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Abstract: The Sunda Banda Seascape (SBS), located in the center of the Coral Triangle, is 

a global center of marine biodiversity and a conservation priority. We proposed the first 

biophysical environmental delineation of the SBS using globally available satellite remote 

sensing and model-assimilated data to categorize this area into unique and meaningful 

biophysical classes. Specifically, the SBS was partitioned into eight biophysical classes 

characterized by similar sea surface temperature, chlorophyll a concentration, currents, and 

salinity patterns. Areas within each class were expected to have similar habitat types and 

ecosystem functions. Our work supplemented prevailing global marine management 

schemes by focusing in on a regional scale with finer spatial resolution. It also provided a 

baseline for academic research, ecological assessments and will facilitate marine spatial 

planning and conservation activities in the area. In addition, the framework and methods of 

delineating biophysical environments we presented can be expanded throughout the whole 
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Coral Triangle to support research and conservation activities in this important region. 

Keywords: biophysical environments; Sunda Banda Seascape; remote sensing;  

self-organizing map; sea surface temperature; chlorophyll a; currents; salinity;  

marine conservation 

 

1. Introduction 

Marine ecosystems are constantly threatened by both natural and anthropogenic disturbances. 

Increasing anthropogenic pressure, such as coastal development jeopardizes resilience and resistance of 

the ecosystem to cope with natural disturbance and threatens the health of marine environments. More 

than 2.2 billion people reside within 100 km of coastlines [1], and the number of humans living near 

coastlines is expected to increase from 2.3 billion in 2000 to 3.1 billion in 2025 [2]. These ecosystems 

are critical because they support livelihoods by providing food, protecting coastlines, maintaining 

fisheries and sustaining tourism [3,4]. Many of these coastal inhabitants rely directly on the wealth of 

natural resources and services provided by marine ecosystems for subsistence and as a source of income. 

Compounded with the effects of climate change, marine systems require innovative strategies to 

managing their environment, and need to develop marine protected areas (MPA) that are resilient to both 

resource exploitation and the effects of climate change. Although resources need to be expended to 

sustain local livelihoods, coastal ecosystems need to be managed to secure their ecological function and 

availability of marine resources in the future. 

In recent decades, oceanographic studies have described the dynamic range of environmental 

heterogeneity in tropical ecosystems [5–9]. Biophysical environments dictate the structure and function 

of marine ecosystems, serve as proxies for the distribution of species and habitats (which are difficult to 

obtain at large scales), and facilitate conservation planning. When prioritizing conservation activities on 

a broad spatial scale, there are often gaps of information about the ecosystems present in the area. A 

classification of biophysical environments using remote sensing can be a useful first step towards a 

comprehensive understanding of the region of focus [5,10], the identification of priority sites for rapid 

assessment or monitoring activities and the building of ecologically representative MPA networks that 

incorporate each habitat type in each of its environments. 

The Coral Triangle (Figure 1) refers to a roughly triangular area of the tropical marine waters of Indonesia, 

Malaysia, Papua New Guinea, Philippines, Solomon Islands and East Timor (aka Timor-Leste) [11]. 

The 5.7 million km2 area is recognized as an epicenter of tropical marine biodiversity [12].  

The ecosystem services of the Coral Triangle sustain over 120 million people, who rely on its coral reefs 

for food, income, and protecting coastlines from storms. Although worldwide, 60% of reefs are currently 

threatened by local stressors such as overfishing, destructive fishing, coastal development and pollution, 

this value is as high as 85% in the Coral Triangle [13]. The most widespread local threat in the region is 

overfishing [13]. Much of the fishing that occurs is unsustainable and jeopardizes people’s livelihoods. 

Moreover, a changing climate—changes in ocean chemistry, warming temperatures, increased frequency 

of storms—is exacerbating local anthropogenic disturbances on the Coral Triangle [14]. In order to 

address these urgent threats, the Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security 
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(CTI-CFF, http://www.coraltriangleinitiative.org), a multilateral partnership including six countries, was 

formed in 2007. The CTI-CFF has become one of the largest conservation initiatives in the marine world 

with considerable financial support from multilateral donors and foundations. 

In the central part of the Coral Triangle in Indonesian waters lies the Sunda Band Seascape (SBS) 

(see Figure 1). According to the Ministry of Marine and Fisheries Affairs of Indonesia, the SBS has been 

designated as the second most important marine ecological region in Indonesia in terms of its 

biodiversity, providing habitat for 76% of known coral species and more than 3000 fish species. 

However, similar to the Coral Triangle as a whole, the SBS is threatened by human activities related to 

unsustainable development. 

 

Figure 1. Coral Triangle and Sunda Banda Seascape. The world base map is courtesy of 

ESRI. The boundary of the Coral Triangle and the Sunda Banda Seascape were obtained 

from The Coral Triangle Atlas (ctatlas.reefbase.org/). Administrative boundaries were 

acquired from GADM database of Global Administrative Areas (www.gadm.org/). 

The SBS covers an area of almost 1.57 million km2 and encompasses considerable environmental and 

biological heterogeneity. In order to support marine conservation planning in this area, a systematic 

classification of the region in terms of biophysical environments is needed. Although information on 

marine provinces is available at a global scale [15,16], no comprehensive regional information is 

available for the SBS at a spatial resolution that is meaningful for management. Here, the goal of this 

research was to develop an approach using globally-available satellite remote sensing and  

model-assimilated data to categorize this area into unique and meaningful classes based on a suite of 

biophysical conditions. Specifically, the SBS was partitioned into biophysical classes characterized by 

similar sea surface temperature patterns, chlorophyll a concentration, currents, and salinity. These 

classes are expected to have similar habitat types and ecosystem function. Our work is the first of this 

kind in the SBS, and will help designate priorities in conservation planning and inform marine 

conservation practices. 
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2. Materials and Methods 

The Sunda-Banda Seascape (SBS) study area is located in the central portion of the Coral Triangle in 

eastern Indonesia (Figure 1). Sunda Banda refers to a geological and geographical area of the landscape 

covering the marine area and islands from Bali in the southwest to Maluku in the northeast. 

A number of biophysical variables were considered for characterizing the marine environment of the 

SBS and geospatial data sources for these variables were identified. Salinity and sea surface temperature 

are fundamental determinants of global distribution of many marine habitats and ecosystems [17]. In the 

Pacific region, ranges and extremes of sea surface temperature (SST) and chlorophyll a [18] control coral 

reef ecosystems. Hydrodynamic conditions, such as ocean currents, can ultimately determine both 

location and extent of marine habitats. For example, the distribution of mangrove ecosystems is driven 

by major ocean currents [19]. Therefore, biophysical variables used in this study include SST, 

chlorophyll a, currents and salinity. 

The SST and chlorophyll a concentration data employed in this study were derived by the U.S. 

National Aeronautics and Space Administration (NASA) from remote sensing imagery acquired by the 

Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua Satellite. MODIS mapped 

data (Level 3), at a spatial resolution of 4 km per pixel, were acquired over the period July 2002 to June 

2013. Monthly averaged night-time SST data, chlorophyll a data, and climatological SST data were 

downloaded from NASA (http://oceancolor.gsfc.nasa.gov). Then, the long-term mean SST (Avg SST) 

was calculated. Maximum and minimum values at pixel level were selected to derive variables of highest 

monthly climatological SST (Max SST) and lowest monthly climatological SST (Min SST), 

respectively. The long-term mean chlorophyll a (Chla) concentration (mg/m3) was  

also calculated. 

Daily ocean currents data from May 2008 to July 2013 were obtained from the Hybrid Coordinate 

Ocean Model (HYCOM, http://hycom.org/), a multi-institutional effort sponsored by the U.S. National 

Ocean Partnership Program [20]. We used global data-assimilative runs at 1/12° equatorial spatial 

resolution and 10 m depth. For this study, the long-term mean of current speed (m/s) was used. Daily 

salinity data at 10 m depth from May 2008 to July 2013 were also obtained from HYCOM, and the long-

term mean salinity was used as input for the classification analyses. 

Data processing included the retrieval and cropping of the global datasets into the region of interest 

(113°E to 135°E and 0°to 13°S). HYCOM derived currents and salinity data were resampled into 4 km 

spatial resolution using bicubic interpolation in order to match MODIS derived datasets of Avg SST, 

Max SST, Min SST and Chla (Figure 2). Compared to other interpolation methods (e.g., nearest neighbor 

and bilinear interpolation), bicubic interpolation usually gives smother results. Land masses were 

identified using MODIS data and were excluded from the analysis (shown as black areas in  

Figure 2). All six selected environmental variables (Avg SST, Max SST, Min SST, Chla, Currents and 

Salinity) were assessed for collinearity. Then they were standardized using ranges to scale the data [21], 

allowing an equal contribution of the variables to the classification analysis. 
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Figure 2. Input variables for classifying the Sunda Banda Seascape into biophysical regions. 

(A) Average sea surface temperature (Avg SST); (B) maximum monthly climatological sea 

surface temperature (Max SST); (C) minimum monthly climatological sea surface temperature 

(Min SST); (D) average chlorophyll a concentration (Chla); (E) sea salinity (Salinity);  

(F) average ocean current speed (Currents). 

The classification approach selected for this research, Self-Organizing Map (SOM), is a flexible, 

unsupervised neural network for data analysis and clustering [22–24]. Several performance studies have 

illustrated the advantages of SOM over other clustering methods, such as k-means, fuzzy k-mean and 

ISODATA [25,26]. SOM is more appropriate for large, nonlinear data sets with high dimensionality 

[25,26], and draws great attention in geographic information science [27] for spatial and temporal 

modeling and analysis [25,28–33]. In the field of marine science, there are few examples in the literature 

of SOM applications for the extraction of spatial patterns and classification of environmental regions. 

There are relatively few studies using SOM in marine environments but include (for example) the 

Atlantic Ocean [34] and Caribbean Sea regions [5]. 

SOM requires users to predefine the desired number of clusters (neurons) and the spatial arrangement 

of clusters (aka, neuron topology, such as linear, rectangular or square) before it runs. We produced and 
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assessed classifications with four to 25 clusters with all possible bi-dimensional topologies (e.g., for 12 

clusters 12 × 1, 3 × 4 and 4 × 3). Our goal was to identify an “optimal” number of clusters. Hexagonal 

grid topologies were applied in this study because they provide a better visualization of the results and 

smoother transitions among clusters. The neighborhood size was set to three samples and the training 

steps were set to 1000 iterations. Link distance was used for distance metric for its straightforward 

meaning and easy implementation. The full description of the algorithm and mathematical illustration 

can be found in [22]. 

Upon completion of a neural network classification of a data set into the desired number of clusters, 

it is necessary to validate the clusters in terms of statistical separation. There are several commonly used 

internal validation indices in clustering analysis, such as Silhouette Index [35], Davies-Bouldin Index 

[36], Calinski-Harabasz Index [37] and Dunn Index [38]. Silhouette Index (SI) provides a succinct 

graphical representation of how well each pixel lies within its cluster and is also used to determine the 

optimal number of clusters [39]. It works well with different clustering methods, such as k-means [35]. 

The SI is calculated using Equation (1). The scenario that maximizes the average SI determines the best 

partition: 

max( , )
i i

i
i i

b a
SI

a b

−=  (1)

For each pixel, ai is the average distance from the i th pixel to all the other pixels in the same cluster 

as i , and bi is the minimum average distance from the i th pixel to all pixels in a different cluster. After 

all SIi values have been calculated, the average SI for all clusters is calculated for each scenario. SI 

ranges between −1 and 1 and a clustering is valid when SI is greater than 0. With SI values close to 1, it 

signals a better clustering (with compact classes, well separated from the rest). Validation indices do not 

only identify the optimal number of clusters, but also the optimal spatial arrangement of clusters 

(topology of neurons). 

3. Results 

The best classification of biophysical marine environments from the total 43 scenarios considered 

was selected by comparing the goodness of the clustering structure via SI. The best scenario of 

classification was found with 9 clusters and linear topology (Figure 3). 

The selected scenario classified the biophysical environments of the study area into 9 clusters  

(Figure 4), where each cluster indicates a distinctive environmental region. One of these clusters  

(i.e., Class 3) was in the bounding box of study area, but not within the SBS. Although no explicit 

geographic information was provided when training the SOM, the classification procedure produced 

clusters with well-defined boundaries. 
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Figure 3. Silhouette index used to identify the best classification scenario. X and Y denote 

neuron arrangements in the two dimensions. Therefore, the number of classes equals to X × Y. 

 

Figure 4. Biophysical region classification of the Sunda Banda Seascape with 9 classes. MEOW 

denotes Marine Ecoregions of the World [16]. Five-digit codes refer to  

marine ecoregions: 20126—Palawan/North Borneo; 20117—Sunda Shelf/Java Sea; 20119—

Southern Java; 20128—Sulawesi Sea/Makassar Strait; 20133—Northeast Sulawesi; 

20131—Banda Sea; 20132—Lesser Sunda; 20144—Exmouth to Broome; 20129—Halmahera; 

20141—Bonaparte Coast; 20130—Papua; 20139—Arafura Sea; 20140—Arnhem Coast to 

Gulf of Carpenteria. 

The number of pixels of each class was not evenly distributed in the SBS. Class 2, Class 4, and Class 

5 included the largest number of pixels; and Class 3 was totally outside the SBS. The average and 

standard deviation for each biophysical variable in each class are listed in Table 1. 
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Table 1. Percentage area covered by each of the 9 classes; Average and standard deviation 

of 6 biophysical variables for the 9 Classes. 

Class SBS (%) Avg SST (°C) Max SST (°C) Min SST (°C) Chla (mg/m3) 
Currents 

(m/s) 
Salinity (PSU) 

1 2.40 26.61 ± 0.70 28.79 ± 0.83 24.78 ± 0.64 1.33 ± 1.84 0.16 ± 0.11 34.04 ± 0.26 

2 32.30 27.68 ± 0.29 29.49 ± 0.24 25.81 ± 0.32 0.36 ± 0.29 0.19 ± 0.06 34.23 ± 0.13 

3 0 27.23 ± 0.52 30.50 ± 0.48 25.15 ± 0.50 1.54 ± 1.25 0.06 ± 0.05 34.59 ± 0.15 

4 13.30 28.06 ± 0.21 30.18 ± 0.30 26.37 ± 0.21 0.33 ± 0.44 0.14 ± 0.05 34.42 ± 0.13 

5 34.80 28.23 ± 0.20 29.59 ± 0.20 26.74 ± 0.37 0.23 ± 0.10 0.33 ± 0.06 33.99 ± 0.18 

6 12.90 28.29 ± 0.25 29.59 ± 0.23 27.23 ± 0.33 0.31 ± 0.45 0.19 ± 0.09 33.50 ± 0.25 

7 2.90 28.79 ± 0.36 29.40 ± 0.26 27.94 ± 0.53 0.48 ± 0.89 0.19 ± 0.09 34.24 ± 0.12 

8 1.30 29.06 ± 0.35 29.81 ± 0.32 28.42 ± 0.40 0.41 ± 0.92 0.20 ± 0.08 33.51 ± 0.21 

9 0.10 28.55 ± 0.23 29.65 ± 0.23 27.71 ± 0.34 1.40 ± 2.89 0.11 ± 0.07 32.54 ± 0.30 

Range (0, 34.8) (26.61, 29.06) (28.79, 30.50) (24.78, 28.42) (0.23, 1.54) (0.06, 0.33) (32.54, 34.59) 

Figure 5A shows the distinctiveness of the nine classes. The darker color indicates greater difference, 

such as Class 8 and Class 9, while the lighter color shows less difference, such as Class 5 and Class 6, 

which are relatively similar. Figure 5B shows how each biophysical variable contributes to each class, 

where darker colors indicates greater and lighter ones indicates less contribution. None of the weight 

patterns of input variables are very similar to one another, reconfirming these variables are not correlated. 

Based on Figure 5, the biophysical classes of the SBS are further characterized  

as in Table 2. Each class has a unique suite of biophysical conditions, and often aligns with  

established landmarks. 

 

Figure 5. SOM topology showing the distances between neighbors and the input weights. 

(A) SOM Neighbor Weight Distance. The blue hexagons represent the classes; the red lines 

connect neighboring classes; the colors in the regions containing the red lines indicate the 

distances between classes, where the darker colors represent larger distances (more 

differences) and the lighter colors represent smaller distances (less differences); (B) Weight 

from each input biophysical variables. Lighter and darker colors represent smaller and larger 

weights, respectively. 
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Table 2. Biophysical features and geographical regions of all classes. 

Class Biophysical Features Geographical Regions 

1 lowest temperature and high chlorophyll a south side of Bali, Sumbawa, Fores and Sumba 

2 moderate biophysical conditions Savu Sea (in the west) and Arafura Sea (in the east) 

3 high chlorophyll a and high salinity Van Dieman Gulf and Beagle Gulf (out of the SBS) 

4 low chlorophyll a and high salinity Timor Sea 

5 the lowest chlorophyll a and the highest currents 
Banda Sea, Molucca Sea (to the north), Ceram Sea (to the 

east), Flores Sea (to the southwest). 

6 low chlorophyll a and medium currents Bali Sea, Flores Sea and Gulf of Boni 

7 the second highest overall temperature Halmahera Sea and Molucca Sea 

8 highest overall temperature 
Gulf of Tomini and Makassar Strait (northeast of the SBS, 

south to the Equator) 

9 high chlorophyll a and low salinity Java Sea 

4. Discussion and Conclusions 

Our work is the first-ever delineation of the SBS environments, and it classified the region into eight 

distinctive biophysical classes. Each of them represents a unique systematic combination of biophysical 

conditions. Classifying the marine environments into meaningful and manageable regions is often the 

initial step to prioritize marine conservation areas and assist resources management and spatial planning 

[40]. Additionally, our delineation of the biophysical environments of the SBS supplements other 

prevailing marine management schemes, such as the marine ecoregions of the world (MEOW) [16]. 

MEOW is defined on experts’ opinions and globally comparable on a biogeographic basis, for example 

floral and faunal composition, but it is targeted at the world’s coastal and shelf areas. Instead of only 

two ecoregions (i.e., 20131 and 20132) delineating the study area by MEOW, our biophysical 

classification enables comparisons among regional patterns and processes and provides more detail at 

the regional level (Figure 4). The eight distinctive classes should better explain patterns of biodiversity 

and organismal distribution. Importantly, smaller regions should be more suitable for conservation 

practice. With comprehensive coverage, the classification result can serve many research and 

conservation requirements in the area. The datasets we employed here are globally available so the 

systematic approach applied here can be replicated in the whole Coral Triangle using the same or other 

remote sensing derived and model-assimilated environmental variables. 

Within the eight classes, Class 2 (32.30%), Class 4 (13.30%), Class 5 (34.80%) and Class 6 (12.90%) 

made up over 93% of the area in the SBS. Among these four major classes, Class 2 experiences the 

coolest conditions, though the differences in temperatures (Avg SST, Max SST and Min SST) are not 

great. The ranges of Avg SST, Max SST and Min SST among these four classes are 0.61 °C, 0.69 °C, 

and 1.42 °C (the overall ranges of these three variables within the study area are  

2.45 °C, 1.71 °C, and 3.64 °C, respectively). These four major classes have relative low chlorophyll a, 

whose chlorophyll a concentration range from 0.23 mg/m3 to 0.36 mg/m3 (compared to the overall range 

from 0.23 mg/m3 to 1.54 mg/m3), although Class 2 has the highest upwelling level of chlorophyll a 

concentration (relative to the other three classes). In fact, Class 5 has the lowest chlorophyll a 

concentration among all classes. These four major classes are also characterized as medium-to-high 

currents, whose currents range from 0.14 m/s to 0.33 m/s (compared to the overall range from 0.06 m/s 
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to 0.33 m/s), expect for Class 5, which ranks the highest in currents. There is not much similarity in 

terms of salinity for the four major classes; in fact, Class 5 shows the highest salinity. 

Class 2 is the second largest class of the SBS. It is the only class characterized by moderate overall 

biophysical conditions; and the only biophysical class that divided into two major areas—i.e., Savu Sea in 

the west and Arafura Sea in the east. Featured as low chlorophyll a and high salinity, Class 4 is located 

in the southwest part of the SBS and aligns well with the geographical boundary of the Timor Sea. 

Registered as the biophysical class with highest currents and lowest chlorophyll a, Class 5 is the largest 

biophysical class, and mainly located in the center of the SBS—Banda Sea. Known as biophysical class 

with medium currents and low chlorophyll a, Class 6 is located to the west of Class 5, including areas of 

Bali Sea, Flores Sea and the Gulf of Boni. 

By classifying the SBS into distinctive biophysical classes, this work also provides an underlying 

basis for more informed decisions for marine spatial planning in the SBS. With the increasing marine 

conservation investments in the SBS, a better understanding of the environment and ecosystems will 

lead to better strategic decisions, such as designating priority areas, where ecosystems are more likely 

to be resilient to natural and anthropogenic disturbance. During marine spatial planning and conservation 

practices, MPAs usually play the central role in balancing biodiversity protection with natural resource 

utilization [41]. MPA connectivity to other ecosystems that serve as “sources” for coral or fish larvae 

are more likely to be “seeded” to replenish depleted populations [42]. MPA proximity to other productive 

ecosystems that serve as nursery habitat, breeding grounds, and foraging grounds have been 

demonstrated to enhance fish abundance and diversity [43]. When designing MPAs, especially the 

network of MPAs, it is usually required to encompass a variety of environmental conditions to define 

distinct regions. Our delineation of eight classes with distinctive biophysical features and geographical 

locations (Table 2) in the SBS will be potentially helpful to establish the network of MPAs in this region. 

It can be also applied to inform strategic marine resource management in the CTI-CFF in the following 

three ways: (1) serve as proxies for species distribution; (2) help planning and coordinating of stratifying 

rapid-assessment and monitoring activities in the field in a cost-effective manner; (3) help determining 

areas of priority for conservation in conjunction with existing habitat data—such as areas likely to be 

more resilient to climate change and coral reef bleaching [44,45]. It is one of the major conservation 

goals of the SBS to designate the network of MPAs with the lowest trade off among biodiversity 

conservation and fisheries benefits. And our work contributes to this broad goal in a timely manner. 

To summarize, our approach for the delineation of biophysical marine environments of the SBS not 

only fills a gap by bringing comprehensive data into this region, but also facilitates planning of marine 

conservation activities. As the first-ever work of this kind in the Coral Triangle, our delineation 

contributes to the framework for coastal and marine spatial planning, which will inform research and 

conservation practices in the Coral Triangle. 

In the future, a full sensitivity analysis of the SOM parameterization will be performed to increase 

the accuracy of this study. While outside the scope of this paper, future work could include evaluating 

long term in-situ datasets in the study area with other contemporary data-driven modeling techniques, 

such as in [46–49]. Moreover, the input variables used in this study are relevant for other areas, both for 

benthic and pelagic environments. Furthermore, all the datasets used are global in scope and freely 

available which means that the approach is directly transferable to other parts of the world. Although the 
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method could be applied at a global scale, computational limitations may prevent a global analysis at 

this stage. 
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