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Abstract: Quality by design (QbD) in the pharmaceutical industry involves designing and
developing drug formulations and manufacturing processes which ensure predefined drug product
specifications. QbD helps to understand how process and formulation variables affect product
characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical
design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form
design followed by optimizing the parameters with respect to certain specifications. DoE establishes
in mathematical form the relationships between critical process parameters together with critical
material attributes and critical quality attributes. We focused on the fabrication of biodegradable
nanoparticles by dispersion polymerization. Aided by a statistical software, D-optimal mixture
design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers)
to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations
(poly-ε-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict
particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations.
Simultaneous optimizations were carried out on the response variables. Solutions were returned
from simultaneous optimization of the response variables for component combinations to (1)
minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize
percent yield to make the nanoparticle fabrication an economic proposition.

Keywords: nanoparticles; quality by design (QbD); D-optimal mixture design; statistical design of
experiments; computer optimization; dispersion polymerization

1. Introduction

One of the great challenges in drug development and medicine today is finding more effective
forms of treatment for a large number of life-threatening but curable diseases, such as cancer. At the
moment, there is an imbalance between the knowledge of cancer biology and the success achieved in
cancer treatment: efforts in the treatment of cancer have not met with much success [1,2]. To achieve
the goal of eliminating death and suffering from cancer, the USA National Cancer Institute has
embraced the power of nanotechnology to radically change the procedure for diagnosis, imaging
and treating cancer. The integration of the developments in nanotechnology with advances in
cancer research can be done using polymeric nanoparticles which are capable of specific delivery
of large amounts of single or multiple therapeutic agents as well as imaging agents embedded in the
core per targeting biorecognition event compared to simple immunotargeted drugs. Both targeting
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(spatial/distribution control) and controlled release (temporal control) of therapeutic agents can be
achieved [3,4].

The evolution of nanoparticles for biomedical applications has moved from the first generation
nanoparticles (mainly suitable for liver targeting) through the second generation (stealth nanoparticles for
long blood circulation and passive targeting) to the third generation nanoparticles with molecular
recognition [1,5]. The fourth generation has been dubbed theranostics: multifunctional nanoscale
devices which allow for a combination of diagnostic agent with a therapeutic agent and even a
reporter of therapeutic efficacy in the same nanodevice package [6]. Aside from biocompatibility
and biodegradability, the physicochemical properties of nanoparticles (size and surface modification,
among others) and their interactions with biological systems are important considerations in
their design and fabrication. Polymeric nanoparticles can be prepared mainly by two methods:
(i) dispersion of preformed polymers and (ii) polymerization of monomers (i.e., in situ polymerization).
In situ polymerization of monomers and crosslinkers offers many advantages including one-pot
synthesis of nanoparticles [7]. Our laboratory has focused on surfactant free, free radical dispersion
polymerization (in situ polymerization) technique for the fabrication of stealth crosslinked
nanoaprticles for biomedical applications [2,7–10]. We report here our efforts on the development
of stealth biodegradable cross-linked nanoparticles by dispersion polymerization suitable for the
delivery of bioactive agents.

The relatively new concept of quality by design (QbD) and process analytical technology (PAT)
in pharmaceutical dosage form design and development, already incorporated into automakers’
production principles, involves designing and developing drug formulations and manufacturing
processes which ensure predefined drug product specifications. It is believed that product and
process understanding is a key element of QbD-PAT [7,10,11]. Thus an important part of QbD-PAT is
to understand how process and formulation variables affect product characteristics and subsequent
optimization of these variables vis-à-vis the final specifications. Statistical design of experiments (DoE)
is a well-established method for identifying important parameters in pharmaceutical dosage form
design and for optimizing the parameters with respect to certain specifications [7,10–12]. Two major
approaches to the design of experiments to be able to examine all of the variables simultaneously
are factorial and mixture experimental designs [7,10]. The statistical experimental designs involving
mixture methodology is an efficient method for studying products made from components at various
levels. We used D-optimal mixture design for experimental design, analysis and optimization.
When a formulation is a mixture of various components (proportion of the constituents) as studied
in our work and the levels of the components are constrained, D-optimal mixture design is more
useful than a factorial design because it accounts for the dependence of response on proportionality
of constituents.

2. Materials and Methods

Two types of nanoparticles were fabricated and characterized as discussed previously:
poly-L-lactide-based [10] and poly-ε-caprolactone-based nanoparticles [7].

They were characterized for surface morphology (scanning electron microscopy (SEM)), particle
size (dynamic light scattering (DLS) using Zetasizer Nano-ZS (Malvern Instruments, Malvern, UK),
yield, and surface zeta potential (Zetasizer Nano-ZS). Typical electron micrographs are shown in
Figure 1.

We used mixture design (D-optimal mixture statistical experimental design) in this work for the
response surface method (RSM). The responses (particle size and percent yield (for poly-L-lactide-
based nanoparticles) and particles size and surface zeta potential (for poly-ε-caprolactone-based
nanoparticles) are functions of the proportions of the formulation variables investigated: macromer,
initiator, stabilizer, and crosslinker. Based on preliminary data, constraints were introduced to the
proportions of the components to allow the fabrication of smooth spherical particles. In D-optimal
mixture design, there are restrictions on component proportions such that a lower and upper
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limits are specified [7,10,13–16]. Aided by statistical software for the design of the experiments
and analysis of the data (Design-Expertr, Stat-Ease Inc., Minneapolis, MN, USA), and using
D-optimal mixture statistical experimental design, we varied the components (critical material
attributes (CMAs): crosslinker, initiator, stabilizer and poly-L-lactide-HEMA macromonomer) to
obtain twenty nanoparticle formulations for poly L-lactide-based nanoparticles (Table 1) and thirty
nanoparticle formulations (Table 2) for poly-ε caprolactone-based nanoparticles. The particle size for
poly-L-lactide-based nanoparticles ranges from 261 to 326 nm; while the polydispersity index (PDI)
ranges from 0.20 to 0.29. For poly-ε-lcaprolactone based nanoparticles, the particle size obtained
ranges from 130 nm to 788 nm; while PDI ranges from 0.133 to 0.605. The particle size distribution is
given by the PDI. A PDI value of <0.1 indicates a homogenous monodisperse formulation; while a
PDI of >0.3 indicates polydispersity with variations in particle size.
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Figure 1. Typical SEM images of blank nanoparticles prepared by in situ dispersion polymerization
(A) Poly-L-lactide-based nanoparticles; (B) Poly-ε-caprolactone-based nanoparticles.

Table 1. Composition and response of D-optimal mixture experiemntal design for the fabrication of
stealth poly-L-lactide-based nanoparticles.

Standard
Order

Run
Order

A:
Crosslinking
Agent (mmol)

B:
Initiator

System (mmol)

C:
Stabilizer

(PEG-MMA) (mmol)

D:
Macromonomer

(mmol)

Response 1
(Particle

Size: nm)

Response 2
(Percent
Yield %)

9 1 0.048 0.359 0.304 0.289 297.6 56.87
8 2 0.056 0.285 0.215 0.445 306.6 28.99
1 3 0.087 0.377 0.091 0.445 261.5 62.39
5 4 0.018 0.565 0.214 0.204 270.6 35.26
19 5 0.087 0.377 0.091 0.445 268.1 58.82
12 6 0.042 0.452 0.259 0.247 286.4 31.88
20 7 0.018 0.565 0.214 0.204 295.8 61.08
17 8 0.087 0.183 0.304 0.426 326.4 31.13
14 9 0.018 0.312 0.304 0.367 290.3 41.19
15 10 0.053 0.415 0.148 0.384 322.3 45.15
3 11 0.055 0.625 0.115 0.204 293.1 47.87
4 12 0.087 0.183 0.304 0.426 322.9 34.18
13 13 0.036 0.522 0.163 0.279 320.7 43.08
2 14 0.018 0.446 0.091 0.445 313.1 24.43
11 15 0.087 0.500 0.091 0.321 273.3 43.32
16 16 0.018 0.446 0.091 0.445 293.8 35.08
18 17 0.055 0.625 0.115 0.204 305.9 39.22
6 18 0.018 0.234 0.304 0.445 320.9 35.98
7 19 0.018 0.625 0.091 0.265 295.6 44.71
10 20 0.087 0.394 0.198 0.321 314.9 37.59
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Table 2. Composition and response of D-optimal mixture experiemntal design for the fabrication of
stealth poly-ε-caprolactone-based nanoparticles.

Standard
Order

Run
Order

A:
Crosslinking
Agent (mmol)

B:
Initiator System

(mmol)

C:
Stabilizer

(PEG-MMA) (mmol)

D:
Macromonomer

(mmol)

Response 1
(Particle

Size: nm)

Response 2
(Negative Zeta
Potential: mV)

9 1 0.018 0.358 0.422 0.203 691.5 14.1
11 2 0.038 0.298 0.449 0.215 131.4 36
20 3 0.021 0.480 0.255 0.244 675.9 20.5
19 4 0.027 0.332 0.401 0.240 378.3 31.1
25 5 0.027 0.411 0.311 0.251 328.3 15.3
2 6 0.016 0.499 0.305 0.180 653 29.7
6 7 0.033 0.379 0.397 0.191 148.4 31.7
17 8 0.034 0.502 0.237 0.227 228 28.2
5 9 0.024 0.512 0.279 0.185 235.6 27.4
7 10 0.034 0.438 0.334 0.194 130.8 22
18 11 0.034 0.502 0.237 0.227 224 27.7
14 12 0.019 0.475 0.287 0.219 749 23.1
21 13 0.038 0.407 0.308 0.247 181.3 15.5
27 14 0.045 0.356 0.342 0.257 130.8 36.6
29 15 0.023 0.364 0.350 0.263 687 20
10 16 0.018 0.566 0.213 0.204 635.5 21.4
28 17 0.022 0.451 0.269 0.258 603.6 29.2
23 18 0.032 0.345 0.373 0.249 255.1 25
8 19 0.035 0.556 0.209 0.201 131.6 0.05
30 20 0.037 0.389 0.293 0.281 241 0.04
24 21 0.027 0.411 0.311 0.251 372.3 17.4
1 22 0.024 0.462 0.347 0.167 242.7 32.4
26 23 0.044 0.442 0.262 0.252 152.6 ´0.11
13 24 0.019 0.475 0.287 0.219 550.5 0.07
4 25 0.024 0.512 0.279 0.185 224 35.8
12 26 0.024 0.366 0.392 0.218 390.7 33.9
16 27 0.020 0.388 0.368 0.224 703 0.04
22 28 0.038 0.407 0.308 0.247 263.1 0.04
15 29 0.019 0.304 0.457 0.220 788.6 0.01
3 30 0.021 0.410 0.384 0.185 325.1 ´0.08

3. Results

3.1. Data Analysis, Generation of Scheffe Polynomials from Data Analysis

Followed by Optimization

The selection of the best models for modeling the response variables (particle size and
yield for poly-L-lactide-based nanoparticles) and particles size and surface zeta potential for
poly-ε-caprolactone-based nanoparticles is important since the fitted models will be used to predict
the variables following simultaneous numerical optimization [17]. With a mixture design, the
response determined by any possible component mixtures can be identified by a point in the
experimental domain called the design space. When working with three different variables
(components), the experimental domain corresponds to an equilateral triangle with the vertices
corresponding to the pure components while different points within the design space correspond
to a mixture of components [7,10,18]. In this work, four components (macromonomer, initiator
system, crosslinking agent and stabilizer) were combined to prepare nanoparticles; however, the
proportion of the macromonomer was kept constant in all the experiments thereby yielding a
triangular experimental domain. Further, as a result of constraints introduced, the region of interest
(design space) that allows for the formation of smooth spherical particles is only a fraction of the
possible experimental domain.
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3.2. Poly-L-Lactide-Based Nanoparticles

Model fitting to the data (Table 1) was carried out and the quadratic model was found significant
and was selected. To improve the model, insignificant terms were removed by backward elimination.
Analysis of variance (ANOVA) of the selected model and terms (Table 3) reveal that the selected
model is significant (p = 0.0020). Further, the model (Scheffe Polynomial) was also selected based on
the estimation of several statistical parameters: multiple correlation coefficient (R2), adjusted multiple
correlation coefficient (adjusted R2) and the predicted residual sum of squares (PRESS). Also, “lack
of fit” was not statistically significant (p = 0.4994) which is desirable. The resulting model (Scheffe
polynomial) is shown in Equation (1) below:

Particle size (nm) “ ´1772.43 pAq ` 275.78 pBq´ 1089.88 pCq ` 270.51 pDq ` 2481.55 pABq

` 7504.21 pACq ` 1453.29 pBCq ` 2509.21 pCDq
(1)

where: A = Crosslinker (mmol); B = Initiators (mmol); C = Stabilizer (mmol); D = Macromonomer (mmol).

Table 3. Analysis of variance table for particle size (Poly-L-lactide-based nanoparticles).

Source Sum of Squares df Mean Square F-Value p-Value

Model 6011.26 7 858.75 6.83 0.0020 s
Linear

mixture 1431.12 3 477.04 3.79 0.0401 s

AB 693.79 1 693.79 5.52 0.0368 s
AC 2723.37 1 2723.37 21.65 0.0006 s
BC 694.88 1 694.88 5.52 0.0367 s
CD 1247.85 1 1247.85 9.92 0.0084 s

Residual 1509.25 12 125.77
Lack of Fit 895.66 7 127.95 1.04 0.4994 ns
Pure Error 613.59 5 122.72
Cor Total 7520.52 19

Notes: s = significant; ns = not significant.

Diagnostic plots (Figure 2) show the validity of the model. The normal probability plot of the
residuals (Figure 2A) is the most important diagnostic and it checks for non-normality in the error
term. A linear normal probability plot of the residuals, which indicates normality in the error term,
was obtained. Figure 2B shows a diagnostic plot that tests the assumption of constant variance.
Both plots show no problem with our data. The Scheffe polynomial (Equation (1)) was used to
generate the model graph (Figure 3) which shows the design space and variation in particle size
as a function of the mixture composition. (A = Crosslinking agent; B = Initiators; C = Stabilizer
and D = Macromonomer) (Poly-L-lactide-based nanoparticles). The predicted sizes for the four
solutions are 276.7 nm, 283.6 nm, 291.6 nm and 302.7 nm while the experimentally obtained sizes are
244.2 nm ˘ 4.20 nm, 246.6 nm ˘ 0.87 nm, 250.4 nm ˘ 4.04 nm and 271 nm ˘ 4.62 nm
respectively (Table 4). The corresponding polydisperity index (PDI) values are 0.23, 0.28, 0.27 and
0.29, respectively.
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Figure 2. Diagnostic plots the particle size data of polylactide-based nanoparticles: (A) Normal Plot
of Residuals; (B) Residuals vs. Predicted.
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Figure 3. Model graph showing the design space and variation in particle size as a function of the
mixture composition. A = Crosslinking agent; B = Initiators; C = Stabilizer and D = Macromonomer
(Polylactide-based nanoparticles).

Table 4. Analysis of variance table for percent yield (Poly-L-lactide-based nanoparticles).

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F)

Model 1163.07 5 232.61 2.98 0.0488 s
Linear Mixture 326.63 3 108.88 1.40 0.2854 ns

AB 508.70 1 508.70 6.52 0.0230 s
AD 822.41 1 822.41 10.54 0.0059 s

Residual 1092.30 14 78.02
Lack of Fit 653.82 9 72.65 0.83 0.6211 ns
Pure Error 438.48 5 87.70
Cor Total 2255.38 19

Notes: s = significant; ns = not significant.

A similar model fitting was done for percent yield as shown in Table 4. The resulting model
(Scheffe polynomial) is shown in Equation (2) below:

Percent Yield “ ´2011.036 pAq ` 60.513 pBq ` 126.177 pCq

´ 46.488 pDq ` 1935.312 pABq ` 3996.599 pADq
(2)

where: A = Crosslinker (mmol); B = Initiators (mmol); C = Stabilizer (mmol); D = Macromonomer (mmol)
Diagnostic plots (Figure 4) show the validity of the model. The Scheffe polynomial (Equation (2))

was used to generate the model graph (Figure 5), which shows the design space and variation in
percent yield as a function of the mixture composition. A = Crosslinking agent; B = Initiators;
C = Stabilizer and D = Macromonomer (Polylactide-based nanoparticles).
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Figure 4. Diagnostic plots the percent yield data of Polylactide-based nanoparticles: (A) Normal Plot
of Residuals; (B) Residuals vs. Run.



Int. J. Environ. Res. Public Health 2016, 13, 47 9 of 17Int. J. Environ. Res. Public Health 2015, 12 10 

 

 

 

Figure 5. Model graph showing the design space and variation in percent yield as a function 

of the mixture composition. A = Crosslinking agent; B = Initiators; C = Stabilizer and D = 

Macromonomer (Polylactide-based nanoparticles). 

3.3. Poly-ɛ-Caprolactone-Based Nanoparticles 

Logarithmic transformation was carried out before model fitting to particle size data (Table 2).  

The quadratic model was found significant and was selected. To improve the model, insignificant terms 

were removed by backward elimination. Analysis of variance (ANOVA) of the selected model and terms 

(Table 5) reveals that the selected model is significant (p < 0.0001). The linear mixture (component 

linear terms) and the square of A term (crosslinker term) are significant: p < 0.0001 and  

p = 0.0005 respectively. Additionally, “lack of fit” is not significant (p = 0.6921). Non-significant lack 

of fit is good as our desire is for the model to fit. The “Pred R-Squared” of 0.9326 is in reasonable 

agreement with the “Adj R-Squared” of 0.9455. Adequate Precision measures the signal to noise ratio. 

A ratio greater than 4 is desirable. The ratio of 27.332 obtained in this work indicates an adequate signal. 

Consequently, this model can be used to navigate the design space. 

Table 5. Analysis of variance table for particle size (Poly-ɛ-caprolactone-based nanoparticles. 

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F)  

Model 1.98 4 0.49 126.80 <0.0001 s 

Linear Mixture 1.92 3 0.64 163.82 <0.0001 s 

A2 0.061 1 0.061 15.71 0.0005 s 

Residual 0.098 25 3.904e-003    

Lack of Fit 0.074 20 3.691e-003 0.78 0.6921 ns 

Pure Error 0.024 5 4.756e-003    

Cor Total 2.08 29     

Notes: s = significant; ns = not significant 

Design-Expert® Software
Component Coding: Actual
Highs/Lows inverted by U_Pseudo coding
Percent Yield (%)

62.39

24.43

X1 = A: A
X2 = B: B
X3 = C: C

Actual Component
D: D = 0.279

A: A
-0.208

B: B
0.330

C: C
0.009

0.304 0.625

0.087

Percent Yield (%)

35

40
45

45
43.337843.3378

42.0367

42.0367

43.6419
43.6419

37.0644

Figure 5. Model graph showing the design space and variation in percent yield as a function of the
mixture composition. A = Crosslinking agent; B = Initiators; C = Stabilizer and D = Macromonomer
(Polylactide-based nanoparticles).

3.3. Poly-ε-Caprolactone-Based Nanoparticles

Logarithmic transformation was carried out before model fitting to particle size data (Table 2).
The quadratic model was found significant and was selected. To improve the model, insignificant
terms were removed by backward elimination. Analysis of variance (ANOVA) of the selected model
and terms (Table 5) reveals that the selected model is significant (p < 0.0001). The linear mixture
(component linear terms) and the square of A term (crosslinker term) are significant: p < 0.0001 and
p = 0.0005 respectively. Additionally, “lack of fit” is not significant (p = 0.6921). Non-significant
lack of fit is good as our desire is for the model to fit. The “Pred R-Squared” of 0.9326 is in reasonable
agreement with the “Adj R-Squared” of 0.9455. Adequate Precision measures the signal to noise ratio.
A ratio greater than 4 is desirable. The ratio of 27.332 obtained in this work indicates an adequate
signal. Consequently, this model can be used to navigate the design space.

Table 5. Analysis of variance table for particle size (Poly-ε-caprolactone-based nanoparticles.

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F)

Model 1.98 4 0.49 126.80 <0.0001 s
Linear Mixture 1.92 3 0.64 163.82 <0.0001 s

A2 0.061 1 0.061 15.71 0.0005 s
Residual 0.098 25 3.904e-003
Lack of Fit 0.074 20 3.691e-003 0.78 0.6921 ns
Pure Error 0.024 5 4.756e-003
Cor Total 2.08 29

Notes: s = significant; ns = not significant.
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The empirical model (Scheffe polynomial) is shown in Equation (3) below:

Log10 pSizeq “ ´74.47882 pAq ` 3.04138 pBq ` 3.14184 pCq ` 7.33688 pDq ` 744.06483 pA2q (3)

where: A = Crosslinker (mmol); B = Initiators (mmol); C = Stabilizer (mmol); D = Macromonomer (mmol).
Diagnostic plots show the validity of the model (Figure 6). The normal probability plot of

the residuals is the most important diagnostic plot; it checks for non-normality in the error term.
A linear normal probability plot of the residuals was obtained which indicates normality in the
error term and therefore there is no problem with our data. Further, Residuals vs. Predicted tests
the assumption of constant variance and it should be a random scatter within the upper and lower
boundaries. The Scheffe polynomial (Equation (3)) was used to generate the model graph (Figure 7)
which shows the design space and variation in particle size as a function of the mixture composition.
A = Crosslinking agent; B = Initiators; C = Stabilizer and D = Macromonomer (Poly-ε-caprolactone
based nanoparticles).
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Figure 7. Model graph showing the design space and variation in particle size as a function of the
mixture composition. A = Crosslinking agent; B = Initiators; C = Stabilizer and D = Macromonomer
(poly-ε-caprolactone-based nanoparticles).

Following square root transformation, model fitting for zeta potential data was carried out.
Quadratic model was found significant and the model was selected. To improve the model,
insignificant terms were removed by backward elimination. Analysis of variance (ANOVA) (Table 6)
reveals that the selected model is significant (p = 0.0437). The linear mixture terms (component
linear terms) are not significant (p = 0.7487); the quadratic term of A (crosslinker) by C (stabilizer)
is significant p = 0.0037. In addition, “lack of fit” is not significant (p = 0.4389). Non-significant lack of
fit is good; we want the model to fit. Adequate precision measures the signal to noise ratio. The ratio
of 6.96 indicates an adequate signal. This model can be used to navigate the design space.

Table 6. Analysis of variance table for zeta potential (Poly-ε-caprolactone-based nanoparticles.

Source Sum of Squares Df Mean Square F-Value p-Value (Prob > F)

Model 43.01 4 10.75 2.87 0.0437 s
Linear

Mixture 4.58 3 1.53 0.41 0.7487 ns

AC 38.43 1 38.43 10.27 0.0037 s
Residual 93.56 25 3.74
Lack of Fit 77.93 20 3.90 1.25 0.4389 ns
Pure Error 15.63 5 3.13
Cor Total 136.57 29

Notes: s = significant; ns = not significant

The empirical model (Scheffe polynomial) is shown in Equation (4) below:

Sqrt (Negative Surface Zeta Potential + 0.20) “ ´644.92273 pAq

` 24.45442 pBq´ 32.18851 pCq ` 12.26659 pDq ` 2130.94151 pACq
(4)

where: A = Crosslinker (mmol); B = Initiators (mmol); C = Stabilizer (mmol); D = Macromonomer (mmol).
Diagnostic plots show the validity of the model (Figure 8). The Scheffe polynomial (Equation (4))

was used to generate the model graph (Figure 9) which shows the design space and variation in
zeta potential as a function of the mixture composition. A = Crosslinking agent; B = Initiators;
C = Stabilizer and D = Macromonomer (Poly-ε-caprolactone based nanoparticles).
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Figure 9. Model graph showing the design space and variation in negative zeta potential as a
function of the mixture composition. A = Crosslinking agent; B = Initiators; C = Stabilizer and
D = Macromonomer (poly-ε-caprolactone-based nanoparticles).

4. Discussion

Scheffe polynomial models were generated to predict particle size (nm) and percent yield for
poly-L-lactide-based nanoparticles as functions of the composition of the formulations. The models
are shown in Equations (1) and (2). Further, Scheffe polynomial models were generated to predict
particle size (nm) and zeta potential (mV) for poly-ε-caprolactone-based nanoparticles as functions of
the composition of the formulations.

The models are shown in Equations (1) and (2).

4.1. Simultaneous Numerical and Graphical Optimizations of Nanoparticle Size and Percent Yield for
Poly-L-Lactide-Based Nanoparticles

Following simultaneous numerical optimization of nanoparticle size and percent yield of
poly-L-lactide-based nanoparticles using Equations (1) and (2), four solutions were returned. Three of
the solutions were used to fabricate nanoparticles to compare the predicted values with the actual
laboratory values. The observations from the confirmation experiments are within the confirmation
95% prediction interval (95% PI low and 95% PI high), where PI is point prediction, showing
the confirmation of the models. A typical overlay plot is shown in Figure 10. The focus on
particle size and yield in this aspect of the work is based on the fact that particle size plays a key
role in determining body distribution of nanoparticles after in vivo administration by injection and
in facilitating their access to cancer cells (internalization) either by passive or active targeting to
tumors [19,20]. Optimization of the nanoparticle fabrication for a high percent yield will make the
drug development effort an economic proposition.
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Figure 10. Simultaneous graphical optimization (overlay plot) of the design space variation in particle
size and % yield as functions of the mixture composition. A = crosslinking agent; B = initiators;
C = stabilizer and D = macromonomer.

4.2. Simultaneous Numerical and Graphical Optimizations of Nanoparticle Size and Zeta Potential for
Poly-ε-Caprolactone-Based Nanoparticles

Following simultaneous numerical optimization of nanoparticle size and nanoparticle surface
zeta potential using the two models (Equations (3) and (4)), ten solutions were returned. Three of
the solutions were used to fabricate nanoparticles to compare the predicted values with the actual
laboratory values. The observations from the confirmation experiments are within the confirmation
95% prediction interval (95% PI low and 95% PI high), showing the confirmation of the models
(Figure 11). As indicated earlier, we showed interest in particle size because particle size plays an
important role in determining the drug release behavior of drug-loaded nanoparticles and the fate
of the nanoparticles after in vivo administration [19,20]. The particles should be small enough to
avoid the mechanical spleen or lung filtering effects. Moreover, the cells of the reticuloendothelial
system (RES) or mononuclear phagocyte system recognize and rapidly clear nanoparticles from the
circulation by phagocytosis and RES uptake has been shown to increase with particle size [21].

Zeta potential data in this work show predominantly negative values. Following injection into
the blood stream, nanoparticles with a positive zeta potential pose a threat of causing transient
embolism and rapid clearance compared to negatively charged particles [22]. Consequently, we
decided to carry out simultaneous numerical optimization on particle size (with emphasis on
minimization) and zeta potential (with emphasis on maximization of the negative zeta potential
values).The overlay plots (Figures 10 and 11) show the regions meeting the specifications for the
optimizations (colored yellow). The yellow regions show the windows of operability where the
components can be set to meet the requirements for both responses (particle size and percent
yield (Figure 10) for poly-L-lactide-based nanoparticles and particle size and surface zeta potential
(Figure 11) for poly-ε-caprolactone-based nanoparticles).
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5. Conclusions

One mission of a drug product development scientist is to develop drug delivery systems that
enhance the optimal performance of bioactive agents. Many strategies are used to accomplish this
purpose, including measuring the effect of several combinations of formulation and process variables
on the properties of nanoparticles. By carefully selecting which combinations of these variables
to evaluate, it is possible to optimize nanoparticle properties for specific purposes as embodied
in quality by design (QbD) and process analytical technology (PAT) in pharmaceutical dosage
form design and development. We have used D-optimal mixture statistical experimental design of
experiments and analyze data in two types of nanoparticles (poly-L-lactide-based nanoparticles and
poly-ε-caprolactone-based nanoparticles) in which the components are in proportions. The negative
terms in the empirical model (Equation (1)) corresponding to the amounts of crosslinking agent and
stabilizer included in the reaction mixture are the terms to be controlled for particle size minimization.
Further, the resulting model (Scheffe polynomial) shown in Equation (2) indicates that terms with
positive sign (initiator and stabilizer) will increase the yield if increased. The same reasoning is true
in other models: Equations (3) and (4).

Following simultaneous numerical and graphical optimizations of the two models generated
(Scheffe polynomials), the optimum formulations were identified.
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