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Abstract: The objectives of this study were to estimate the effects of temperature on 

cardiovascular mortality in 26 regions in the south and west of China from 2008 to 2011, 

and to identify socioeconomic and demographic factors contributing to such inter-region 

variation in the temperature effect. A separate Poisson generalized additive model (GAM) 

was fitted to estimate percent changes in cardiovascular mortality at low and high 

temperatures on a daily basis for each region. The model used the smooth functions to model 

the nonlinear effects of temperature and humidity and to control for the seasonal factor using 

the calendar time variable. Given variation in the magnitude of the temperature effect  

on cardiovascular mortality, we employed a Bayesian network (BN) to identify  

potential region-specific socioeconomic and demographic factors that may explain the 
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variation. In most regions, an increasing trend in high or low temperature was associated with 

an increase in cardiovascular mortality, with variation in the magnitude of the temperature 

effects across regions. Three factors, including per capita years of education (as an indicator 

of economic status), percentage of the population over 65 years of age and percentage of 

women had direct impact on cold-related cardiovascular mortality. Number of hospital beds 

(as an indicator of the availability of medical resources), percentage of population engaged in 

industrial occupations, and percentage of women showed direct impact on heat-related 

cardiovascular mortality. Due to the socioeconomic and demographic inequalities between 

regions, the development of customized prevention and adaptation programs to address the 

low/high temperatures in vulnerable regions should be prioritized. 

Keywords: cardiovascular mortality; temperature; socioeconomic and demographic factors; 

Poisson generalized additive model; Bayesian network 

 

1. Introduction 

In the context of climate change, not only the global surface temperature but also the frequency, 

intensity, spatial extension and duration of extreme weather events have increased and will continue to 

increase [1]. In addition, many hospitalizations and deaths occur due to exposure to extreme weather 

conditions and climate events. The World Health Organization (WHO) estimated that climate changes, 

especially global warming, caused over 150,000 deaths and approximately five million “disability-adjusted 

life years” (DALYs) per year since the mid-1970s [2]. Models of the association between mortality and 

temperature are required to predict the consequences of global warming and dangerous weather 

conditions, develop efficient alert systems, and take preventive measures [3]. However, most studies of 

the effect of temperature on mortality have been conducted in developed countries. Though a few studies 

have been carried out in areas of China including Beijing [4], Shanghai [5], Tianjin [6], Guangzhou [7], 

and Hong Kong [8], there is still a lack of studies in multiple areas of China, which is the largest 

developing country with the largest population vulnerable to global warming, especially in less 

developed regions. Under the background of global warming, the annual mean temperature in China has 

increased by 0.45 ± 0.05 °C from 1860 to 2005 [9]. Heat wave duration and warm night show increasing 

trends in China, especially the Tibetan Plateau and Southwest China [10]. Meanwhile, increasing trends 

were also detected in the frequencies of warm days and warm nights [11], which have potential 

deleterious effect on human health. 

Cardiovascular disease is the leading cause of deaths linked to climate fluctuations [12]. In general, 

the association between cardiovascular mortality and temperature displays a J-shaped [13], V-shaped [14] or 

U-shaped [15] pattern, indicating that both cold and hot temperatures are associated with an increase in 

cardiovascular mortality [16]. In the present study, we use a Poisson generalized additive model (GAM) 

to estimate the association between cardiovascular mortality and temperature on a daily basis for 26 

regions in the south and west of China from 2008 to 2011. In general, the association between 

cardiovascular mortality and meteorological parameters is not necessarily linear [16], so we constructed 
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the GAM to include time series variables using smooth functions to account for the nonlinear relationship 

between cardiovascular mortality and meteorological parameters [17]. 

In general, the magnitude of temperature effects on cardiovascular mortality is heterogeneous across 

regions due to variations in socioeconomic and demographic conditions [3]. Several previous studies 

have examined potential social factors responsible for regional vulnerability to temperature-related 

mortality [13,18]. However, the mutual and hierarchal relationships between the socioeconomic and 

demographic factors are complicated. This analysis proposed a Bayesian network (BN), which has the 

abilities to integrate multiple factors within a consistent system for risk assessment [19] and represent 

mutual and hierarchal relationships of variables [20], to explore region-specific socioeconomic and 

demographic factors responsible for the observed heterogeneity of the temperature’s effect on 

cardiovascular mortality. Moreover, the BN can offer insight into the impact of socioeconomic and 

demographic factors on the association between cardiovascular mortality and temperature, thereby 

providing relevant information for taking preventive steps and developing public health programs that 

target vulnerable populations in similar environments. 

2. Materials and Methods 

2.1. Study Area 

This study was performed in 26 regions in the south and west of China (Table 1). Figure 1 shows the 

geographical distribution of the 26 regions. These regions are located between north latitudes 19°12′55″ N 

and 33°29′24″ N and east longitudes 89°8′8″ E and 119°13′35″ E. Hainan Province is located in a tropical 

region with hot summers and warm winters. Anhui Province, Hunan Province and Guangxi Zhuang 

Autonomous Region are located in a subtropical region with hot summers and cold winters. Xizang 

Autonomous Region is located in a plateau region with mild summers and cold winters. 

Table 1. The 26 study regions. 

Province Region 

Anhui Province 
Chaohu City, Yushan District of Ma’anshan City, Daguan District of Anqing 

City, Tianchang City, Mengcheng County, and Jing County 

Hunan Province 
Tianxin District of Changsha City, Liuyang City, Pingjiang County,  
Wuling District of Changde City, Suxian District of Chenzhou City, 

Hongjiang City, and Fenghuang County 

Guangxi Zhuang 
Autonomous Region 

Binyang County, Liubei District of Liuzhou City,  
Xiufeng District of Guilin City, Hepu County, Lingyun County,  

and Luocheng Mulam Autonomous County 

Hainan Province Meilan District of Haikou City, and An’ding County 

Tibet Autonomous Region 
Chengguan District of Lasa City, Mozhugongka County, Naidong County, 

Jiangzi County, and Milin County 
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Figure 1. Spatial distribution of the 26 regions and the mean temperature during the  

study period. 

2.2. Source of the Data 

The cardiovascular mortality data were extracted from the Nationwide Disease Surveillance Points 

(DSPs) System, and the regions were selected by stratified cluster random sampling by the Chinese 

Center for Disease Control and Prevention to carry out death surveillance in China. The completeness 

and accuracy of population enumeration in the DSPs has been evaluated using the standard United 

Nations Age Sex Accuracy Index. In our study, data on 26 DSPs covering 26 regions in the south and 

west of China from 2008 to 2011 were provided by the Chinese Center for Disease Control and 

Prevention. The original data provides population level data on causes of death, classification of disease 

(ICD-10), gender, age at death and date of death. We calculated the daily number of deaths from 

cardiovascular disease from 2008 to 2011 for each region. The International Classification of Diseases 

version 10 codes I00-I99 were used to define cardiovascular mortality. In our data set, cardiovascular 

diseases caused a total of 103,218 deaths. 

Meteorological data from 2008 to 2011 for the study period, including daily mean temperature, daily 

maximum temperature, daily minimum temperature and daily mean relative humidity, were extracted 

from the China Meteorological Data Sharing Service System. We collected meteorological data from 

674 meteorological monitoring stations covering the continent and Hainan Island of China. The inverse 

distance weighted (IDW) technique was used to interpolate the temperature and relative humidity data. 

Zonal estimation was used to aggregate the estimation of weather parameters falling into each cell of the 

target grid and calculate the mean temperature and mean relative humidity from the cells within the 

region polygon. The IDW technique and the zonal estimation were conducted using ArcGIS 10.1. 

Demographic and socioeconomic information was extracted from the Tabulation on the 2010 

Population Census of the People’s Republic of China by County [21], including the per capita years of 

education, the population percentage of uneducated people older than 15 years, the percentage of women, 
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the percentage of urban residents, the percentage of the population older than 65 years, and the 

percentage of residents engaged in agricultural, industrial and service-related occupations. The number 

of hospital beds was extracted from the China Region Statistical Yearbook [22], China County Statistical 

Yearbook [23] and China Statistical Yearbook for Regional Economy [24]. 

2.3. Statistical Analysis 

Our statistical analyses consisted of two stages. First, a separate Poisson GAM was fitted for each 

region to calculate the percent changes in cardiovascular mortality at cold and hot temperatures on a 

daily basis. Second, having observed variation in the magnitude of the temperature effect on 

cardiovascular mortality, a BN was employed to identify socioeconomic and demographic factors 

responsible for the variation in the cardiovascular mortality-temperature association. 

2.3.1. First Stage: Using a Poisson Generalized Additive Model (GAM) to Calculate the Percent 

Changes in Cardiovascular Mortality at Low and High Temperatures 

There is broad agreement that both cold and hot temperatures are associated with an increase in 

cardiovascular mortality [13–15,25]. In this study, we used the 10th percentile of temperature as a 

reference value of low temperature and the 90th percentile as a reference value of high temperature [26–28]. 

The reference value of low temperature and high temperature for each region is shown in Supplementary 

Material (Table S1). Cardiovascular mortality depends not only on exposure to the current day’s 

temperature, but also on several previous days’ exposure [6], so we included the lagged effect by  

2 weeks and 3 days for cold temperatures and hot temperatures respectively according to previous  

studies [14–16,29]. The following stratified lagged temperature variables were used for simplicity [16]: 

temperature (T1–3) over the preceding 3 days, temperature (T4–8) 4–8 days prior and temperature (T9–14) 

9–14 days prior. Humidity was also incorporated in the model by means of smooth function. Finally, a 

nominal variable for day of the week was included to account for the week effect, and a smooth function 

of calendar time was included to account for some key potential effect modifiers, such as changes in 

population size, occurrence of major diseases, and potential seasonal confounders [13,16,30]. The final 

Poisson GAM for a given region had the following form [14,15,31,32]:  

Log( ௧ܻ) = ߙ + )ߚ ௧ܶ − ߬) +෍ݔ)ݏ௝, 3)௣
௝ୀଵ + ,݁݉݅ݐ)ݏ 7 × (ݎܽ݁ݕ + λ × ܹܱܦ + ε௧ (1)

where t refers to the day of observation; Yt denotes the observed daily cardiovascular mortality from 

cardiovascular diseases on day t;  is the intercept term; Tt denotes daily temperature on cold days or on 

hot days; τ is the reference value of low temperature or high temperature; β and λ are coefficients; s(.) 

represents a smooth relative risk function; xj denotes the covariates, such as relative humidity, with three 

degrees of freedom based on Akaike’s information criterion (AIC) [33]; timet denotes calendar date with 

seven degrees of freedom per year, a typical value chosen in these types of studies [15,16,34–36]; DOW 

represents the nominal factor for day of the week; and  is the residual.  

Models were constructed and compared considering different temperature indicators, namely mean 

temperature, maximum temperature and minimum temperature. Daily mean temperature stood out from 

α

tε
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the other two indicators based on AIC, so we used daily mean temperature as the indicator of temperature 

in our models. 

The impact of low and high temperature was expressed as the percentage change in cardiovascular 

mortality for a temperature change of 1 °C [37]. The percent change was calculated using the following 

formula [36,38,39]: percent	change = (exp(β) − 1) × 100 (2)

Cardiovascular mortality increases were evaluated by percent changes, specifically a 1°C increment 

above the high temperature threshold or a 1 °C decrement below the low temperature threshold. Poisson 

GAM analyses were conducted using the package mgcv [40] in R 3.0.1. 

2.3.2. Second Stage: Using a Bayesian Network (BN) to Identify Socioeconomic and Demographic 

Factors responsible for Variation of the Temperature Effect on Cardiovascular Mortality 

Having observed variations in the magnitude of the effects of both low and high temperatures  

on cardiovascular mortality, we employed a BN to identify region-specific socioeconomic and 

demographic factors that may explain these variations.  

A BN represents a pair BS = (G, P), where G = (V, E) is a directed acyclic graph (DAG) over a finite 

set of random variables V, interconnected by directed links E, and P is a set of (conditional) probability 

distributions representing the conditional dependency relationships of the nodes. Each node representing 

a variable A with parent nodes representing variables B1, B2, ..., Bn is assigned a conditional probability 

table (CPT) representing P(A | B1, B2, ..., Bn) [19,20,41,42]. 

There are four steps required to construct a BN: feature selection, discretization, structure learning 

and parameter learning [19]. First, we selected the following 10 region-specific socioeconomic and 

demographic factors according to a priori knowledge and published literature: number of hospital beds 

per 10,000 population members [18]; per capita years of education; percentage of uneducated 

individuals among persons over 15 years of age (%uneducated) [18]; percentage of women (%women); 

percentage of urban residents (%urban-residents); percentage of the population over 65 years of age 

(%65+) [13]; percentage of residents engaged in agricultural (%agriculture) [18], industrial (%industry) 

or service-related (%service) [18] occupations; and climatic zone to account for the difference of 

physiological and behavioral patterns between different climatic zones. 

Because a BN has a limited ability to address continuous variables, we had to discretize the factors 

before putting them into a BN. For discretization, either domain knowledge or a discretization algorithm 

can be used. If little domain knowledge of a variable was known, we referred to a discretization algorithm 

to make an automatic division. The report by Li et al. [19] provides details of this discretization method. The 

splits of the selected factors are shown Supplementary Material (Table S2). Structure learning is the 

process of learning the causal and influential dependence of the variables using a DAG. We employed a 

simulated annealing (SA) method to learn the structure of the BN [43]. SA is a generic probabilistic 

metaheuristic for the global optimization problem of locating a good approximation to the global 

optimum of a given function in a large search space. This approach randomly generates a candidate 

network close to the current network and accepts the network if it is better than the current one [43]. 
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Parameter learning is the process of calculating the CPT for each variable based on the joint probability 

distribution of the network as follows [42]:  ܲ(x) = ,ଵݔ)ܲ … , (௡ݔ =ෑܲ(ݔ௜|ܽ݌(ݔ௜))௡
௜ିଵ  (3)

where P(x) represents the joint probability distribution; x = x1,…, xn is a set of values of variables  

X = X1,…, Xn; and pa(xi) is a set of values of the parents of Xi. 

We constructed a BN for cold-related and heat-related cardiovascular deaths, with the percent change 

in cardiovascular mortality at low temperatures and high temperatures as the target variable, respectively. 

The percent changes calculated in the first stage indicated that the heat-related cardiovascular mortality 

increased dramatically and cold-related cardiovascular mortality increased slightly, so we chose different 

reference values of “high risk” for cold-related and heat-related cardiovascular mortality. The target 

variables were classified as low risk or high risk using 1% as the threshold for cold-related cardiovascular 

mortality and 10% for heat-related cardiovascular mortality, respectively. That is, taking heat-related 

cardiovascular mortality for example, if the cardiovascular mortality increases by 10% or more with 1°C 

increment at high temperatures, the region will be classified as “high risk”. Consequently, 9 regions were 

classified as “high risk” at low temperatures, and 7 regions were classified as “high risk” at high temperatures. 

Finally, we used a 2-fold cross-validation method to evaluate the performance of the BN. Three 

performance measures were employed: pd, pf, and accuracy [19]. Pd refers to the probability of detection 

and measures the probability of detection of a desired target. Pf refers to the probability of false alarms 

and measures the probability of undesired detections erroneously classified as targets. Accuracy 

measures the proportion of correctly predicted instances. 

3. Results 

In the Poisson GAM analysis, we calculated the percent changes in cardiovascular mortality at low 

and high temperatures for each region (see Supplementary Material Table S3). In most regions, 

cardiovascular mortality increased with increasing temperature on hot days and with decreasing 

temperature on cold days, with certain variations across regions. We used “0” as a reference value for 

the regions where an increasing or decreasing trend in the temperature on hot or cold days, respectively, 

did not have a deleterious effect on cardiovascular mortality. 

Figures 2 and 3 show the modeled BNs for percent changes in cardiovascular mortality at low and 

high temperatures, respectively. Each elliptical node represents one socioeconomic or demographic 

factor, and the circular node represents the target variable. The arrows illustrate a probabilistic, causal 

or influential link from one node to another. Figure 2 shows that three factors, including the per capita 

years of education, the percentage of the population over 65 years of age, and the percentage of women 

had direct impact on the percent change in the occurrence of cardiovascular deaths at low temperatures. 

The marginal CPT (Table 2) shows that regions with a lower level of per capita years of education (less 

than 5.25 years) have a probability of 0.500 of being at high risk, which is higher than that with higher 

level of per capita years of education (more than 5.25 years) with a probability of 0.342. Regions with 

less old population (less than 5.65% with a probability of 0.690) have a higher probability of being at 

high risk than that with more old population (more than 5.65% with a probability of 0.273). Regions 
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with less women (less than 50.08% with a probability of 0.381) have a higher probability of being at 

high risk than that with more women (more than 50.08% with a probability of 0.209). 

 

Figure 2. Bayesian network for percent change in cardiovascular mortality at low temperatures. 

Figure 3 shows that three factors, including number of hospital beds per 10,000 population, the 

percentage of residents engaged in industrial occupations, and the percentage of women had direct 

impact on the percent change in cardiovascular deaths at high temperatures. 

 

Figure 3. Bayesian network for percent change in cardiovascular mortality at high temperatures. 
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Table 2. Marginal conditional probability table (CPT) of percent change in cardiovascular 

mortality at low temperatures. 

Quantitative Factors State and Intervals 

Percent Change in Cardiovascular 
Mortality at Low Temperatures 

Low Risk High Risk 

Per capita years of education 
low level [5.18, 5.25] 0.500 0.500 

high level (5.25, 12.31] 0.658 0.342 

%65+ 
low level [3.49, 5.65] 0.310 0.690 

high level (5.65, 12.68] 0.727 0.273 

%women 
low level [46.66, 50.08] 0.619 0.381 

high level (50.08, 50.94] 0.791 0.209 

Furthermore, the CPT (Table 3) shows that regions with less hospital beds (30.71 per 10,000 

population) have a probability of 0.599 of being at high risk, which is higher than that with more hospital 

beds (more than 30.71 per 10,000 population) with a probability of 0.181. And regions with more women 

(more than 50.83%) have a higher probability (0.546) of being at high risk than that with less women 

(less than 50.83% with a probability of 0.479). The factor of the percentage of residents engaged in 

industrial occupations was discretized into three intervals by the automatic discretization algorithm, with 

the low level (less than 6.36% with a probability of 0.805) associated with the highest probability of 

being at high risk, followed by the high level (more than 23.14% with a probability of 0.297), and the 

middle level (between 6.36% and 23.14% with a probability of 0.130) associated with the lowest risk. 

Table 3. Marginal conditional probability table (CPT) of percent change in cardiovascular 

mortality at high temperatures. 

Quantitative Factors State and Intervals 

Percent Change in Cardiovascular 
Mortality at High Temperatures 

Low Risk High Risk 

Number of hospital  
beds per 10,000 people 

low level [4.95, 30.71] 0.401 0.599 
high level (30.71, 109.38] 0.819 0.181 

%industry 
low level [1.02, 6.36] 0.195 0.805 

middle level (6.36, 23.14] 0.870 0.130 
high level (23.14, 51.24) 0.703 0.297 

%women 
low level [46.66, 50.83] 0.521 0.479 
high level (50.83, 50.94] 0.454 0.546 

Finally, Table 4 shows the results of a 2-fold cross-validation of the modeled BNs. 

Table 4. 2-fold cross-validation of the BNs. 

Target Variables State pd pf Accuracy

Percent change in cold-related cardiovascular mortality 
low risk 0.882 0.333 0.808 
high risk 0.667 0.118 0.808 

Percent change in heat-related cardiovascular mortality 
low risk 0.947 0.143 0.923 
high risk 0.857 0.063 0.923 
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4. Discussion 

The objectives of this research were to characterize the association between temperature and 

cardiovascular mortality in 26 regions in the south and west of China and to identify the influence of 

socioeconomic and demographic factors on this association in different regions. Several previous studies 

have examined potential social factors responsible for regional vulnerability to temperature-related 

mortality. Curriero et al. used a linear regression model to study the impact of social economic and 

demographic factors on cold-related and heat-related cardiovascular mortality [13]. They regressed cold-

related (or heat-related) cardiovascular mortality on each predictor alone as social-economic and 

demographic factors are generally correlated, which may lead to a problem with multicollinearity. The 

study of Curriero et al. had the limitation of not able to model the intercorrelation of the factors. To deal 

with multicollinearity, Wu et al. used principal component analysis (PCA) to classify the demographic 

and socio-economic factors into four integrated factors [18]. However, the social factors extracted using 

PCA were not realistic, which made it difficult to reflect realistic problems or to provide useful 

suggestions for public health specialists. In contrast with previous studies, this analysis proposed a BN 

to integrate multiple factors within a consistent system, which has the ability of modeling the mutual 

and hierarchal relationships of the variables without causing a problem of multicollinearity, thereby 

offering a comprehensive understanding of the relationships between the factors and temperature-related 

cardiovascular mortality. Our results suggest that a BN is a good alternative for risk assessment in  

public health. 

In the BN analysis of the percent changes in cold-related cardiovascular mortality, three factors 

including per capita years of education, the percentage of the population over 65 years of age and the 

percentage of women were identified as influential factors. Education attainment is a robust indicator of 

socioeconomic position, income, living conditions and occupation of the residents of a region [44]. In 

general, persons with high education attainment have an improved quality of life [44] and use heating 

equipment in their living and working environments. However, the less educated population may have 

limited access to medical resources, poor housing conditions, a lack of necessary health knowledge and 

unhealthy behavioral habits such as smoking and drinking. In the present study, higher risk for the 

younger people at cold temperatures was observed. Although several studies have reported that elderly 

people are more sensitive to high/low temperatures, some studies have observed stronger effects in 

younger subjects [45–47]. One possible explanation might be that the elderly group includes more people 

who are often confined to beds or home and are thus less exposed to cold temperatures. In contrast, 

younger people tend to work outside and thus may be directly exposed to ambient temperatures, which 

makes them more influenced by cold temperatures [45]. 

In the BN analysis of the percent changes in cardiovascular mortality at high temperatures, 3 factors 

including number of hospital beds, the percentage of residents engaged in industrial occupations and the 

percentage of women showed an obvious influence [18,48]. The number of hospital beds may serve as 

an indicator of medical resources, and adequate medical resources may have a protective effect against 

high temperatures in cardiovascular patients. In addition, air conditioning units are often available in 

nursing homes or hospitals, and people nursed in a hospital are more likely to receive adequate 

medication and nursing care and less exposure to heat [27]. 
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The influence of industrialization is complicated, with the low level associated with the highest risk, 

followed by the high level, and the middle level associated with the lowest risk. The industrial sector 

usually contributes to air pollution, which may have deleterious effects on public health. But a high level 

of industrialization also typically corresponds to improved economic status, convenient transportation, 

a controllable indoor working environment, and good medical infrastructure. The findings in this study 

led us to hypothesize that the reason why the low level of industrialization is associated with highest risk 

is mainly because of the low economic status. As the industrialization develops, the beneficial impact of 

developed economy is more pronounced than the deleterious impact of air pollution. But after a certain 

development level, the deleterious impact of air pollution exceeds the beneficial impact of developed 

economy. Nevertheless, the impact of the industrial sector on cardiovascular disease and mortality is 

complex, and few studies have been performed to evaluate this issue. 

Gender showed different impact at low and high temperatures. Men tend to have higher risk at cold 

temperatures, while women tend to have higher risk at high temperatures. The mechanism remains 

unclear. It may be that women usually have more fat than men, which makes women more cold-resistant 

but less heat-resistant. The difference of the temperature effect on mortality between women and men 

was dependent on study location and study population. Some previous studies have reported that women 

show higher risks than men in Korea [49] and Mexico City [50], while men were more severely affected 

in São Paulo [50]. The influence of gender is geographically diverse, so location-specific assessment is 

needed when developing location-specific public health programs. 

During cold or hot temperature events, people with cardiovascular disease represent a vulnerable 

subgroup, and various hypotheses have been proposed to explain the mechanism responsible for the 

adverse effect of cold and hot temperatures on cardiovascular patients. In hot weather, the body tends to 

enlarge skin vessels and increase sweating to balance the distribution of heat, thus inducing profound 

physiological changes such as an increase in blood viscosity and cardiac output. These changes lead to 

dehydration, hypotension, and even endothelial cell damage [14,25,51]. However, less is known about 

cold-related mortality [25,46]. One plausible hypothesis suggests that when exposed to cold 

temperatures, the sympathetic nervous system increases the catecholamine level and the skin vessels 

then constrict to reduce heat loss, thus inducing vasoconstriction and increases in blood pressure, 

sympathetic nervous activities, platelet aggregation, red blood cell count, plasma cholesterol and plasma 

fibrinogen [14,25,52]. 

Some limitations exist in the present study. First, some studies have reported that air pollutants might 

be potential confounders and/or effect modifiers of the mortality-temperature association [3,25,53], but we 

don’t adjust our models for air pollution due to lack of data. In many locations, concentrations of 

pollutants may be associated with temperature [3]. Previous studies on the associations between air 

pollutants, temperature and mortality have produced conflicting results. Some studies show that air 

pollutants are confounders and/or effect modifiers of the mortality-temperature association, while some 

other studies indicate that air pollutants have no significant impact on mortality with temperature. Studies 

conducted in the USA, for example, Bell et al. [50] and Zanobetti et al. [54] considered PM10 (as well 

as PM2.5 in Zanobetti et al.’s study) and O3, Basu et al. [55] considered PM10, PM2.5, O3, NO2, CO and 

SO2, found no significant confounding or effect modification by pollution on the association between 

temperature and mortality. Stafoggia et al. [56] also reported no confounding by O3 in Italy and Canada, 

respectively. However, PM10 was found to be confounder in Monterrey, Mexico [47], Sydney, Australia [57], 
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and Brisbane, Australia [58]. Second, our study is limited to 26 regions in the south and west of China 

due to lack of data from other locations. Subsequent investigations including more regions are expected 

to increase our insight into the relationship between cardiovascular mortality and temperature in China. 

5. Conclusions 

In this study, we used statistical models to quantify the association between cardiovascular mortality 

and temperature for 26 regions in the south and west of China. Our results show that both cold and heat 

stressors have non-negligible public health effects on cardiovascular mortality [59,60], with variations 

observed between regions. In addition, although people may have developed certain biologic adaptations 

to their local climate, behavioral and technological adaptations are still needed [61]. 

This study proposed a Bayesian network as a new approach to learn the impact of social economic 

and demographic factors on cold-related and heat-related cardiovascular mortality. Compared with linear 

regression model, which is the most commonly used model in this kind of studies, Bayesian network has 

the advantage of integrate multiple factors within a consistent system, and modeling the mutual and 

hierarchal relationships of the variables without causing a problem of multicollinearity. More 

importantly, the method proposed in this study is general and can also be applied to other regions. 

China is a very large country, with variations in socioeconomic and demographic conditions between 

cities. Thus, additional studies of different climates and socioeconomic and demographic conditions are 

needed, especially in the less developed regions. Moreover, these region-specific socioeconomic and 

demographic conditions should be taken into consideration for developing customized prevention and 

adaptation in public health programs for the regions vulnerable to high/low temperatures. For example, 

given the social economic and demographic conditions of a specific region, the probability of being at 

high risk of cold-related (or heat-related) cardiovascular mortality could be estimated. In addition, 

according to Table 3, women tend to have higher risk at high temperatures. When high weather 

conditions or heat weaves occur, preventive steps and developing public health programs should give 

more attention to women. 
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