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Abstract: The increase and the complexity of data caused by the uncertain environment is 

today’s reality. In order to identify water quality effectively and reliably, this paper presents 

a modified fast clustering algorithm for water quality analysis. The algorithm has adopted  

a varying weights K-means cluster algorithm to analyze water monitoring data. The varying 

weights scheme was the best weighting indicator selected by a modified indicator weight 

self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new 

clustering algorithm avoids the margin of the iteration not being calculated in some cases. 

With the fast clustering analysis, we can identify the quality of water samples. The algorithm 

is applied in water quality analysis of the Haihe River (China) data obtained by the 

monitoring network over a period of eight years (2006–2013) with four indicators at seven 

different sites (2078 samples). Both the theoretical and simulated results demonstrate that 

the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, 

the algorithm can be applied to more complex data matrices with high dimensionality. 

Keywords: water classification; indicator weight; local optimization 

 

OPEN ACCESS



Int. J. Environ. Res. Public Health 2015, 12 14401 

 

 

1. Introduction 

The evaluation of water quality is essentially a classification problem [1]. Due to the fact that current 

water quality assessment standards are not uniform, research on unsupervised methods is quite active. 

There are two common methods of unsupervised classification, namely, cluster analysis (CA),  

specially hierarchical cluster analysis (HCA), and principal component analysis (PCA). These methods 

have been widely used in water quality management [2–6], but owing to the increase and the complexity 

of data in the water environment, water quality evaluation using these methods faces much pressure in 

data handling. Currently, the key technologies for large data analysis are K-means clustering,  

fuzzy C-means clustering, fuzzy logic, evolutionary algorithms, and so forth [7,8]. In K-means 

clustering, the Euclidean distances with equal weights method is widely used [8–10]. Recently, some 

research has focused on using the Euclidean distance with varying weights. In fact, in the field of water 

quality, there are several means to determine weights. The variance of each indicator can stand for the 

weight of the indicator [11]. Weights have been calculated by the superscale, which is the ratio of the 

value of every indicator at each monitoring point over the corresponding water quality standard [12,13]. 

Considering the difficulty of the fuzzy synthetic evaluation method in calculation of the multiple factors 

and the lack of knowledge about the relationship among evaluated objects, a new weight evaluation 

process using an entropy method was introduced [14]. The F statistics of water samples was normalized 

as the weight of fuzzy comprehensive evaluation for determining the source of water inrush in a coal 

mine [15]. Based on use of the membership functions and coefficient of variation as the weights,  

four fuzzy similarity measures were used to classify water samples of the Haihe River into the proper 

water quality standard ranks [16]. Indicator weighting can be considered as the generalization of 

indicator selection since it assigns a proper weight value to each indicator instead of giving either one, to 

retained indicators, or zero, to eliminated indicators [17]. In other words, the objective of indicator 

selection is also achieved by selecting the indicators that have higher weights from the indicator 

weighting process. In short, the purpose of indicator weighting for clustering is to assign proper weight 

values for all indicators according to their importance in the clustering quality. Although a great deal of 

research about the selection of weights has been done, there are few studies in the field on searching the 

local optimization for the weights. Improved K-means clustering algorithms, by an elegant and natural 

generalization of Fishers discriminant analysis to select the best indicator weighting, have been 

proposed [18–20]. 

In this study, a modified indicator weight self-adjustment algorithm based on K-means was used, 

incorporating the classification of the water quality via searching for local optimization of the weights, 

whereby the quality of clustering was improved. Then all monitoring data were classified into 

reasonable ranks. 

2. Materials and Methods 

2.1. Dataset 

The Haihe River is the biggest river system in North China and includes all rivers flowing into  

the Bohai Sea. The east coastline of the watershed extends from Shanhaiguan to the old Yellow  

River estuary, and the total area of the watershed is about 318,200 km2. The main stream runs through 
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Hebei Province, Beijing City, Tianjin City and Shandong Province. The location of the river in China 

and the location of the monitoring stations are illustrated in Figure 1. The dataset from seven water 

quality monitoring stations on the Haihe River (Yanhecheng, Gubeikou, Gangnanshuiku, Guoheqiao, 

Sanchakou, Bahaoqiao and Chenggouwan), comprising four water quality indicators monitored weekly 

over eight years (2006–2013), was obtained from the Ministry of Environmental Protection of China. 

There were 2078 samples in all after eliminating unreasonable data and data worse than grade V. 

Samples in which one of the indicators exceeded the standard of grade V (i.e., grade VI) were not 

included in the analysis because most data worse than grade V were far from the boundaries and could be 

considered as outliers from a statistical point of view and would affect cluster quality. The available 

water quality indicators included pH, dissolved oxygen (DO), chemical oxygen demand (COD) and 

ammonia nitrogen (NH3-N). The surface water environmental quality standards (GB3838-2002) for DO, 

COD and NH3-N are listed in Table 1. The boundary values of DO, COD and NH3-N defined in Table 1 

and the sample mean of pH were defined as original K cluster centroid. The descriptive statistics are 

summarized in Table 2. There are five grades in GB3838-2002 omitting grade VI. 

 

Figure 1. Location of the Heihe River in China and location of the monitoring stations. 

Table 1. Boundary values of some indicators in the GB3838-2002 water quality standard. 

Indicator I II III IV V 

DO (mg/L) 7.5 6 5 3 2 
COD (mg/L) 2 4 6 10 15 

NH3-N (mg/L)  0.15 0.5 1 1.5 2 

Table 2. Descriptive statistics of water quality indicators. 

Indicator Mean SD SE Minimum Maximum 

pH 8.07 0.43 0.01 6.34 9.35 
DO (mg/L) 9.02 2.83 0.06 2.02 25.5 

COD (mg/L) 3.51 2.40 0.05 0.2 15 
NH3-N (mg/L)  0.40 0.44 0.01 0.01 2 
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2.2. Dataset Treatment 

In the Knowledge Discovery in Databases (KDD) process, data cleaning and preprocessing is an 

important step before choosing the data mining algorithms and data mining. Data cleaning and 

preprocessing includes basic operations, such as deciding on strategies for appropriately handling 

missing data fields, removing noise or outliers [21]. 

For missing data, ignoring the tuple is usually done when the class label is missing. It is not effective 

when the percentage of missing values per attribute varies considerably [22]. In this case there were only 

18 missing tuples, so they were ignored. 

In all normal distributions, the range μ ± 3σ includes nearly all cases, where μ denotes mean and  

σ denotes standard deviation. After z-score normalization, values higher than 3 or lower than −3 are 

outliers and they were deleted [22]. 
Most multivariate statistical methods require variables to conform to the normal distribution, thus, the 

normality of the distribution of each indicator was checked by analyzing kurtosis and skewness index 

before multivariate statistical analysis. In all cases, the variable distribution was far from normal [11,23]. 

The original data demonstrated that kurtosis values range from 0.268 to 25.118 and skewness value 

range from −0.343 to 3.985, indicating that the variable distribution was far from normal with 95% 

confidence. Since most of kurtosis and skewness values were far from zero, the original data were 

transformed in the form ′ = 10x log x（ ）[4,23]. After log- transformation, the kurtosis and skewness values 

ranged from −2.380 to 0.092 and 0.025 to 14.893, respectively. In the case of CA, all log-transformed 

variables were also z-scale standardized (the mean and variance were set to zero and one,  

respectively) to minimize the effects of different units and variance of variables and to render the data  

dimensionless [3,24]. 

2.3. Modified Indicator Weight Self-Adjustment K-Means Algorithm (MIWAS-K-Means) 

Clustering is a fundamental technique of unsupervised learning in statistics and machine learning [25]. 

Clustering is generally used to find groups of similar items in a set of unlabeled data. How to select the 
best indicator weighting is a crucial question. Let { }1 m MX x , x , x=    be a data set with M data objects 

and { }1=  n NF f , f , f  be an indicator set with N indicators. A sample of X  can be represented as  

a data object { }1=  m m mn mNx x , x , x . The K-means algorithm partitions X  into K  clusters.  

Let { }1=  k KC C , C , C  be a set of K  clusters, coupled with a set of corresponding cluster center 

{ }1 2=   k k k kNc c , c , c , k=1 K.  In addition, kC  means the number of data objects to kC  such that 

1

K

kk
C M .

=
= 1 1 k nc (k= K ,n= N ) is defined as { }1

1

k

i i  Ck

C

k n h n k k h h h
i

c x C , C x x x , 
=

= =    

k=1 K, n=1 N.   Let 1=  n Ng ( g , ,g , ,g )  be the global center of all M data objects in the dataset, 

where ng  is defined as 
1

M

n mn
m

g x / M .
=

=   

Taking indicator weight into account, let 
1

1 0 1
=

 = = ≥ ≤ ≤ 
 


N

n n
n

W w : w ,w , n N  be a data set of all 

possible indicator weights. The weight of an indicator should reflect the importance of the indicator to 

cluster quality. Note that each indicator weighting leads to a different partitioning of the dataset. 
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Intuitively, we would like to minimize the separations within clusters and maximizing the separations 

between clusters. Hence, the objective function is (Equation (1)): 

  
 ( )

1 1

1 1 1

1 1

= =

= = =

= =

 × × ′  = =
× ×

  × ×  
  

 



 




K N

k n kn n
k n

M K N

mk n mn kn
m k n

N K

n k kn n
n k

C w d( c ,g )
S ( c,w,g )

MaximizeV(U ,c,w,g )
S(U ,c,w ) u w d( x ,c )

w C d( c ,g )

                                                          =

w
1 1 1= = =

  × ×  
  

 
N M K

n mk mn kn
n m k

u d( x ,c )

 

(1)

Subject to 1

1

0

N

n
n

n

w

w ,n=1,2, ,N
=

 =

 ≥




 

where { }
K M

mk mk mk
k 1 m 1

u 0,1 , u 1, 0< u m,
= =

∈ = <   { }mku 0,1∈  denotes the membership degree of the m-th 

sample belonging to the K-th cluster.  S(U ,c,w )  is the sum of all separations within clusters and 
′ S ( c,w,g )  is the sum of all separations between clusters. 2

mn kn mn knd( x ,c ) x c= −  is the difference 

between mx  and kc  in terms of the n-th feature nf  and 2

kn n kn nd( c ,g ) c g= −  is the difference between 

kc  and g  in terms of the n-th feature nf . 

Set
1 1= =

= ×
M K

n mk mn kn
m k

a u d( x ,c ) , 
1=

= ×
K

n k kn n
k

b C d( c ,g ) , where na  represents the sum of separations 

within clusters in terms of the n-th indicator and nb  represents the sum of separations between 

clusters in terms of the n-th indicator. Hence, Equation (1) can be rewritten as: 

  1

1

=

=

×
=

×






N

n n
n
N

n n
n

w b
MaximizeV(U ,c,w,g )

w a
 

Subject to 1

1

0

N

n
n

n

w

w ,n=1,2, ,N
=

 =

 ≥




 (2)

The model given by Equation (2) is a linear programming problem and its feasible solution is 

located at the corner points of the convex polygon bounded by the N 1+  linear constraints in 

Equation (2) [26]. By taking the corner points into Equation (2), the objective values will respective be 
1

1

 n N

n N

b bb
, ,

a a a
. The maxization of Equation (2) can occur at the corner-point l

l

b

a
when 

≥l n

l n

b b
 

a a
for ≠ n=1,2, N( l n ).  Accordingly, indicator weights in W are specified as (Equation (3)): 
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1

0
n l l n n

n

w ,  if  b a b a ;

w ,  otherwise.

= <
 =

 (3)

There are two philosophies behind the classification method. One is that each indicator contributes to 

the water quality classification. Meanwhile there is another philosophy that states that if one indicator 

exceeds the standard of a certain grade, the water immediately loses its functions belonging to lower 

grades. If for drinking water one parameter exceeds the standard, it is not suitable for drinking water any 

more, regardless the value for the other parameters. If for reclaimed water, it is suitable to use after 

disposal. From these options, we follow the first philosophy. Therefore, there is an unreasonable 

situation that the winner-take-all phenomenon makes other indicator weights becomes insignificant, 

even though they may contribute a lot to the cluster quality. A weight-adjusting procedure is combined 

with the original K-means algorithm. By increasing the weight of the indicator lw  having  

a higher l lb a  value, the indicator weights are adjusted [19]. The method is as following: 

Let 
1

1 0 1
=

 = = ≥ ≤ ≤ 
 


N

( s ) ( s ) ( s ) ( s )
n n

n

W w : w ,w , n N  be the set of the N  indicator weights at the  

s-th iteration and each indicator weight at the (s+1)-th iteration can be adjusted by adding an adjustment 
margin Δ ( s )

nw  at the s-th iteration as Equation (4): 

1 Δ+ = + ( s ) ( s ) ( s )
n n nw w w ,  n=1,2, ,N  (4)

Considering the contribution of the indicator to clustering quality, the adjustment margin Δ ( s )
nw  can 

be derived according to its ( s ) ( s )
n nb a  value at the s-th iteration as Equation (5): 

1

Δ

=

=



( s ) ( s )

( s ) n n
n N

( s ) ( s )
n n

n

b a
w ,  n=1,2, ,N

b a
 

(5)

Note that the adjusted weight in (4) needs to be normalized to a value between 0 and 1. Through the 

normalization, each adjusted indicator weight 1+( s )
nw  can be derived as (Equation (6)): 

( )1 1

2
Δ+ = + ( s ) ( s ) ( s )

n n nw w w ,  n=1,2, ,N  (6)

There is a shortcoming of this algorithm that ( s )
na  is perhaps equal to zero if all samples in a cluster 

have the same values or do not occur on an indicator, which causes Δ ( s )
nw  to not be calculated. To avoid 

the problem, an improved algorithm is proposed which introduces a constant σ  to change the 

adjustment margin as Equation (5), in order to avoid the difficulty in the computation [20]  

(Equation (7)): 

1

σΔ
σ

=

+
=

 + 


( s ) ( s )
( s ) n n
n N

( s ) ( s )
n n

n

b ( a )
w ,  n=1,2, ,N

b ( a )
 

(7)

where σ  is the average dispersion of the entire data set for all indicators. 

We note that it is an approximate method and the definition in Equation (1) is unreasonable. In this 

paper, we will propose an improved algorithm to avoid the shortcoming. Note that 

1 1= =

 × × 
 

 
K N

k n kn n
k n

C w d( c ,g )  in Equation (1) represents the separations between clusters. 
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1=  n Ng ( g , ,g , ,g )  is the global center of all M data objects in the dataset. We think that the definition 

is unreasonable and modify it as (Equation (8)):  

1 1 1

1
K K N

k n kn j n
k j n

C w d( x ,c )         k , j K ,k j.
= = =

 
× × = ≠ 

 
    (8)

where 1 1j nc (j= K ,n= N )   is defined as (Equation (9)): 

{ }1
1

j

i i  C j

C

j n l n j j l l l
i

c x C , C x x x , j=1 K, n=1 N.
=

= =      (9)

Hence, the objective function is (Equation (10)): 
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= =

 
× × 

′  = =
× ×

 
× ×
 

 








K K N

k n kn jn
k j n

M K N

mk n mn kn
m k n

K K

n k kn j n
k j

C w d( x ,c )  
S ( c,w,x )

MaximizeV(U ,c,w,x )
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 ≥


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 S(U ,c,w )  is the sum of all separations within clusters and ′ S ( c,w,x )  is the sum of all separations 

between clusters. Set 
1 1

M K

n mk mn kn
m k

a u d( x ,c ),
= =

= ×
1 1

K K

n k kn jn
k j

b C d( x ,c ).
= =

= ×  na  represents the sum of 

separations within clusters in terms of the n-th indicator and nb  represents the sum of separations 

between clusters in terms of the n-th indicator. Hence, Equation (10) can be rewritten as (Equation (11)): 
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 ≥


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 (11)

Accordingly, indicator weights in w are specified as (Equation (12)): 

1 1 2

0
n l l n n

n

w , b a b a , l , ,N  and  l n;

w , otherwise.

= < = ≠
 =


 (12)

Note that if 1< ≤ ≤l l n n l l n nb a b a , 0 b ,a ,b ,a , then − ≤ −l l n nb a b a . In fact, l l n nb ,a ,b ,a  is not in the 

interval [0,1]. Therefore, a simple normalization is used as following (Equation (13)): 
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Each indicator weight at the (s+1)-th iteration can be adjusted by adding an adjustment margin Δ ( s )
nw  

at the s-th iteration as Equation (14): 
1 Δ+ = + ( s ) ( s ) ( s )

n n nw w w ,  n=1,2, ,N  (14)

The adjustment margin Δ ( s )
nw  can be derived according to its 0 0( s ) ( s )

n nb a  value at the s-th iteration 

as Equation (15): 
0 0
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Therefore, each adjusted indicator weight 1+( s )
nw  can be derived as (Equation (16)):  
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In the whole clustering process, if any parameter was not set, the improved algorithm above updates 
the indicator weights by the accurate adjustment margin and avoids Δ ( s )

nw  not being calculated.  

The pseudo-code of modified indicator weight self-adjustment K-means algorithm named 

MIWAS-K-means is illustrated in Figure 2, the number of classes is selected as five according to 

GB3838-2002. The MIWAS-K-means algorithm repeats the assignment, update, and weight adjustment 

procedures until all elements in the object-cluster membership matrix are not changed. 

Input: a set of M objects data and each object data has N features, the number of classes, K

1: Select the boundary values of DO, COD and NH3-N defined in Table 1 and the sample mean of pH as original 

K cluster centroid.

2: Let the indicator weight of each indicator be (1/N).

3: Repeat

4: Form K clusters by assigning each data object to its closest cluster center using Equation (10).

5. Update cluster centroid in each cluster using Equation (9).

6. Calculate the adjustment margin of indicator weight for each indicator weight using Equation (15).

7. Update the indicator weight of each indicator using Equation (16).

8. Until all elements in the object-cluster membership matrix are not changed.  

Figure 2. The pseudo-code for the MIWAS-K-means algorithm 
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3. Results and Discussion 

3.1. Evaluation Measures 

Various cluster validity measures can be used to evaluate the performance of a clustering algorithm [27]. 

When the class labels of experimental data are unknown, unsupervised measures are used for the 

evaluation task. A typical and popular unsupervised measure is the Sum of Square within-cluster Error 

(SSE), shown as Equation (17): 

( )
1 1 1

M K N

mk n mn kn
m k n

Minimise S(U,c,w)= u w d( x ,c )
= = =

× ×  (17)

subject to:  

1

1

1
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, ,

1
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k
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n
n

n

u

u
   for  m=1,2, ,M; k=1,2, KN; n=1,2, N

w

w

=

=

 =


∈

 =



≥




    

SSE is especially important because the real world clustering applications seldom reveal information 

about the class labels of data. The lower the SSE value that an algorithm generates, the better the 

clustering quality of the algorithm is.  

The clustering performances for K-means and MIWAS-K-means are shown in Table 3. We note that 

the two algorithms use the same initial cluster centers. Based on the SSE measure, the performance of 

the proposed MIWAS-K-means is obviously superior to the K-means. However, as indicated in Table 3,  

the MIWAS-K-means algorithm needs more iterations to achieve computational convergence as 

compared to the K-means algorithm. 

Table 3. The performance for the two clustering algorithms. 

Clustering Algorithms K-Means MIWAS-K-Means 

SSE 899.6053 782.2792 
Number of iterations 12 18 
Final feature weights (0.25,0.25,0.25,0. 25) (0.1602,0.1978, 0.5116,0.1303) 

3.2. Weights of Features 

The MIWAS-K-means algorithm was applied to classify the water quality data of Haihe River from 

seven sites using 2078 samples collected from 2006 to 2013. Weights of indicators were determined 

through minimizing the separations within cluster and maximizing the separations between clusters.  

The weight of each indicator is shown in Table 4. From this table we can see that the weight of COD was 

the greatest among all four, so it was the most significant index that affected water quality. Number of 

times COD was in a higher grade than the other water quality indicators is 1486.  
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Table 4. Weights of indicators calculated by improved weighted K-means algorithm. 

Indicators pH DO COD NH3-N 

Weights 0.1602 0.1978 0.5116 0.1303 

In the Haihe River basin, the discharge of COD is mainly from the urban domestic sewage discharges 

and the industrial wastewater discharges. In 2005, the total population of the river basin was 0.13 billion, 

or 9.7% of the national population. The gross domestic product (GDP) of the basin area was 2575 billion 

RMB Yuan, representing approximately 14.1% of the national value. Although Beijing and Tianjin are 

developed regions, most of the cities in the basin are less developed regions. In conjunction with rapid 

population and economic growth, the basin has suffered severe water deterioration from both point and 

nonpoint source pollution. Meanwhile, the Haihe River basin is an important industrial base and high 

technology industry base in China, where the main industries are metallurgy, power, chemical, 

machinery, electronics, coal. In addition high technology industries, such as electronic information, 

biotechnology, new energy and new materials, have been developing rapidly. The proportion of high 

water consumption industry and heavy pollution industry in the whole river basin is still large.  

In the Water Pollution Prevention and Control Planning Report (2011–2015), China’s water bodies 

were divided into five classes according to their pollution status, and the basin was classified as the most 

polluted class. According to the Haihe River Basin Water Resources Bulletins announced by the Haihe 

Water Conservancy Commission (HWCC), in recent decades COD, total nitrogen (TN), and total 

phosphorous (TP) were the dominant water pollution indicators in the area based on the water quality 

reports from the basin.  

Furthermore, the weights of the parameters indicated a few significant parameters with high weights 

and non-essential parameters with low weights responsible for water quality classification. Therefore, 

the weights could determine the important parameters and reduce the number of sampling parameters, 

especially in large data set. It was essential to strengthen the monitoring accuracy of the few significant 

parameters which is useful to the optimization of regional water quality monitoring network.  

For instance, the 5-year COD reduction percentage is an essential control variable in the point source 

amount control system. In the Twelfth Five Year Plan for key river basins in China, the mandated goal 

for COD emission reduction every 5 years is 9.7%. 

3.3. Water Quality Classification  

Based on the weights obtained above, the 2078 samples were clustered into five clusters and the water 

quality level determined. Descriptive means of water quality indicators in five clusters and numbers of 

samples are listed in Table 5. Cluster 1 represents 502 records with the lowest values of COD and NH3-N 

and highest values of DO. Values of COD and NH3-N become higher and higher while value of DO 

becomes lower and lower from cluster 1 to cluster 3. The mean COD in cluster 4 was higher than the 

value in cluster 5, while the means of NH3-N in cluster 5 was higher than the value in cluster 5. It could 

be inferred that samples in cluster 4 were mainly influenced by COD emissions, while samples in cluster 

4 are mainly influenced by emissions of NH3-N. 
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Table 5. Mean values of water quality features and numbers of cases in five clusters. 

 Cl.1 Cl. 2 Cl.3 Cl.4  Cl.5 

pH 7.89 ± 0.39 8.12 ± 0.40 8.12 ± 0.44 8.3 ± 0.35 7.7 ± 0.43  
DO 9.43 ± 1.99 9.65 ± 2.40 8.75 ± 2.44 8.49 ± 2.99 3.97 ± 1.61 

COD 1.45 ± 0.33 2.38 ± 0.37 4.71 + 0.11 8.95 ± 2.25 7.20 ± 2.46 
NH3-N 0.17 ± 0.22 0.24 ± 0.28 0.54 ± 0.53 0.92 ± 0.85 1.37 ± 1.10 

Number of cases  502 700 545 194 137 

3.4. Verifying of Classification Accuracy 

Cross-validation is important in guarding against testing hypotheses suggested by the data called 
Type III errors [28]. It is a generally applicable way to predict the performance of a model on a 
validation set with computation in mathematical analysis.  

Leave-one-out cross-validation (LOOCV) involves using a single observation from the original 
sample as the validation data and the remaining observations as the training data. This process is 
repeated until each observation in the sample is used once as the validation data. 

LOOCV was applied to the data clustered by MIWAS-K-means algorithm in order to verify the 
accuracy of classification. Assignment percentages are shown in Table 6. We find that all the correct 
assignment percentages are more than 94.9%. Therefore it was inferred that the majority of the samples 
obtained an appropriate label. 

Table 6. Correct and wrong assignments obtained by LOOCV.  

 1 2 3 4 5 

1 97.4 2.6 0 0 0 
2 3.4 94.6 0 2 0 
3 0 0 96.9 2.1 1 
4 0 5 1.1 92.8 1.1 
5 0 0 2.9 3.6 93.4 

3.5. Analysis of the Pollution Sources 

Table 7 demonstrates the mean values with standard deviation of water quality indicators at the  
seven sites. The mean of DO is relatively higher and the value of COD and NH3-N is relatively lower of 
Yanhecheng, Gubeikou, Gangnanshuiku, Guoheqiao. The mean of DO is relatively lower and the value 
of COD and NH3-N is relatively higher in Sanchakou and Bahaoqiao. The mean of DO is lowest while 
the value of COD and NH3-N is highest in Chenggouwan. 

Table 7. Mean values with standard deviation of water quality indicators in 7 sites. 

 pH DO COD NH3-N 

Yanhecheng 8.22 ± 0.47 8.97 ± 1.94 3.31 ± 1.38 0.24 ± 0.18 

Gubeikou 7.91 ± 0.41 8.64 ± 1.79 2.10 ± 1.09 0.19 ± 0.10 

Gangnanshuiku 7.91 ± 0.29 9.74 ± 1.45 1.75 ± 0.30 0.07 ± 0.04 

Guoheqiao 8.18 ± 0.39 10.3 ± 3.04 2.56 ± 0.81 0.31 ± 0.17 

Sanchakou 8.19 ± 0.45 8.66 ± 3.7 6.95 ± 2.65 0.83 ± 0.70 

Bahaoqiao 7.88 ± 0.40 7.30 ± 1.81 4.54 ± 1.39 1.11 ± 0.79 

Chenggouwan 8.15 ± 0.46 4.22 ± 3.33 10.1 ± 3.38 1.92 ± 1.52 
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Table 8 shows the number of observations in each cluster of the seven monitoring sites. Samples of 

Gangnanshuiku are all classified into cluster 1 and cluster 2. The majority of samples in Gubeikou is 

classified into cluster 1 and cluster 2. Most of the observations in Yanhecheng and Guoheqiao are 

classified into clusters 2 and 3. Most of observations in Bahaoqiao are classified into cluster 3. Furthermore, 

most of the observations from Sanchakou and Chenggouwan are classified into clusters 4 and 5. 

Table 8. Number of observations in each cluster of the seven monitoring sites. 

 Sum Cl.1 Cl.2 Cl.3 Cl.4 Cl.5 

Yanhecheng 353 32 150 155 14 2 

Gubeikou 372 160 166 42 2 2 

Gangnanshuiku 354 238 116 0 0 0 

Guoheqiao 392 68 240 82 1 1 

Sanchakou 326 0 9 102 143 72 

Bahaoqiao 238 4 19 163 23 29 

Chenggouwan 43 0 0 1 11 31 

Therefore, we classified the seven sampling sites into four groups (A, B, C, and D). Group A 

consisted of Gangnanshuiku and Gubeikou. Group B consisted of Yanhecheng and Guoheqiao. Group C 

consisted of Bahaoqiao. Group D consisted of Sanchakou and Chenggouwan. In group A, Gubeikou and 

Gangnanshuiku were located near the Miyun reservoir and Gangnan reservoir, respectively. The two 

reservoirs are the major drinking water headwater sites of the capital Beijing and the provincial capital of 

Shijiazhuang. They were relatively far from pollution sources and had a better protection of water 

resources. In group B, Yanhecheng was located at the exit of the Guanting reservoir near Beijing.  

The water quality was improved by improving water resource protection measures and the mixing 

dilution effect of the reservoir water. Guoheqiao was located near the entrance to the Yuqiao reservoir. 

The upstream is the streamway which is leading the clean Luan river into Tianjin. The site in group C 

was located near the entrance to the Guanting reservoir which is close to pollution sources. Zhangjiakou 

is located in the upper reaches of the reservoir and is an industrial base in North China, with more than 

10 thousand large manufacturing sites. Industrial effluent without appropriate treatment is directly 

discharged into the river. In addition, the slow flow caused by a large bend at the entrance leads to 

precipitation of pollutants at the site. Sites in group D are all located near unsewered areas, and there are 

many small paper mills and breweries along the river, therefore the water quality was easily influenced 

by wastewater from agricultural irrigation and household upstream and industrial effluent. 

4. Conclusions 

In this paper, a modified varying weights K-means cluster algorithm is proposed to classify the water 

quality in the Haihe River in China. The new algorithm avoids the margin of the iteration not being 

calculated in some cases and improves the efficiency of data processing. Simulation results show that the 

algorithm can efficiently and reliably analyze the discrimination of water quality in the Haihe River and 

determine the most significant indexes that affect water quality. It improves the efficiency of data 

processing in Haihe River water quality testing, and provides a reliable scientific basis for water 

pollution control in the Haihe River. The algorithm can be applied not only to large data analysis and 

processing, but also provides some guidance for others area in the large data processing field. 
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