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Abstract: Batch-type experiments were used to study competitive As(V) and P sorption on various
soils and sorbent materials. The materials assayed were a forest soil, a vineyard soil, pyritic material,
granitic material, coarsely and finely ground mussel shell, calcinated mussel shell ash, pine sawdust
and slate processing fines. Competition between As(V) and P was pronounced in the case of
both soils, granitic material, slate fines, both shells and pine sawdust, showing more affinity for
P. Contrary, the pyritic material and mussel shell ash showed high and similar affinity for As(V)
and P. These results could be useful to make a correct use of the soils and materials assayed when
focusing on As and P removal in solid or liquid media, in circumstances where both pollutants may
compete for sorption sites.
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1. Introduction

Arsenic pollution is a matter of public health concern, mainly in connection with its presence in
drinking water. The use of wood preservative compounds that include arsenic can originate arsenic
pollution episodes in forest areas [1], and As-based herbicides could have similar effect when used
in vineyard soils [2], thus increasing overall risks of soil and water pollution [3]. In addition, diverse
anthropogenic sources, such as agriculture, mining and industrial activities, can cause environmental
P pollution, which can lead to eutrophication [4,5].

In some cases, soils can suffer the simultaneous application of P (i.e., by fertilization) and As
(i.e., by spreading of pesticides), causing potential competition for adsorption sites, which could
be very relevant [6–8]. In this regard, enhanced risks of soil and water pollution could take place
if phosphate competition inhibits arsenic sorption and/or causes arsenic release from previously
occupied sorption sites.

Previous publications have studied As retention/release on soils and various sorbent
materials [9–11], and other studies have focused on P retention/release [12–16]. Recent works have
also evaluated different sorbent materials as regards the influence of the simultaneous presence of
two or more anions -including arsenate and phosphate- on its respective sorption results [17–20].
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However, phosphate/arsenate competitive sorption has not yet been studied in many soils.
In addition, the simultaneous phosphate/arsenate retention potential, as well as characteristics
corresponding to competition for sorption sites, are not yet known for many sorbent materials.

In view of that, in this work we study As(V) and P competitive sorption on different soils
and materials, concretely a forest soil, a vineyard soil, a pyritic material, a granitic material (all of
them being soils and/or degraded environments that could receive the simultaneous application
of P fertilization and As-based pesticides), coarse and fine mussel shell, calcinated mussel shell
ash, pine sawdust, slate processing fines (all of these materials being by-products that could act
as bio-sorbents, especially interesting if having the potential of efficiently removing phosphate and
arsenate simultaneously). The results could be used to program appropriate management practices
for these soils, as well as the correct recycling of the studied by-products as bio-sorbents, using them
when justified in solid or liquid media where both pollutants are present simultaneously.

2. Material and Methods

2.1. Materials

The materials used were a forest soil, a vineyard soil, pyritic material, granitic material, finely
(<1 mm) and coarsely (0.5–3 mm) ground mussel shell, calcinated mussel shell ash, pine sawdust and
slate processing fines. Most of those materials were previously described by Seco-Reigosa et al. [21].
Additionally, Osorio-López et al. [22] described the vineyard soil, Seco-Reigosa et al. [23] described
the mussel shell ashes, Otero et al. [24] described the pyritic material and the forest soil, and,
finally, Seco-Reigosa et al. [25] described the granitic material. In these previous works we studied
sorption kinetics, as well as the fitting to isotherm adsorption models, the effects of factors such as
concentration, pH, and some competitive anions, and also fractionation and the effect of incubation
time on sorption of As(V), Cr(VI) and/or Hg(II). However, none of these previous works have studied
P and As(V) competition for sorption sites, which is the aim of the present work.

The forest soil samples corresponded to an A horizon in a soil developed over granitic rocks
in the vicinity of the Alcoa aluminum factory (San Cibrao, Lugo Province, Spain), with dominance
of Eucalyptus globulus as tree species. The vineyard soil was sampled in Sober (Lugo Province,
Spain). The pyritic material was from a copper mine spoil (Touro, A Coruña Province, Spain). The
granitic material was from Santa Cristina (Ribadavia, Ourense Province, Spain), and was similar
to a C horizon derived from a rocky substrate, nowadays exposed to the atmosphere after the
elimination of the upper horizons. The finely and coarsely crushed mussel shells were from the
Abonomar S.L. factory (A Illa de Arousa, Pontevedra Province, Spain). Mussel shell ash was
from Calizamar S.L. (Boiro, A Coruña Province, Spain). Pine-sawdust was a commercial product
from Vitakraft (Las Rozas, Spain), sold in the market. The slate processing fines were from the
slate-processing enterprise Europizarras S.L. (A Fonsagrada, Lugo Province, Spain).

The forest and vineyard soils, as well as the pyritic and granitic materials, were sampled in a
zigzag manner (0–20 cm depth), with 10 subsamples taken to perform each final composite sample.
These samples were transported to the laboratory to be air dried and sieved through 2 mm. Finally,
chemical determinations were carried out on the <2 mm fraction. Determinations were performed in
triplicate on all materials.
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Table 1. General characteristics of the soils and the sorbent materials (average values for 3 replicates, with coefficients of variation always <5%).

Parameter Forest Soil Vineyard Soil Pyritic Material Granitic Material Coarse Shell Fine Shell Shell Ash Pine-Sawdust Slate Fines

C (%) 4.22 2.94 0.26 0.11 12.67 11.43 13.21 46.13 0.2
N (%) 0.33 0.23 0.04 0.04 0.36 0.21 1.13 0.03 0.02

pHwater 5.65 4.48 2.97 5.72 9.11 9.39 12.54 4.91 8.61
Cae (cmol¨ kg´1) 4.37 1.78 0.36 0.18 12.64 24.75 39.27 5.39 4.31
Mge (cmol¨ kg´1) 0.66 0.24 0.29 0.13 0.58 0.72 7.47 1.37 0.31
Nae (cmol¨ kg´1) 0.33 0.14 0.14 0.27 5.24 4.37 19.92 0.66 0.63
Ke (cmol¨ kg´1) 0.60 0.83 0.24 0.31 0.31 0.38 2.61 1.55 0.31
Ale (cmol¨ kg´1) 1.92 2.28 2.86 1.63 0.04 0.03 0 0.05 0.01

CICe (cmol¨ kg´1) 7.88 5.27 3.89 2.53 18.82 30.25 69.28 9.02 5.57
POlsen (mg¨ kg´1) 28.80 147.64 8.80 2.56 23.21 54.17 534.6 11.47 0.93

PT (mg¨ kg´1) 423.9 679.3 606.3 88.62 186.5 101.5 1617 88.04 661.3
CaT (mg¨ kg´1) 708.5 607.1 603 <0.01 298,085 280,168 247,859 8088 2810
MgT (mg¨ kg´1) 830.5 5003 8384 355 1020 980.6 5286 164.4 11,797
NaT (mg¨ kg´1) 515.1 297.6 412 102 5508 5173 8074 98.35 53.72
KT (mg¨ kg´1) 1544 5441 3186 1434 80.57 202.1 896 540.7 991.3
AsT (mg¨ kg´1) 4.18 3.41 7 3 0.48 1.12 1.71 0.39 3.1
CdT (mg¨ kg´1) 0.43 0.14 0.08 <0.001 0.02 0.07 63.09 50.82 95.18
CrT (mg¨ kg´1) 18.35 41.44 99 3 1.32 4.51 4596 234.2 54,010
CuT (mg¨ kg´1) 15.72 521.1 773 7 3.20 6.72 31.75 14.87 30.95
NiT (mg¨ kg´1) 10.69 21.73 5 1 5.64 8.16 3421 260.6 24,737
ZnT (mg¨ kg´1) 36.74 49.57 58 18 7.71 7.66 18.75 0 36.89
MnT (mg¨ kg´1) 92.99 305.4 296 24 5.70 33.75 18.67 5.19 28.46
AlT (mg¨ kg´1) 22,676 25,664 9624 5981 93.89 433.2 3421 260.7 24,737
FeT (mg¨ kg´1) 9486 21,284 135,157 3505 170.37 1855 4596 234.2 54,010
Alo (mg¨ kg´1) 4275 2003 563 1425 85.00 178.3 1733 112.5 730.6
Feo (mg¨ kg´1) 2333 1239 41,860 224 42.67 171.0 1659 15.62 1256

Xe: exchangeable concentration of the element; XT: total concentration of the element; Alo, Feo: extracted with ammonium oxalate.
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2.2. Methods

2.2.1. Characterization of the Materials Used

C and N were measured on 5 g samples using an elemental Tru Spec CHNS auto-analyzer
(LECO Corporation, St. Joseph, MI USA) [26]. A pH-meter (model 2001, Crison, L’Hospitalet de
Llobregat, Barcelona, Spain) was used to measure pH in water (10 g of solid sample, with solid: liquid
relation 1:2.5) [27]. A 1 M solution NH4Cl was used on 5 g samples to displace the exchangeable
cations, then Ca, Mg and Al were quantified by atomic absorption spectroscopy, and Na and K by
atomic emission spectroscopy (AAnalyst 200, Perkin Elmer, Boston, MA, USA) [28]; the effective
cationic exchange capacity (eCEC) was calculated as the sum of all these cations [29]. Available P
was determined as per Olsen and Sommers [30] using 5 g samples. Total concentration of P was
determined by means of UV-visible spectroscopy (UV-1201, Shimadzu, Kioto, Japan) after nitric acid
(65%) microwave assisted digestion on 1 g samples [31]. Total concentrations of Na, K, Ca, Mg, Al,
Fe, Mn, as well as As, Cd, Cr, Cu, Ni and Zn, were determined using ICP-mass spectrometry (820-NS,
Varian, Palo Alto, CA, USA), after nitric acid (65%) microwave assisted digestion on 1 g samples [32].
Ammonium oxalate solutions were used to obtain total non-crystalline Al and Fe (Alo, Feo) from 1 g
samples [33]. All trials were performed by triplicate. Table 1 shows the results corresponding to the
chemical characterization of the materials assayed.

2.2.2. As(V) and P Competitive Sorption

Triplicate samples of each material were added with the same P concentration (3 mmol¨ L´1) in
all cases, and, simultaneously, different As(V) concentrations (0, 0.5, 1.5, 3 and 6 mmol¨ L´1) were also
added. In parallel, using other triplicate samples of the materials, each one was added with the same
As(V) concentration in all cases (3 mmol¨ L´1), and, simultaneously, different P concentrations (0, 0.5,
1.5, 3 and 6 mmol¨ L´1) were also added.

In all cases, 3 g of each solid sample (<2 mm fraction) were added with 30 mL of NaNO3

0.01 M dissolutions containing the concentrations of As(V) and P indicated above. The resulting
suspensions were shaken for 24 h, centrifuged at 4000 rpm (6167ˆ g) for 15 min, and finally filtered
using acid-washed paper. In the equilibrium dissolutions, P was determined by means of UV-visible
spectroscopy (UV-1201, Shimadzu) [31], and As was quantified by means of ICP-mass spectrometry
(820-NS, Varian). Sorbed As and P were calculated as the difference between added As and P, and As
and P remaining in the equilibrium solution. As and P were determined by triplicate in all samples.

3. Results

3.1. Sorbed As When a Constant P Concentration and Increasing As Concentrations Are Added, and Sorbed
P When a Constant As Concentration and Increasing P Concentrations Are Added

Figure 1 shows sorbed As (or sorbed P) when a constant P (or As) concentration (3 mmol¨ L´1)
and increasing As (or P) concentrations (0 to 6 mmol¨ L´1) are added to the various soils and sorbent
materials. The results indicate that sorption was higher for P than for As in the case of a group of
materials: both soils, granitic material, fine and coarse mussel shell, sawdust and slate fines.

Similarly, As sorption progressively decreased as a function of the increasing P concentration
added, and, again, sorption was higher for P than for As when the added concentration was
coincident for both elements (3 mmol¨ L´1). These results indicate that As and P competed for
sorption sites in that group of materials, and that affinity was higher for P than for As. Another
group of materials was constituted by the pyritic material and mussel shell ash, differing from the
previous group in the fact that both sorbents exhibited similar affinity for As and P.
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Figure 1. Sorbed As (empty green squares) and sorbed P (filled black squares) when added P is
3 mmol¨ L´1 and added As is increased from 0 to 6 mmol¨ L´1. Sorbed As (empty blue circles)
and sorbed P (filled red circles) when added As is 3 mmol¨ L´1 and added P is increased from 0
to 6 mmol¨ L´1. (a) forest soil; (b) vineyard soil; (c) pyritic material; (d) granitic material; (e) coarse
shell; (f) fine shell; (g) shell ash; (h) pine-sawdust; (i) slate fines.

3.2. As and P Sorbed in the Absence or in the Presence of Each Other

Figure 2 shows percentage As sorbed in absence of P and in presence of 6 mmol P L´1, with
3 mmol As(V) L´1 added to the various soils and sorbent materials in both cases.
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6 mmol As L−1, with a concentration of 3 mmol P L−1 being added to the various soils and sorbent 

materials in all cases. When 6 mmol As L−1 were added, P sorption decreased 80% in the case of fine 

Figure 2. Sorbed As (%) when a concentration of 3 mmol As(V) L´1 is added, showing results in
absence of P and in presence of 6 mmol P L´1.

When 6 mmol¨ P¨ L´1 were added, the first group of materials previously commented (both soils,
granitic material, both kinds of mussel shell, sawdust and slate fines) suffered a marked decrease in
As sorption, up to near-zero values, making evident the importance of competition between both
elements. However, P addition did not cause a relevant effect on As sorption on the pyritic material,
whereas a more pronounced decrease in As sorption was detected in the case of mussel shell ash.
Any case, As sorption was clearly higher on the pyritic material and mussel shell ash, as compared
to the first group of materials.
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Figure 3. Sorbed P (%) when a concentration of 3 mmol P L´1 is added, showing results in absence of
As and in presence of 6 mmol As L´1.

Figure 3 shows percentage P sorbed, comparing results in absence of As and in presence of
6 mmol As L´1, with a concentration of 3 mmol P L´1 being added to the various soils and sorbent
materials in all cases. When 6 mmol As L´1 were added, P sorption decreased 80% in the case of fine
mussel shell, and more than 50% in coarse mussel shell, both soils, granitic material and slate fines,
whereas the decrease was not higher than 20% in the pyritic material and mussel shell ash.

4. Discussion

4.1. As and P Competition

Previous studies found the existence of competitive interactions between arsenate and
phosphate [34,35], which were justified by the fact that both anions have similar chemical
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characteristics and affinity for protons (pKa values 7.0 and 7.2 for arsenate and phosphate,
respectively) [36]. Concretely, both anions have high chemical affinity for Fe and Al oxides [37–40],
and for clay minerals [41].

Regarding competitive trials, Violante and Pigna [42] found lower sorption for AsO4
3´ than

for PO4
3´ in organic-matter-rich soils, kaolinite, halloysite and non-crystalline Al minerals, thus

being coincident with the results corresponding to some of our materials: both soils and the granitic
material. Smith et al. [43] found that the presence of 0.16 mmol P L´1 greatly decreased As(V)
sorption by soils containing low amounts of Fe oxides, indicating competition for sorption sites,
but the presence of a similar amount of P had little effect on As(V) adsorbed by soils with high
Fe content, although As(V) sorption substantially decreased when P concentration was increased to
3.2 mmol¨ L´1 in selected soils.

Sø et al. [35] showed that arsenate sorption on calcite was clearly decreased in presence of
phosphate, whereas phosphate sorption was just slightly decreased by the presence of arsenate, which
is coincident with the results of just one of our materials: mussel shell (a calcite-rich material). This
behavior can be due to a better fitting for PO4

3´ than for AsO4
3´ on the surface of calcite [44–46].

It is especially relevant the fact that our pyritic material (rich in Fe oxides) and our mussel shell
ash showed high sorption potential for both anions, with very low competitive effect between them.
Hongshao and Stanforth [37] found similar results using goethite, and considered that the cause was
that both anions have similar binding energy on that material. Thus, the fact that our pyritic material
and shell ash have high affinity for As and P could be of great importance, since these materials could
be useful to treat polluted media where both contaminants are present, which was not previously
postulated for these sorbents.

Regarding P retention, authors such as Buckingham et al. [15], Hinsinger [47], and
Carreira et al. [48] consider that calcium carbonate and Fe and Al oxides play an important role
on P sorption, and it is relevant that those chemical compounds are present in various materials
assayed in this work. P sorption on the pyritic material can be due to its high Fe oxy-hydroxides
(Feo) content (Table 1), taking into account that these Fe oxy-hydroxides have positively charged
surfaces at acid pH values, thus electrostatically binding to P anions. Another retention mechanism
that can take place is precipitation, when phosphate interacts with Al from the exchange complex
in the acid environment prevailing. Regarding P sorption on mussel shell ash, its alkaline pH (9.4)
causes that the dominant P-species is HPO4

2´ [49]; in addition, shell ash contains Ca, Fe, Na and K
oxides and carbonates [21], facilitating precipitation of calcium carbonate, which can be transformed
to more stable hydroxy-apatite [50]; another P-retention mechanism can be P sorption on the surface
of calcium carbonate [51], and, finally, shell ash has high content of non-crystalline Fe and Al minerals
(Table 1), negatively charged at alkaline pH values, which could facilitate phosphate sorption by
cationic bridges, as previously found for As anions [21].

In the case of As, the high retention that took place on our pyritic material can be in relation
with the dominance of H2AsO4

´ as As(V) species in acid environments [52], which can be sorbed
on non-crystalline minerals positively charged at that pH. Our mussel shell ash also showed high As
retention potential, although its pH was alkaline (9.4), situation where the dominant As(V) species is
HAsO4

2´ [52], and where the non-crystalline minerals are not positively charged. But this kind of
ash derive from calcination of mussel shell, process that causes partial transformations of carbonates
to oxides, which have been associated to As sorption [53]. As previously noted, mussel shell ash
also contains remarkable concentrations of Fe and Al non-crystalline minerals (Table 1), negatively
charged at alkaline pH values, which can also facilitate As binding through cationic bridges.

It must be taken into account that the experiments here presented were conducted at fixed pH
values for each individual soil or sorbent material. Bearing in mind that the number of available
sorption sites is pH dependent, it is clear that the role of pH is not elucidated in this study, but it may
be significant, as previously shown for these materials in the case of As(V), Cr(VI) and Hg(II) [21–25].
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4.2. Implications of the Study

Competitive As(V) and P sorption results found for the soils and sorbent materials assayed can
be used to correctly program their management and recycling. It can be especially relevant that the
pyritic material and mussel shell ash studied have high affinity for As and P, making feasible its
utilizations to treat polluted media where both contaminants are present.

5. Conclusions

We used batch-type experiments to investigate competitive adsorption of As(V) and P on two
soils and various by-products and waste materials that were not previously characterized in this
regard. Both soils, the granitic material, slate fines, fine and coarse mussel shell, and pine sawdust,
showed marked As/P competition, and higher affinity for P, whereas affinity was similar for As and
P in the case of the pyritic material and mussel shell ash, which showed high retention capacities.
These results could be used in the design of treatment systems aimed to achieve As and P removal
in polluted media where both contaminants are present, and are especially relevant and useful in the
case of the pyritic material and mussel shell ash.
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