can be used to measure activity by computing the distances
and speeds of outdoor activities (e.g., walking and running). In general, sensors such as accelerometers
have the features of low cost, suitability for personal recording, and easy to use. In recent years,
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researchers have found that the level of activity is essential and that the intensity of activity is crucial.
Data analysis algorithms are combined with wearable sensors. Activity recognition and activity level
estimation technologies are applied in personal well-being management to address physical inactivity
problems by providing accurate information to users.

The estimation of activity level and activity recognition by acceleration signal is determined using
regression techniques [5]. A classifier can classify input data into a labeled category. There are various
well-known classifiers that have been implemented in smartphones such as support vector machine,
K-nearest neighbor, decision tree, and neural networks [6,7]. Although most published studies have
good accuracy in activity recognition problems, these studies differ in the recognition of activity type
and in the position, type, and number of sensors. It is hard to directly compare different methods in
classification problems [8]. However, some studies showed that decision trees and neural networks
may have better accuracy in recognition problems [7,8]. Comparing decision trees and neural networks,
decision trees have easy coding, fast prediction, lower battery consumption, and interpretability.

Several studies have implemented activity recognition or activity level estimation approaches
by applying accelerometers [9–20]. For example, Kwapisz et al. identified activity types through
smartphones carried in the users’ pockets [11]. Weiss et al. established a smartphone-based activity
recognition system to monitor personal health [12]. Such studies are useful and have contributed
to well-being management. However, most of such studies have focused on activity measurement
for a single period and providing feedback on the basis of this measurement. Regular physical
activity over longer periods has not been examined. The World Health Organization (WHO) defines
sufficient physical activity as at least 600 MET-min/week, which equates to approximately 75 min of
high-intensity activity, 150 min of moderate-intensity activity, or 600 min of mixed-intensity activity.
Consequently, if devices cannot accumulate activity records for a week, to meet this recommendation,
users must calculate their weekly activity levels. In addition, the main purpose of the measurement
of physical activity is to provide feedback to the user, thereby increasing motivation and enabling
targets to be set and aimed toward [3,21]. Complicated feedback systems are a potential barrier to the
popularization of devices; simple indicators are more suitable for public consumption. Studies have
suggested that goal-setting can increase self-regulatory behavior and increase physical activity [22].
Similarly, goals must be set clearly to facilitate understanding.

The accumulated activity effective index (AAEI) was proposed to analyze physical activity on
the basis of physical activity levels and the number of days spent exercising [23]. The AAEI system
entails feedback being inputted to a numeric index every day irrespective of whether the user is
resting or exercising. The AAEI can be applied to set goals for increasing physical activity or for
maintaining sufficient physical activity. Because the AAEI is based on the number of days spent
exercising, users can read the index every day to inspect their physical activity. Therefore, we propose
an exercise performance measurement system that is based on the AAEI for generating an index
that includes the levels of physical activity and the number of days spent exercising. The proposed
mechanism for well-being management was implemented using a smartphone because smartphones
have a user-friendly interface and embedded motion sensors. Users can set goals, understand their
physical activity levels, and be motivated.

2. Materials and Methods

2.1. System Architecture

The exercise performance measurement system is implemented using a smartphone. For a
motion sensor, the smartphone employs a triaxial accelerometer that is provided with a range of ±2 g.
The sampling rate is 40 Hz. The smartphone is worn on the left upper arm by using phone accessories.
A system function diagram is presented in Figure 1. The proposed mechanism includes an activity
level estimation stage and an AAEI stage. The activity level estimation process transfers motion data
to the activity level. The activity level estimation process comprises signal preprocessing, feature
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extraction, and an activity level estimation model. The AAEI stage calculates the index on the basis
of the activity level and duration. When activated, the system can monitor running and walking.
Users can read the AAEI after they have finished exercising.
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2.2. Activity Level Estimation Mechanism

The activity level estimation comprises three components, namely signal preprocessing, feature
extraction, and activity level estimation. Figure 2 illustrates the activity level estimation process.
The training phase begins with the preprocessing of a time series data signal. The preprocessing
function involves a low-pass filter used to separate gravity and motion data. The feature vector is
then extracted from the motion data. The features are grouped into clusters according to the activity
level and modeled through decision tree classification [8], a technique commonly used in data mining
and extensively applied in many applications for classification that entails constrained requirements.
When used for activity level estimation, decision trees are usually trained to learn a decision boundary
between different activity level patterns. In the activity level estimation phase, the sampling data are
processed through the same preprocessing and feature extraction functions as in the training phase.
The activity level is outputted by the estimation model generated by the training phase. The details of
the components are described in this subsection.
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2.2.1. Preprocessing

The acceleration signal is recorded by an accelerometer embedded in the smartphone and contains
gravity and body movement acceleration. In the signal preprocessing, a low-pass filter with a cutoff
frequency at 0.5 Hz is used to separate gravity and body movement signals [16]. The gravity component
is obtained directly by applying the low-pass filter to the acceleration signal, whereas the body motion
component is determined using the difference between the original signal and the gravity component.
A window technique is used to divide the continuous body motion signal into segments. The time
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window size is defined as 2 s, because a period of 1–2 s provides a favorable trade-off between
recognition speed and accuracy [15]. We observed that a larger window can smooth the signal features
whereas a smaller window is sensitive to the signal features. The 2 s time window size of a body
motion signal will be processed through feature extraction.

2.2.2. Feature Extraction

Numerous features can be utilized to identify activity levels. Previous activity recognition studies
extracted wide range of features to identify activity [6,8]. These features usually are time-domain
and frequency-domain features. Time-domain features such as mean, variance, and maximum or
minimum values, are generated directly from a time window. Frequency-domain features are applied
to fast Fourier transform to generate frequency-based features. Frequency-domain features such as
entropy, energy, and frequency can be used in activity recognition problems [5]. These features are used
both in training and estimation phase. Smartphones have limited computational capacity. Therefore,
to avoid excessive complexity, the number of features should be restricted. On the basis of previous
studies [9,16,18], we selected 10 features: signal magnitude area (SMA, Equation (1)), signal magnitude
vector (SMV, Equation (2)) [16], maximum y- and z-axis value of motion signal, and the first three
magnitude values and frequencies of fast Fourier transformation. The extracted features form a feature
vector per time segment. Each segment results in an activity level being produced according to the
feature vector.

SMA =
1
t
(
∫ t

0
|x (t)| dt +

∫ t

0
|y (t)| dt +

∫ t

0
|z (t)| dt) (1)

where x(t), y(t), and z(t) refer to the x-, y-, and z-axis samples, respectively.

SMV =
√

xi
2 + yi

2 + zi
2 (2)

where xi, yi, and zi are the i-th sample of the x-, y-, and z-axis signal, respectively.

2.2.3. Decision Tree Modeling

The activity categories considered in this study are outlined as follows: walking, fast walking,
running, and stationary. The activity categories and corresponding activity levels are defined in Table 1.
Researcher measures physical activity as energy expenditure using metabolic equivalent of task (MET)
as unit to quantify activity level. One MET is defined as 1 kcal/kg/h. The MET value is independent
of person and can be used to estimate intensity of physical activity. The intensity of sedentary activity
is approximately 1 MET. Activity categories of light, moderate, and vigorous intensity are between
1 and 3, 3 and 6, and 6 and 9 METs, respectively. Activity of greater than 9 METs is extremely vigorous.

Table 1. Activity category and corresponding activity level.

Activity Activity Level

Stationary Sedentary

Walking slowly (<2 km/h) Light

Walking (2–4 km/h) Light

Walking fast (5–7 km/h) Moderate: 5–6 km/h
Vigorous: 7 km/h

Running (6–9+ km/h) Vigorous: 6–8 km/h
Extremely vigorous: 9+ km/h

Decision tree algorithm is an extensive machine learning method to solve classification problems
of pattern recognition [8,15]. A decision tree is a hierarchical scheme that has a tree-like structure.
A decision tree is composed of a set of interior nodes and terminal nodes. Each interior node of the
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decision tree is a threshold of one feature that makes a binary decision. The data is separated by
interior node to a terminal node or next interior node. A terminal node represents one class of the
classification problems.

The training data through the preprocessing and feature extraction processes. The decision
tree was produced by C4.5 and identifies various activity level categories. The participants were
recruited to perform physical activity with a smartphone strapped on the left upper arm. In the
training phase, the decision tree model with labeled feature vectors is used to construct an activity
level estimation model. The activity level estimation model is validated by 10-fold cross validation.
The generated activity level estimation model is then used in the recognition phase to estimate activity
levels. The decision tree is a rule based algorithm that can be implemented in smartphone using
if-then rules.

2.3. Accumulated Activity Effective Index

The AAEI is used to measure exercise performance after activity level estimation. The activity
index calculator is a simple numeral indicator that determines the physical activity status of a user
by estimating both the accumulated quantity of physical activity and the number of days spent
exercising [23]. The index is estimated according to daily physical activity. The functions are described
by Equations (3)–(5) and the parameters are shown in Table 2.

Table 2. AAEI parameters.

I: I ≥ 0, an index (t1, t2): time interval from t1 to t2, unit: day

k (M): k (M) =

{
0, M = sedentary
1, otherwise MT (t2): MT (t2) ≥ 0, activity level (M) multiple duration (T) in day t2

E (t2): E (t2) ≥ 0 A (t1, t2 − 1): I (t1, t2 − 1))/7

C: C = 2, a constant defined as 2 α: −2 ≤ α < ∞, a coefficient estimated by accumulated physical activity

i: i-th days before W: W = 0.5, a constant of attenuation defined as 0.5

The term AAEI is an index of the accumulated physical activity in the time interval (t1, t2), where
the base unit of time is the day. The design principles of the AAEI were: (1) AAEI increases with more
physical activity, is steady in fixed physical activity, and decreases with less physical activity; (2) AAEI
corresponds to days spent exercising; (3) AAEI decreases with resting days; (4) AAEI decreases more
with continued resting; (5) AAEI decreases less at rest if user has exercised before; and (6) AAEI is
at or near zero if the user does not exercise in seven days [23]. The AAEI, I (t1, t2), is estimated by
previous AAEI (I (t1, t2 − 1)), current quantity of physical activity (k (M)×MT (t2)), and a predictor
(E (t2)). The initial value of the AAEI evaluation process to be set was I (t1, t2 − 1) = 0, E (t2) = 0, and
α was null. The quantity of physical activity (MT) is multiplication of activity level (M) and exercise
duration (T). Activity level of light, moderate, vigorous, and extremely intense categories are 2, 4.5, 7.5,
and 9 METs, respectively. The sedentary intensity does not accumulate into the AAEI. The parameter
k (M) = 0 when intensity is sedentary, otherwise k (M) = 1. The predictor (E (t2)) is a threshold
that predicts the quantity of physical activity a user should take. Coefficient α is estimated based on
accumulated quantity of physical activity and days spent exercising. A (t1, t2 − 1) is a value defined
as I (t1, t2 − 1))/7 that represents the previous quantity of physical activity to estimate the predictor
E (t2) and coefficient α.

I (t1, t2) = I (t1, t2 − 1) + k (M)×MT (t2)− E (t2) (3)

E (t2) = A (t1, t2 − 1)× C−α (4)

α =
t2−t1

∑
i=1

MT (t2 − i)− A (t1, t2 − i)
A (t1, t2 − i)

×W(i−1) (5)
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2.4. Prototype Implementation

The paper prototype system is implemented in Android system. The development of a paper
prototype involves the following stepwise procedure: (1) Setting targets: The main target is the setting
up of an exercise performance measurement and feedback system; (2) Setting up of the template and
application workflow: The setting up of the initial template and application workflow; (3) Application
function design: This entails creating the system context and constructing the prototype flowchart;
(4) User interface design: Setting up a user-friendly interface after reconciling data gathered from the
initial prototype; (5) Deployment and testing: Function reliability is tested step by step. Figure 3 shows
the design and implementation of exercise performance measurement system. The application of the
prototype system contains feedback, estimation, and introduction function. The feedback function can
display AAEI value to user. The estimation function can estimate AAEI and the display status contains
exercise duration, AAEI value, and quantity of physical activity. The estimation function requires
preprocessing, an estimation model for activity level estimation, and feature extraction, as well as data
access and a calendar for AAEI calculation. An introduction page for users is also necessary to the
user. The introduction function displays an introduction of AAEI and a relation of physical activity
and AAEI value.
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2.5. Experiments

Experiments were conducted to examine the feasibility of the proposed system and investigate
the user experience. The experiments had two parts: (1) verification of activity level estimation using a
smartphone-embedded sensor; and (2) assessment of the user experience and feasibility of the exercise
performance measurement system.

We recruited participants to investigate the feasibility of the activity level estimation in the
first experiment. Each participant strapped a smartphone on their left upper arm. The participants
were asked to walk and run on a treadmill. Walking and fast walking were performed at speeds of
1 to 7 km/h; each speed was maintained for at least 2 min at increments of 1 km/h. Running was
performed at speeds of 5 to 9 km/h; each speed was performed for at least 2 min at increments of
1 km/h. All the participants were selected on the basis of their physical condition (such as not having
heart disease or other bodily impairments). The participants could stop the experiment at any time if
they did not wish to continue.

The second experiment was a real-world trial using the proposed exercise performance
measurement. The participants were equipped with a smartphone for a short-term evaluation.
We recruited two user groups. One group used the system for a single time trial. The single-time
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users tested the system for a few hours while walking or running, and subsequently completed a
questionnaire. The other group underwent a 60-day trial. The experimental flowchart is shown
in Figure 4. The participants were first selected by researchers to confirm that they were able
to walk and run without any risk. After the participants agreed to the experimental process,
the researchers demonstrated the system and let the participants learn to operate the system
independently. The participants answered a physical activity questionnaire before and after the
60-day trial. At the end of the trial, the participants answered a questionnaire concerning the user
experience and were asked to attend an interview with the researchers.
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2.6. Ethical Statement

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Institutional Review Board of National Yang-Ming University (YM104065E).

3. Results and Discussion

3.1. Activity Level Estimation

The experimental data were collected from 17 participants, comprising 11 males and 6 females.
The age of the group was 22.5 ± 2.3 years (ranging from 20 to 30 years). Figure 5A shows a participant
on a treadmill wearing a smartphone on the left upper arm. Figure 5B shows a screenshot of the
smartphone during the exercise measurement. The data were collected for at least 2 min for each
velocity measured. The participants were allowed to walk and run according to their own method.
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The raw accelerometer data were transformed into a set of features. The features were selected
on the basis of previous effective performance [9,16,18]. These features are computationally simple
and enabled activity levels to be estimated in near real time. Figure 6 shows SMA values for a
range of walking and running velocities. Although the SMA values varied for different participants,
the values tended to increase with the velocity. The SMA values derived for running were higher than
those derived for walking. The SMA values are implemented as a measurement to calculate energy
expenditure [16]. Therefore, the set of features including SMA value was applied for estimation using
a decision tree model.
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3.2. User Experience and System Performance

We recruited two groups to examine user experience. The first group contained single-time system
users. Seventeen participants comprising 11 males and 6 females were recruited in the single-time
user group. The average age of the single time user group was 22.5 ± 2.3 years (ranging from 20 to
30 years). They walked and ran for a specific period and then completed a questionnaire about the
system. The second group contained participants subjected to a 60-day real-world trial experiment to
assess the feasibility of the proposed mechanism. Eighteen participants (11 males and 7 females) with
an average age of 27.1 ± 8.4 years (ranging from 22 to 60 years) were recruited to participate in the
experiment. The participants were free to perform walking, fast walking, and running at any speed in
any location. The real-world trial participants were asked to complete the questionnaire after the trial
and meet with researchers.

The AAEI indicates the exercise performance of participants according to the accumulated amount
of physical activity and number of days spent exercising. The participants can read their AAEI values
to determine their personal exercise performance. The AAEI also indicates the trends in their exercise
performance. Examples of estimated AAEIs from the 60-day trial group are shown in Figures 8–11.
The AAEI day line and seven-day average line are shown separately in the figures. We classified the
exercise performance of the participants into four groups according to their AAEI values. We set 600
as the goal for all participants. The AAEI estimated for sufficient physical activity is 400–600 based on
different exercising days and activity level. The AAEI takes days spent exercising into consideration.
There will be a 30% decrease in a week three days of exercise are removed. There will be no decrease if
user can take exercise every day [23]. We set 600 for the fitness goal because 600 is a high standard of
sufficient physical activity. The four groups were high activity, moderate activity, insufficient activity,
and inactive. The high- and moderate-activity groups exhibited sufficient physical activity, according
to the WHO guidelines. The moderate-activity group had AAEI values between 400 and 600. Figure 8
shows the 60-day trial participants with high AAEI values. These participants scored AAEI values of
more than 600. The participants typically had regular exercise habits and appeared to have training
plans, and they occasionally accumulated extremely high levels of AAEI. Their environment and work
schedule did not influence their exercise routines. Figure 9 shows the AAEI values derived for the
participants in the moderate-activity group, indicating values between 400 and 600 (sometimes above
600, but not substantially). The participants in the moderate-activity group exercised, but less regularly
than those in the high-activity group did. Their exercise performance appeared to be more affected
by their environment and work schedule. Some days with bad weather (e.g., cold or rain) occurred
during the 60-day trial, which may have reduced the participants’ motivation to engage in exercise.

Int. J. Environ. Res. Public Health 2016, 13, 1001 9 of 13 

from 20 to 30 years). They walked and ran for a specific period and then completed a questionnaire 
about the system. The second group contained participants subjected to a 60-day real-world trial 
experiment to assess the feasibility of the proposed mechanism. Eighteen participants (11 males and 
7 females) with an average age of 27.1 ± 8.4 years (ranging from 22 to 60 years) were recruited to 
participate in the experiment. The participants were free to perform walking, fast walking, and 
running at any speed in any location. The real-world trial participants were asked to complete the 
questionnaire after the trial and meet with researchers. 

The AAEI indicates the exercise performance of participants according to the accumulated 
amount of physical activity and number of days spent exercising. The participants can read their 
AAEI values to determine their personal exercise performance. The AAEI also indicates the trends 
in their exercise performance. Examples of estimated AAEIs from the 60-day trial group are shown 
in Figures 8–11. The AAEI day line and seven-day average line are shown separately in the figures. 
We classified the exercise performance of the participants into four groups according to their AAEI 
values. We set 600 as the goal for all participants. The AAEI estimated for sufficient physical activity 
is 400–600 based on different exercising days and activity level. The AAEI takes days spent 
exercising into consideration. There will be a 30% decrease in a week three days of exercise are 
removed. There will be no decrease if user can take exercise every day [23]. We set 600 for the fitness 
goal because 600 is a high standard of sufficient physical activity. The four groups were high 
activity, moderate activity, insufficient activity, and inactive. The high- and moderate-activity 
groups exhibited sufficient physical activity, according to the WHO guidelines. The 
moderate-activity group had AAEI values between 400 and 600. Figure 8 shows the 60-day trial 
participants with high AAEI values. These participants scored AAEI values of more than 600. The 
participants typically had regular exercise habits and appeared to have training plans, and they 
occasionally accumulated extremely high levels of AAEI. Their environment and work schedule did 
not influence their exercise routines. Figure 9 shows the AAEI values derived for the participants in 
the moderate-activity group, indicating values between 400 and 600 (sometimes above 600, but not 
substantially). The participants in the moderate-activity group exercised, but less regularly than 
those in the high-activity group did. Their exercise performance appeared to be more affected by 
their environment and work schedule. Some days with bad weather (e.g., cold or rain) occurred 
during the 60-day trial, which may have reduced the participants’ motivation to engage in exercise.  

(A) (B)

Figure 8. Participants with high AAEI values, as determined in the 60-day trial. (A,B) Several high 
AAEI values above 600. 
Figure 8. Participants with high AAEI values, as determined in the 60-day trial. (A,B) Several high
AAEI values above 600.



Int. J. Environ. Res. Public Health 2016, 13, 1001 10 of 13
Int. J. Environ. Res. Public Health 2016, 13, 1001 10 of 13 

(A) (B)

Figure 9. Participants with moderate AAEI values, as determined the 60-day trial. (A,B) Participants 
typically had AAEI values between 400 and 600. 

(A) (B)

Figure 10. Participants with insufficient AAEI values, as determined in the 60-day trial. (A,B) AAEI 
values indicating insufficient activity but with occasional exercise. 

(A) (B)

Figure 11. Participants with inactive AAEI values, as determined in the 60-day trial. (A,B) Low 
AAEI values indicating infrequent exercise. 

Figures 10 and 11 show the data for the insufficient physical activity group. The participants in 
these groups did not have sufficient physical activity, according to the WHO guidelines. Figure 10 
shows that the participants occasionally engaged in exercise. However, they seldom accumulated 
sufficient physical activity. This seems to be habitual behavior; another possible explanation is that 

Figure 9. Participants with moderate AAEI values, as determined the 60-day trial. (A,B) Participants
typically had AAEI values between 400 and 600.

Int. J. Environ. Res. Public Health 2016, 13, 1001 10 of 13 

(A) (B)

Figure 9. Participants with moderate AAEI values, as determined the 60-day trial. (A,B) Participants 
typically had AAEI values between 400 and 600. 

(A) (B)

Figure 10. Participants with insufficient AAEI values, as determined in the 60-day trial. (A,B) AAEI 
values indicating insufficient activity but with occasional exercise. 

(A) (B)

Figure 11. Participants with inactive AAEI values, as determined in the 60-day trial. (A,B) Low 
AAEI values indicating infrequent exercise. 

Figures 10 and 11 show the data for the insufficient physical activity group. The participants in 
these groups did not have sufficient physical activity, according to the WHO guidelines. Figure 10 
shows that the participants occasionally engaged in exercise. However, they seldom accumulated 
sufficient physical activity. This seems to be habitual behavior; another possible explanation is that 

Figure 10. Participants with insufficient AAEI values, as determined in the 60-day trial. (A,B) AAEI
values indicating insufficient activity but with occasional exercise.

Int. J. Environ. Res. Public Health 2016, 13, 1001 10 of 13 

(A) (B)

Figure 9. Participants with moderate AAEI values, as determined the 60-day trial. (A,B) Participants 
typically had AAEI values between 400 and 600. 

(A) (B)

Figure 10. Participants with insufficient AAEI values, as determined in the 60-day trial. (A,B) AAEI 
values indicating insufficient activity but with occasional exercise. 

(A) (B)

Figure 11. Participants with inactive AAEI values, as determined in the 60-day trial. (A,B) Low 
AAEI values indicating infrequent exercise. 

Figures 10 and 11 show the data for the insufficient physical activity group. The participants in 
these groups did not have sufficient physical activity, according to the WHO guidelines. Figure 10 
shows that the participants occasionally engaged in exercise. However, they seldom accumulated 
sufficient physical activity. This seems to be habitual behavior; another possible explanation is that 

Figure 11. Participants with inactive AAEI values, as determined in the 60-day trial. (A,B) Low AAEI
values indicating infrequent exercise.

Figures 10 and 11 show the data for the insufficient physical activity group. The participants in
these groups did not have sufficient physical activity, according to the WHO guidelines. Figure 10
shows that the participants occasionally engaged in exercise. However, they seldom accumulated



Int. J. Environ. Res. Public Health 2016, 13, 1001 11 of 13

sufficient physical activity. This seems to be habitual behavior; another possible explanation is that the
participants engaged in other types of exercise than walking and running. Figure 11 shows the data
for the inactive participants. The low AAEI values indicate that the participants infrequently exercised.
The exercise performance measurement system appeared not to motivate these participants sufficiently.

Examining user experience is essential to evaluate the feasibility of the exercise performance
measurement system. Users’ experiences were collected through the formal questionnaire presented in
Table 3. Users could provide further feedback in comments after completing the formal questionnaire.
Answers regarding the two groups’ experience of the exercise performance measurement system are
shown in Table 3. The questions were answered with a 5-point scale (1 = strongly disagree; 2 = disagree;
3 = normal; 4 = agree; and 5 = strongly agree). In the single-time user group, the feedback was positive
and all questions received responses above 4 points. The single-time user group agreed that the
proposed AAEI was helpful for goal-setting and the management of well-being. The participants
in this group typically assigned higher points than those in the 60-day trial group did. The user
meetings and observations conducted by the researchers provided some explanations for this: First,
the age ranges of the two groups differed. The single-time user group comprised younger participants
than those in the 60-day trial group. The 60-day trial group contained a participant who was nearly
60 years of age. The elderly participants may have had more concerns about their health, but they
did not exhibit curiosity about the system. Moreover, the novelty of the system may decrease with
time. In the meeting with the 60-day trial group, some of the participants stated that the system must
record more exercise types. Because the participants were not restricted to walking and running, they
wanted to record and estimate more types of exercise and acquire feedback subsequently. The third
explanation concerned convenience. Some participants stated that wearing the sensor or smartphone
was inconvenient for them when exercising. They wanted to receive feedback after exercising but
did not want to wear a device. Some participants reported forgetting to wear the device because
of their unfamiliarity with it. Minimizing the device or incorporating the device into clothes may
increase user satisfaction. In general, the two groups provided positive feedback about the exercise
performance measurement system. Both groups agreed that the AAEI is clear and provides effective
well-being management.

Table 3. User experience of the exercise performance measurement system. User experience of the
single-time user group and 60-day trial group. Scale ranged from 1 (strongly disagree) to 5 (strongly agree).

Questions Single Time Used
(n = 17)

60 Days Trial
(n = 18)

Do you agree that the AAEI can help me for fast understand
my exercise performance? 4.2 3.9

Do you agree that the AAEI can help me for goal-setting? 4.1 3.8

Do you agree that the AAEI is clear and definite? 4.2 4.1

Do you agree that the AAEI can help me to increase or
maintain sufficient physical activity? 4.2 3.6

Do you agree that the AAEI can be shared with people with
less privacy concern? 4.3 4

Overall, do you agree that the AAEI and the system are useful
for well-being management? 4 3.5

4. Conclusions

Regular physical activity improves physical and mental health. Increasing physical activity is
essential for well-being management. We developed an exercise performance measurement system
for well-being management that is based on the AAEI and incorporates a smartphone-embedded
sensor. Users can set goals and assess their physical activity levels, as well as being motivated by
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the measurement system. The proposed exercise performance measurement system can generate a
numeric index that is based on users’ exercise performance, namely their level of physical activity
and number of days spent exercising. The index is a clear number that is useful for feedback and
goal-setting. We implemented the exercise performance measurement system by using a smartphone
and conducted experiments to validate the feasibility of the system and user experience. The exercise
performance measurement system shows an overall precision of 88% in activity level estimation.
Users provided positive feedback and agreed that the AAEI was clear. The AAEI can also be a tracking
tool for examining the exercise history of users. The proposed exercise performance measurement
system is feasible and has a positive effect on well-being management.
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