
Int. J. Environ. Res. Public Health 2015, 12, 12776-12791; doi:10.3390/ijerph121012776
OPEN ACCESS

International Journal of
Environmental Research and

Public Health
ISSN 1660-4601

www.mdpi.com/journal/ijerph

Article

Towards Investigating Global Warming Impact on Human
Health Using Derivatives of Photoplethysmogram Signals
Mohamed Elgendi 1,2,*, Ian Norton 3, Matt Brearley 3, Richard R. Fletcher 4, Derek Abbott 5,
Nigel H. Lovell 6 and Dale Schuurmans 2

1 Electrical and Computer Engineering in Medicine Group, University of British Columbia and BC
Children’s Hospital, Vancouver, BC V6H 3N1, Canada

2 Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada;
E-Mail: daes@ualberta.ca

3 National Critical Care and Trauma Response Centre, Darwin, NT 0810, Australia;
E-Mails: nortoni@who.int (I.N.); matt.brearley@nt.gov.au (M.B.)

4 D-Lab, Massachusetts Institute of Technology, Boston, MA 02139, USA;
E-Mail: fletcher@media.mit.edu

5 School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, SA 5005,
Australia; E-Mail: derek.abbott@adelaide.edu.au

6 Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia;
E-Mail: n.lovell@unsw.edu.au

* Author to whom correspondence should be addressed; E-Mail: moe.elgendi@gmail.com;
Tel.:+1-604-600-4139.

Academic Editor: Paul B. Tchounwou

Received: 11 August 2015 / Accepted: 8 October 2015 / Published: 14 October 2015

Abstract: Recent clinical studies show that the contour of the photoplethysmogram (PPG)
wave contains valuable information for characterizing cardiovascular activity. However,
analyzing the PPG wave contour is difficult; therefore, researchers have applied first or
higher order derivatives to emphasize and conveniently quantify subtle changes in the filtered
PPG contour. Our hypothesis is that analyzing the whole PPG recording rather than each
PPG wave contour or on a beat-by-beat basis can detect heat-stressed subjects and that,
consequently, we will be able to investigate the impact of global warming on human health.
Here, we explore the most suitable derivative order for heat stress assessment based on the
energy and entropy of the whole PPG recording. The results of our study indicate that the use
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of the entropy of the seventh derivative of the filtered PPG signal shows promising results
in detecting heat stress using 20-second recordings, with an overall accuracy of 71.6%.
Moreover, the combination of the entropy of the seventh derivative of the filtered PPG signal
with the root mean square of successive differences, or RMSSD (a traditional heart rate
variability index of heat stress), improved the detection of heat stress to 88.9% accuracy.

Keywords: exercise; hot environment; affordable healthcare; photoplethysmography

1. Introduction

According to the Intergovernmental Panel on Climatic Change (IPCC), accelerated global warming
is predicted due to increasing anthropogenic greenhouse gas emissions. There is a 3% increase in the
death rates per 1 ◦C increase in temperature for all causes of mortality for hot and arid regions where the
temperature of the warmest months exceeds 30 ◦C [1]. Climate change is anticipated to have a long-term
impact on human health. The spread of heart diseases may contribute to high mortality, along with
heat-related deaths. The early detection of heat stress-related diseases in individuals who are unaware
of their existence is thus important. The earlier complications are detected in patients with known heart
disease who are not yet symptomatic, the more successful the treatment [2].

The literature identifies two main heat stress indices: body core temperature (BCT) and heart rate
variability (HRV). In terms of BCT, in 2002, the National Athletic Trainers’ Association recommended
measuring rectal temperature as a standard criterion for recognizing exertional heat stroke [3]. Five
years later, Casa et al. [4] found that the gastrointestinal temperature was the only measurement that
accurately assessed BCT. Moreover, they found that oral, axillary, aural, temporal and field forehead
temperatures were significantly different from the rectal temperature and, therefore, are considered
invalid for assessing hyperthermia in individuals exercising outdoors in the heat.

Regarding HRV, recent studies [5–7] have reported that when subjects are continuously subjected
to dry heat, the heat induces a stress response indicated by a significantly increased heart rate (HR).
This increase in HR appears to occur via a significant reduction in parasympathetic control of the HR,
indicated by reduced HRV.

Using these two heat stress indices is not practical, as measuring the BCT has an invasive nature, and
calculating HRV requires electrocardiogram signals recorded over a long time. Therefore, there is a need
to develop an easier and non-invasive method to aid in the management of human resources engaged
in critical activities and to potentially prevent heat-related deaths. Accurate and simple-to-measure
diagnostic biosignals are desirable, such as fingertip photoplethysmogram (PPG) signals. Advances
in photoplethysmography may potentially lead to a new complementary tool for the management of
vascular heat-related diseases.

Although the clinical significance of the PPG wave contour has been investigated over many
decades [8–12], there is still a paucity of studies analyzing the PPG signal recording as a whole without
analyzing the waveforms on a beat-by-beat basis. In the literature, analyzing the PPG is traditionally
carried out on a beat-by-beat basis [13–18]; however, analyzing the PPG wave contour is difficult [19],
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as PPG signals usually contain different types of noise, such as power-line interference, low amplitude
waveforms, low-frequency baseline fluctuations and irregular heart beats [20]. Therefore, researchers
have applied the first derivative [21,22], second derivative [23–27], third derivative [28] and fourth
derivative [29] to accentuate the subtle changes in the PPG contour. In this paper, we will examine
whether the higher derivatives of unfiltered and filtered PPG signals contain useful information for heat
stress assessment.

2. Materials and Methods

2.1. Data Collection

The heat stress PPG data for this study were collected as part of a National Critical Care and Trauma
Response Centre (NCCTRC) project to assess the physiological and perceptual responses of emergency
responders to simulated chemical, biological and radiological (CBR) incidents in tropical environmental
conditions to compare the efficacy of various cooling methods. The background of the NCCTRC’s
thermal research can be found in [30]. Forty healthy, heat-acclimatized emergency responders
(30 males and 10 females) with a median ± interquartile range age of 34.0 ± 9.0 years volunteered
and provided written informed consent to participate in this study, which was approved by the Human
Research Ethics Committee of the Northern Territory Department of Health and the Menzies School
of Health Research. Participants undertook 30 min of triaging and resuscitating, transporting and
decontaminating weighted manikins while wearing Level 3 personal protective equipment, which
comprises a fully-enclosed, impermeable suit that includes boots, gloves, hood, face mask and
respirator (SE400i, S.E.A. Group, Warriewood, Australia), followed by 30 min of rest and cooling
to avoid overheating during the exercise. This protocol was repeated three times with PPG data
collected during each rest period, as shown in Figure 1. Here, PPG data were measured using a
photoplethysmography-equipped device (Salus APG, Japan) at a sampling rate of 367 Hz, with the
sensor located at the cuticle of the second digit of the left hand. Measurements were taken for 20 s
while participants were resting in a seated position. Note that monitoring PPG during exercise was not
possible due to the personal protective equipment (gloves) required to perform physical tasks.

At rest Exercise 1 Exercise 2

Cooling Phase Cooling Phase

Exercise 3

Cooling Phase

10 min 10 min 10 min 10 min

Figure 1. Measurement protocol. The duration of the whole experiment was approximately
4 h; each exercise consumed approximately 30 min, while the photoplethysmogram (PPG)
signals were collected during the 30-minute break of each exercise.

The participants were normotensive (mean systolic blood pressure (BP) of 129.3 mmHg, range
110–165 mmHg) and had no known cardiovascular, neurological or respiratory disease. The range of
systolic BP exceeds the usual normotensive range. However, the vast majority of guidelines recommend
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that hypertension be identified when systolic blood pressure exceeds 140 mmHg [31]. Therefore, based
on this, the mean systolic BP was within the normotensive range.

Prior to the experiment, the participants provided information about their physical condition. Physical
information, such as height and weight, was also measured for a reference and is summarized in
Table 1. Alcohol consumption and smoking were prohibited during 24 h and 2 h before experimentation,
respectively. For signal analysis, MATLAB 2010b (The MathWorks, Inc., Natick, MA, USA) was used.
Blood pressure measurements were conducted on the right arm using the HEM-907 (Omron Healthcare,
Kyoto, Japan) digital automatic BP monitor. We collected only one measurement; the procedure is
repeated if the BP values were extremely high or low. Note that the blood pressure monitor is checked
and calibrated annually.

Table 1. Data for the participants in this study. Here, IQR stands for interquartile range.

Characteristic Median IQR

Age (years) 34.0 9.0
Body Mass (kg) 80.2 15.9

Height (cm) 180 10
Body Mass Index (kg ·m−2) 26.2 3.8

Resting Systolic Blood Pressure (mmHg) 127.5 20.0
Resting Heart Rate (bpm) 76.0 17.5

Resting Core Temperature (◦C) 37.4 0.6

After Exercise 1 Systolic Blood Pressure (mmHg) 140.0 25.0
After Exercise 1 Heart Rate (bpm) 132.0 44.3

After Exercise 1 Core Temperature (◦C) 38.3 0.8

After Exercise 2 Systolic Blood Pressure (mmHg) 141.0 30.0
After Exercise 2 Heart Rate (bpm) 145.5 40.3

After Exercise 2 Core Temperature (◦C) 38.2 1.2

After Exercise 3 Systolic Blood Pressure (mmHg) 130.0 21.5
After Exercise 3 Heart Rate (bpm) 143.0 40.2

After Exercise 3 Core Temperature (◦C) 38.0 1.2

2.2. Body Core Temperature

An ingestible telemetric temperature sensor (CorTemp 100, HTI Technologies, Florida, MI, USA)
was used to measure BCT by transmitting a signal proportional to the temperature of the gastrointestinal
tract to a handheld receiver. Once located in the gastrointestinal tract, the thermosensitive pill is a valid
index of core temperature when referenced to rectal or esophageal temperature [32,33].

Participants ingested a core temperature pill with fluid prior to breakfast, which preceded the
commencement of data collection by approximately 4 h. This time frame was adopted to allow the
pill to empty from the stomach and enter the small intestine while minimizing the risk of the pill being
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emptied from the body prior to the completion of the study [32]. To control for the possibility of local
cooling of the telemetry pill via the ingestion of fluids and/or crushed ice, subjects were excluded
from the study if gastrointestinal temperature was less than 35.5 ◦C and/or decreased by 2 ◦C in any
5-min period during the rest phase. Note that if the pill was located in the stomach, a rapid decrease
in pill temperature would occur, exceeding the 2 ◦C/5 min change tolerated within the experiment.
If that occurred, the data for that participant were excluded from the study. Thus, we were able to
confirm non-invasively that the pills were not located in the stomach and had therefore passed through
the pyloric sphincter into the intestines.

3. Methodology

The PPG and its various derivatives define an ordered hierarchy of meaningful physiologic concepts
of blood movement. There are special names for the derivatives of position (the first derivative is called
velocity; the second derivative is called acceleration; etc.). In this study, our goal is to systematically
examine the derivatives of the PPG signal to determine the most informative derivative that can be used
for heat stress assessment. In addition, we investigate whether filtering the PPG signals potentially
improves the heat stress analysis.

3.1. Derivatives

We examine the utility of employing derivatives of the PPG signal using basic differentiation of the
signal, which is defined as follows:

Si[n] =
dS

dt
|t=nT =

1

T
(Si−1[n]− Si−1[n− 1]), (1)

where T is the sampling interval and equals the reciprocal of the sampling frequency, n is the number
of data points, i ∈ [1, 20] is the derivative step and S0 is the unfiltered PPG signal. The basic first
differentiation, shown in Equation (1), is applied recursively up to 20 times to unfiltered and filtered
PPG signals. The filtered PPG signal is the output of a second order bandpass Butterworth filter from
0.5–7 Hz of the unfiltered PPG signal, based on our previous optimization over different frequency
bands [34].

3.2. Feature Extraction

We extracted from each subject a total of 80 features (2 features× 2 signal status flags× 20 derivative
orders) at the four time points (control and three interventions), where the signal status can be either
before or after bandpass filtering. The extracted features are the normalized energy and the normalized
Shannon entropy [35], as follows:

Ej =
1

N

N∑
n=1

Sj[n]2, (2)

Pj = − 1

N

N∑
n=1

Sj[n]2 loge(Sj[n]2), (3)
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where n is the number of data points, j ∈ [0, 20] is the derivative step, E0 is the energy of the unfiltered
PPG signal (S0) and P0 is the entropy of the unfiltered PPG signal (S0).

3.3. Statistical Analysis

We calculated each time domain feature (energy or entropy) for each PPG signal recording. As we
had 40 subjects, each feature set contains 80 values. Each feature set consists of 40 values calculated
from subjects measured before the simulated heat stress induction and 40 values calculated from subjects
measured after the simulated heat stress induction. For each derivative order, we compared the values
within each feature set by applying the two-sided Wilcoxon-Mann-Whitney test, and p ≤ 0.05 was
considered significant. Because we considered all of these features simultaneously, the p-values need
to be appropriately corrected by applying Bonferroni post-correction [36]. Because we are dealing with
many different simultaneous tests (240 tests in total), it is more natural to try to control the false discovery
(false positive) rate. Therefore, we used the Holm-Bonferroni method, as it controls the false positive
rate and offers a simple test uniformly more powerful than the Bonferroni correction [37].

As the main objective of this research is to find the optimal derivative order for assessing
simulated heat stress induction, we tested four classifiers: Mahalanobis distance, linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA) and the linear support vector machine (SVM).
The classification rates were calculated using leave-one-out cross-validation. Two statistical measures
were used for the output of the LDA analysis: sensitivity (SE), which was calculated using the formula
TP/(TP+FN), and positive predictivity (PP), which was calculated using the formula TP/(TP+FP).
In these formulas, TP is the number of true positives (subjects measured after simulated heat stress
induction detected as subjects measured after simulated heat stress induction), FN is the number of
false negatives (subjects measured after simulated heat stress induction have not been detected as
subjects measured after simulated heat stress induction) and FP is the number of false positives (subjects
measured before simulated heat stress induction detected as subjects measured after simulated heat stress
induction). To compare the performance of the features given the small dataset in each classifier, we
applied the F1 score, which is defined as 2× (SE× PP)/(SE + PP). The overall accuracy (OA) is the
average of the F1 scores for all classifiers.

4. Results and Discussion

Increased HR is due to both the direct and indirect effects of heat stress. Direct effects include heated
blood perfusing the sinoatrial node of the heart, triggering a more rapid depolarization and, thus, more
contractions per minute, and indirect effects include increased cutaneous blood flow, a reduction in total
peripheral resistance without adequate compensation by other vascular beds and less blood returning to
the heart. Therefore, extra heart beats are required to maintain blood flow [38]. The HR is also increased
by the previous physical exertion. Heat stress occurs during physical exertion in the heat (heat stroke is
an acute syndrome caused by an excessive increase in BCT as a result of overloading or failure of the
thermoregulatory system during exposure to heat stress).

The core temperature data confirm that the participants experienced substantial body heat storage. We
would have seen a different HR response if we heated the participants without the use of exercise (sitting
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still in a sauna); however, that model has limited application to the assessment of heat stress in real-world
settings. Fitness plays a role in HR recovery; those who are fitter have a finer regulation of blood flow
and require fewer cardiac cycles per minute to restore the body to normal following exertion. Fitness
was a constant in this study due to the same participants being assessed during each recovery period.

It is known that when subjects are continuously subjected to dry heat, the heat induces a stress
response as indicated by a significantly increased HR [5]. This increase in HR appears to occur via
a significant reduction in parasympathetic control of the HR, indicated by the reduced root mean square
of the successive differences (RMSSD). By visual inspection in Figure 2, it is clear that the HRs are
increased after simulated heat stress induction.
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Figure 2. Analysis of the heart rate. (a) Heart rate for subjects measured before the simulated
heat stress induction (at rest (blue circles)) against those measured after the first simulated
heat stress induction (Exercise 1 (green squares)); (b) heart rate for subjects measured at
rest against those measured after the second simulated heat stress induction (Exercise 2 (red
diamond)); (c) heart rate for subjects measured at rest against those measured after the third
simulated heat stress induction (Exercise 3 (black pluses)).
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Moreover, the significant reduction of RMSSD in subjects measured after exercises, shown in
Figure 3, confirms the heat stress impact. Note that the tachycardia reflects heat stress, not exercise,
as the PPG was assessed during the rest period when BCT remained elevated, but HR had decreased.
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Figure 3. Boxplot of the root mean square of successive differences (RMSSD) of PPG
signals measured before and after simulated heat stress induction. Here, the p-value is
calculated using the paired Mann–Whitney test (p ≤ 0.05 was considered significant).

Here, the entropy and energy of different derivatives of 20-second PPG signals are calculated
for 40 subjects measured before and after simulated heat stress induction. Based on the derivative
optimization shown in Table 2, the results show that the second and third derivatives are optimal (the
lowest p-value) when they are applied to the unfiltered PPG signals to calculate the energy and entropy
features. It was not clear which derivative order is optimal for distinguishing between at rest and after
exercise, as the lowest p-value was obtained by a range of different derivative orders from 8 to 20.

To determine which derivative order is more informative for calculating the energy and entropy to
detect heat stress, we employed four classifiers: Mahalanobis distance, LDA, QDA and SVM with
leave-one-out cross-validation. The OA of the four classifiers in detecting after exercise measurements
is presented in Table 3. By applying this step, we can clearly differentiate between the derivative orders
compared to the calculation of p-values shown in Table 2. The sixth order is optimal for detecting the
heat stress using raw PPG signals, while the seventh order is optimal for detecting the heat stress using
filtered PPG signals. The highest OA of the energy and entropy of the unfiltered PPG signals is 79.1%
and 82.4%, respectively. The OA improved slightly after filtering the PPG signal to reach 84.8% and
86.2% for the energy and entropy features, respectively.
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Table 2. Feature comparison in differentiating between before and after exercise measurements. The p-value of discriminating between
before exercise (BE) and after three exercises (E1, E2 and E3) is calculated using the Mann-Whitney test. The average of the three
p-values (p̄) is given in the last column of each feature. The lowest p̄ of each feature is highlighted. Uncorrected p-values from the
Mann-Whitney test, where * and ** indicate p ≤ 0.05 and p ≤ 0.005, respectively; † indicates p-values that remain significant with a
p ≤ 0.05 after post-correction (Bonferroni-Holm, α < 0.05).

Energy-Unfiltered Entropy-Unfiltered Energy-Filtered Entropy-Filtered

Derivative p1 p2 p3 p̄ p1 p2 p3 p̄ p1 p2 p3 p̄ p1 p2 p3 p̄

Order (BE vs. E1) (BE vs. E2) (BE vs. E3) (BE vs. E1) (BE vs. E2) (BE vs. E3) (BE vs. E1) (BE vs. E2) (BE vs. E3) (BE vs. E1) (BE vs. E2) (BE vs. E3)

0 2.1×10−1 6.4×10−3∗∗† 1.1×10−2∗ 7.5×10−2 2.5×10−1 2.6×10−1 1.9×10−2∗ 1.8×10−1 1.4×10−1 8.4×10−3∗∗† 1.6×10−2∗† 5.3×10−2 1.4×10−1 8.1×10−2∗ 2.2×10−3∗∗† 7.3×10−2

1 6.1×10−1 2.9×10−1 9.6×10−1 6.2×10−1 9.7×10−1 9.0×10−2∗ 5.3×10−1 5.3×10−1 1.2×10−2∗∗† 2.1×10−4∗∗† 9.7×10−5∗∗† 4.3×10−3∗∗† 1.5×10−2∗† 1.9×10−4∗∗† 8.7×10−5∗∗† 5.1×10−3∗∗†

2 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 5.7×10−3∗∗† 1.0×10−4∗∗† 7.8×10−5∗∗† 2.0×10−3∗∗† 4.8×10−3∗∗† 6.9×10−5∗∗† 3.5×10−5∗∗† 1.6×10−3∗∗†

3 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 6.8×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.7×10−7∗∗† 4.4×10−3∗∗† 4.9×10−5∗∗† 5.2×10−5∗∗† 1.5×10−3∗∗† 4.2×10−3∗∗† 4.6×10−5∗∗† 7.3×10−5∗∗† 1.4×10−3∗∗†

4 7.3×10−7∗∗† 6.5×10−8∗∗† 6.5×10−8∗∗† 2.9×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.5×10−8∗∗† 2.9×10−7∗∗† 6.0×10−3∗∗† 5.2×10−5∗∗† 4.6×10−5∗∗† 2.0×10−3∗∗† 5.7×10−3∗∗† 6.2×10−5∗∗† 7.3×10−5∗∗† 2.0×10−3∗∗†

5 7.3×10−7∗∗† 8.2×10−8∗∗† 7.0×10−8∗∗† 2.9×10−7∗∗† 7.3×10−7∗∗† 8.2×10−8∗∗† 7.0×10−8∗∗† 2.9×10−7∗∗† 8.3×10−1 2.1×10−1 7.9×10−1 6.1×10−1 9.8×10−1 9.8×10−2∗ 4.7×10−1 5.1×10−1

6 7.8×10−7∗∗† 8.8×10−8∗∗† 7.6×10−8∗∗† 3.2×10−7∗∗† 7.8×10−7∗∗† 8.8×10−8∗∗† 7.6×10−8∗∗† 3.2×10−7∗∗† 7.3×10−7∗∗† 9.5×10−8∗∗† 8.2×10−8∗∗† 3.0×10−7∗∗† 7.3×10−7∗∗† 8.8×10−8∗∗† 7.6×10−8∗∗† 3.0×10−7∗∗†

7 7.8×10−7∗∗† 1.0×10−7∗∗† 7.6×10−8∗∗† 3.2×10−7∗∗† 7.8×10−7∗∗† 1.0×10−7∗∗† 7.6×10−8∗∗† 3.2×10−7∗∗† 7.3×10−7∗∗† 7.0×10−8∗∗† 6.1×10−8∗∗† 2.9×10−7∗∗† 7.3×10−7∗∗† 7.0×10−8∗∗† 6.1×10−8∗∗† 2.9×10−7∗∗†

8 9.0×10−7∗∗† 1.3×10−7∗∗† 9.5×10−8∗∗† 3.7×10−7∗∗† 9.7×10−7∗∗† 1.3×10−7∗∗† 1.0×10−7∗∗† 4.0×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

9 1.8×10−6∗∗† 7.6×10−7∗∗† 4.3×10−7∗∗† 1.0×10−6∗∗† 3.1×10−6∗∗† 1.4×10−6∗∗† 1.4×10−6∗∗† 2.0×10−6∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

10 1.5×10−5∗∗† 2.2×10−5∗∗† 2.2×10−5∗∗† 1.9×10−5∗∗† 8.0×10−6∗∗† 7.1×10−6∗∗† 1.1×10−6∗∗† 5.4×10−6∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

11 1.8×10−4∗∗† 1.7×10−3∗∗† 2.7×10−4∗∗† 7.0×10−4∗∗† 7.4×10−5∗∗† 4.5×10−4∗∗† 7.3×10−5∗∗† 2.0×10−4∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

12 1.9×10−3∗∗† 1.7×10−1 1.6×10−2∗ 6.4×10−2 1.9×10−3∗∗† 1.7×10−1 1.0×10−2∗ 6.2×10−2 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

13 2.5×10−2∗ 7.3×10−1 1.9×10−1 3.1×10−1 3.9×10−2∗ 4.7×10−1 2.8×10−1 2.6×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

14 1.4×10−1 1.8×10−1 7.5×10−1 3.6×10−1 1.2×10−1 2.4×10−1 5.8×10−1 3.1×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

15 4.3×10−1 5.5×10−2 6.4×10−1 3.8×10−1 3.0×10−1 6.8×10−2 7.8×10−1 3.8×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

16 7.1×10−1 2.0×10−2∗ 3.9×10−1 3.7×10−1 7.0×10−1 1.5×10−2∗ 3.8×10−1 3.6×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

17 8.2×10−1 1.2×10−2∗ 2.6×10−1 3.6×10−1 8.7×10−1 1.1×10−2∗ 2.3×10−1 3.7×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

18 8.5×10−1 1.1×10−2∗ 2.3×10−1 3.6×10−1 8.7×10−1 1.2×10−2∗ 2.2×10−1 3.6×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

19 8.6×10−1 1.2×10−2∗ 2.3×10−1 3.6×10−1 8.1×10−1 1.2×10−2∗ 2.4×10−1 3.5×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†

20 8.2×10−1 1.3×10−2∗ 2.9×10−1 3.8×10−1 8.0×10−1 1.3×10−2∗ 2.7×10−1 3.6×10−1 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗† 7.3×10−7∗∗† 6.5×10−8∗∗† 6.1×10−8∗∗† 2.8×10−7∗∗†
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Table 3. Leave-one-out heat stress classification performance on PPG-chemical, biological and radiological (CBR) responders in the
tropical condition database. Four classification methods are used in this analysis: linear discriminant analysis, quadratic discriminant
analysis and the linear support vector machine. The PPG signals were collected from 40 heat acclimatized emergency responders for 20 s
during the 10-minute break of each exercise (cf. Figure 1). To evaluate the performance of each feature, we applied the F1 score, which
is defined as 2× (SE× PP)/(SE + PP). Here, OA stands for overall accuracy (average of F1 scores for all classifiers). The highest OA
of each feature is highlighted.

Energy-Unfiltered Entropy-Unfiltered Energy-Filtered Entropy-Filtered

Order (BE vs. E1) (BE vs. E2) (BE vs. E3) OA (BE vs. E1) (BE vs. E2) (BE vs. E3) OA (BE vs. E1) (BE vs. E2) (BE vs. E3) OA (BE vs. E1) (BE vs. E2) (BE vs. E3) OA

0 63.8 51.3 63.3 59.5 56.1 66.1 51.2 57.8 66.3 60.1 67.2 64.6 58.6 67.8 60.9 62.4
1 40.3 50.6 65.8 52.2 66.6 54.6 55.2 58.8 71.1 71.0 47.3 63.1 52.4 71.2 70.0 64.5
2 80.8 83.1 68.8 77.6 67.8 86.7 87.4 80.6 73.5 73.7 86.4 77.8 87.6 74.0 73.9 78.5
3 80.8 82.6 69.2 77.6 69.3 87.0 87.4 81.2 75.1 74.6 86.3 78.7 87.6 73.7 74.1 78.5
4 80.3 83.5 70.8 78.2 70.0 86.4 88.0 81.5 76.1 75.7 85.5 79.1 87.3 74.2 73.7 78.4
5 78.8 82.2 50.7 70.6 51.8 85.3 86.7 74.6 58.5 60.0 84.2 67.6 85.9 53.6 54.3 64.6
6 77.8 80.2 79.2 79.1 80.0 82.5 84.8 82.4 81.5 81.7 83.5 82.2 85.8 84.0 84.3 84.7
7 77.4 80.1 79.5 79.0 80.4 79.1 81.2 80.2 85.9 86.4 82.0 84.8 85.2 86.7 86.8 86.2
8 75.6 77.5 80.8 78.0 81.3 74.5 76.2 77.3 86.1 86.1 78.2 83.5 79.7 87.1 87.4 84.7
9 73.5 75.8 80.8 76.7 81.3 69.8 69.8 73.6 86.1 86.1 72.4 81.6 73.6 87.7 88.0 83.1

10 69.5 69.6 80.8 73.3 81.3 60.8 62.6 68.2 86.1 86.1 66.0 79.4 68.4 87.7 88.0 81.4
11 64.1 65.3 80.8 70.1 81.3 52.1 55.6 63.0 86.1 86.1 58.4 76.9 63.9 87.7 88.0 79.9
12 56.3 57.3 80.8 64.8 81.3 45.1 44.4 56.9 86.1 86.1 53.1 75.1 50.0 87.7 88.0 75.2
13 55.6 52.8 80.8 63.1 81.3 38.6 14.4 44.8 86.1 86.1 49.7 74.0 47.0 87.7 88.0 74.2
14 50.0 49.5 80.8 60.1 81.3 55.9 55.9 64.4 86.1 86.1 45.4 72.5 46.0 87.7 88.0 73.9
15 49.2 48.6 80.8 59.5 81.3 58.1 56.9 65.4 86.1 86.1 49.9 74.1 31.4 87.7 88.0 69.0
16 47.2 46.4 80.8 58.1 81.3 58.1 57.5 65.6 86.1 86.1 55.4 75.9 55.2 87.7 88.0 77.0
17 40.5 35.6 80.8 52.3 81.3 57.4 57.5 65.4 86.1 86.1 54.8 75.7 54.8 87.7 88.0 76.8
18 31.9 34.7 80.8 49.1 81.3 57.6 57.5 65.5 86.1 86.1 54.2 75.5 54.4 87.7 88.5 76.9
19 32.3 37.2 80.8 50.1 81.3 58.0 58.0 65.7 86.1 86.4 53.0 75.2 54.4 87.1 88.2 76.6
20 39.8 39.0 80.8 53.2 81.3 58.6 58.6 66.2 86.7 86.7 53.0 75.5 53.0 86.3 87.6 75.6



Int. J. Environ. Res. Public Health 2015, 12 12786

As a general observation in Table 3, the OA significantly increased after applying the second
derivative to the PPG signals, especially the filtered PPG signals. However, the OA starts to decrease after
applying the sixth order to the raw PPG signals and after applying the seventh order to the filtered PPG
signals. The optimal feature for detecting heat stress is the entropy of the seventh derivative of filtered
PPG signals. Figure 4 reveals a significant decrease in the optimal feature for subjects measured after
exercise: the p-values for differentiating between at rest and after the three exercises were 7.2 × 10−7,
6.5 × 10−8 and 6.1 × 10−8. This effect has never been described in the literature. This new outcome
shows that the entropy of the seventh derivative of filtered PPG signals can be used to assess heat stress
without the need for measuring the HR or BCT and can be used as an indicator of heat stress tolerance.
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Figure 4. Boxplot of the optimal feature (entropy of the filtered PPG signal) of PPG signals
measured before and after simulated heat stress induction. Here, the p-value is calculated
using the paired Mann-Whitney test (p ≤ 0.05 was considered significant).

To ensure that the entropy of the seventh derivative of filtered PPG signals can be used to replace
other measures of heat stress, it is important to compare its performance with another heat stress index,
such as BCT or RMSSD. The problem is that we could not measure BCT immediately after exercise,
as a few subjects had to wait, which cooled them down a bit [34]. Therefore, we had to compare the
optimal feature with the RMSSD calculated from the PPG signals. Figure 5 shows the performance of
the RMSSD in detecting all simulated heat stress inductions. The RMSSD detected heat stress after the
first exercise with an SE of 87.5% and a PP of 58.33%, as shown in Figure 5a. The detection of heat
stress was slightly improved after Exercise 2 and Exercise 3 with an SE of 92.5% and a PP of 59.68%,
as shown in Figure 5b,c. Note that the RMSSD showed no classification improvement in detecting heat
stress after Exercise 2 and Exercise 3; the sensitivity and positive predictivity remained the same.
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Figure 5. Quadratic classification of PPG signals measured before and after the simulated
heat stress induction based on the RMSSD. Here, RMSSD stands for the square root of the
mean of the squares of the successive heartbeats intervals; SE stands for sensitivity; and PP
stands for positive predictivity. (a) At rest vs. after exercise 1; (b) at rest vs. after exercise
2; (c) at rest vs. after exercise 3. The plus signs refer to subjects measured at rest, while the
diamond signs refer to subjects measured after exercise (the simulated heat stress induction).

To maximize the heat stress detection performance, we combined the optimal feature (entropy of the
seventh derivative of filtered PPG) and the traditional HRV heat stress index (RMSSD). Figure 6 shows
the performance of the combination in detecting all simulated heat stress inductions. The combined
features detected heat stress after the first exercise with an SE of 95% and a PP of 73.08%, as shown in
Figure 6a. The detection of heat stress was slightly improved after Exercise 2 with an SE of 95% and a
PP of 88.37%, as shown in Figure 6b.
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Figure 6. Quadratic classification of PPG signals measured before and after the simulated
heat stress induction based on the optimal feature (entropy of the filtered PPG signal)
and RMSSD. Here, RMSSD stands for the square root of the mean of the squares of
the successive heartbeats intervals; SE stands for sensitivity; and PP stands for positive
predictivity. (a) At rest vs. after exercise 1; (b) at rest vs. after exercise 2; (c) at rest vs.
after exercise 3. The plus signs refer to subjects measured at rest, while the diamond signs
refer to subjects measured after exercise (the simulated heat stress induction).
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The progression of detecting heat stress continued, and the accuracy improved after Exercise 3, with
an SE of 95% and a PP of 90.48%, as shown in Figure 6c. It is clear that the use of combined features
noticeably improved the heat stress detection performance with each sequential heat stress simulation
induction stage.

It is important to emphasize that this study replicated “real-world” heat stress by simulating
emergency responder work settings. Although the participant number may seem modest, the logistics of
establishing a simulation of this size were very challenging and likely explain why there are few reports
of the use of technology to assist in the detection and management of heat stress in field settings. We
believe that the modest participant number (n = 40) ought to be considered in conjunction with the
experimental setting. A larger sample size and a more diverse dataset are needed in order to generalize
the findings of this study.

To our knowledge, there is no available PPG database containing data measured in tropical conditions
or after heat stress that would allow a more thorough assessment and comparison of the tested algorithms.
In future studies, it may be advisable to have multiple PPG systems to collect the signal immediately after
exercise. In the present study, data were collected immediately after exercise; however, some participants
may have cooled down whilst queuing for measurement. Furthermore, we used the standard definition of
entropy in our analysis to measure the randomness of the PPG morphology, regardless if the PPG signal
is noisy with high gain or fluctuations. An open question for future studies is to explore the effect of
using alternative entropic measures for this purpose.

5. Conclusions

The findings of this preliminary study indicate that heat stress can be assessed using unfiltered PPG
signals without filtering and without beat-by-beat analysis. Moreover, filtering the PPG signal before
differentiation slightly improves the heat stress assessment. The combination of RMSSD and the entropy
of the seventh derivative of the filtered PPG signal can be used to detect heat stress measurements without
the need for measuring BCT. The results of this study indicate that analysis of the whole PPG recording
without detecting beats or wave amplitudes can be a potential modality for heat stress analysis and the
identification of individuals at risk.
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