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Abstract: The Brazilian poultry industry generates large amounts of organic waste, such as 

chicken litter, which is often used in agriculture. Among the bacteria present in organic 

fertilizer are members of the Enterobacteriaceae family. The objective of this study was to 

detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic 

fertilizer, and assess the potential damage they can cause in humans due to antimicrobial 

resistance. The presence of DEC pathotypes and phylogenetic groups were detected by 

multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm 

formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains 

from 64 E. coli were isolated. Among these, four strains were classified as 

enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 

strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. 

The low number of isolated strains was most likely due to the composting process, which 

reduces the number of microorganisms. These strains were able to adhere to HEp-2 and 

HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed 

antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human 

E. coli. These results showed that DEC strains isolated from avian organic fertilizers can 

cause human infections. 
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1. Introduction 

The use of improperly composted manure as organic fertilizer on farms can cause microbiological 

foodborne illnesses associated with the consumption of fresh fruits or vegetables [1–3]. Therefore, it is 

necessary to assess this risk factor to identify the possible effects of contamination in production areas. 

Composting is a controlled, microbial process that converts biodegradable, organic materials into a 

stable, humus-like product. The main use of chicken litter is its application as soil fertilizer [4]. Due to 

its high concentration of nutrients and organic matter and the constant deposition of feces by poultry, 

this litter is a good substrate for the maintenance and development of a high and diverse microbial 

population. Some of these microorganisms are a major concern for public health and environmental 

quality because they can contaminate soil and water sources and infect humans and other animals via 

skin contact and the consumption of contaminated food or water [5]. 

Among the principal pathogenic microorganisms found in chicken litter are Listeria monocytogenes, 

Mycobacterium avium, Candida albicans, Aspergillus fumigatus, Clostridium botulinum and several 

serotypes of Salmonella enterica and Escherichia coli [6]. Miller and collaborators [7] showed that 

30% of organic manure samples contain E. coli, indicating that under optimal conditions, the 

composting process may not be adequate to eliminate all pathogenic bacteria. 

The compost is treated with high temperature to reduce the occurrence of pathogens from animal 

waste products. However, this process may not reduce pathogens to acceptable levels, or pathogens 

may be reintroduced into the finished product by cross-contamination on the farm. Pietronave and 

collaborators [8] showed that Salmonella and E. coli grew and survived longer in compost with a 

moisture content favoring these bacteria. E. coli, Salmonella, E. coli O157:H7 and L. monocytogenes 

had greater growth potential in sterilized compost compared to non-sterilized compost [9,10]. 

E. coli is a major commensal inhabitant of the intestine of humans and warm-blooded animals and 

is part of the essential microbiota that maintains the physiology of healthy hosts [11]. Occasionally, E. 

coli can cause several enteric and extra-intestinal diseases [12]. Such organisms associated with 

diarrhea are known as diarrheagenic E. coli (DEC) based on virulence markers, the pattern of adhesion 

to HEp-2 cells and clinical symptoms. Six different categories of DEC have been reported [12,13]: 

enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroinvasive (EIEC), enterohemorrhagic 

(EHEC), enteroaggregative (EAEC) and diffusely adhering E. coli (DAEC). 

There is concern about increased antimicrobial resistance in chicken litter because antimicrobials 

are used in food animal production to prevent disease or as growth promoters [14,15]. This resistance 

can be transferred to pathogenic strains through horizontal transfer in the gut of broilers and in manure 

and composted waste [16,17]. Thus, besides being pathogenic, a strain can present antimicrobial 

resistance, representing a danger to humans due to treatment complications.  
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The intention of this article is to demonstrate the presence of DEC in organic fertilizer samples 

collected from farms and to determinate the prevalence of antimicrobial resistance among the isolates 

that could represent a potential health risk for humans and animals. 

2. Material and Methods 

2.1. Samples and Bacterial Strains 

A total of 40 avian organic fertilizer samples from 12 farmers were collected from the northern state 

of Paraná, Brazil, from December 2011 to June 2012. The fertilizer samples were collected from 

farmers outside of city of Londrina and one farmer at the State University of Londrina (UEL). 

Approximately 25 g of fertilizer was gathered using collection jars and transported immediately to 

the laboratory. These samples were mixed in sterile water and diluted four times; the samples were 

spread on MacConkey agar (Difco
®

, Sparks, MD, USA) plates and incubated at 37 °C for 24 h. Two to 

three colonies from each plate were selected and examined using biochemical assays such as EPM, 

MILi and CITRATE [18–20], to confirm the presence of E. coli. Approximately 64 E. coli isolates 

were examined in this study. The samples were stored in Brain Heart Infusion (BHI) (Difco
®

) plus 

25% glycerol (Sigma
®

, St. Louis, MO, USA) media at ‒80 °C. As positive and negative controls for 

the PCR, adherence and biofilm assays, the following reference strains were used: E. coli E2348/69 

(O127:H6, eae+, bfpA+, localized adherence), E. coli EDL 933 (O157:H7, eae+, stx1+, stx2+, ehxA+), 

EAEC O42 (aggR+, aggregative adherence), EIEC EDL 1284 (ipaH+), ETEC H10407 (elt+), ETEC 

B41 (est+), E. coli J96, E. coli K12Hb101 (negative control), and E. coli strain 20 [21] (Bacterial 

Collection of the Laboratory of Basic and Applied Bacteriology from State University of Londrina). 

2.2. DNA Extraction 

All strains were grown on TSA agar (Difco
®

) at 37 °C for 24 h. DNA was extracted by suspending 

seven bacterial colonies in 200 µL of sterile water; the sample was heated at 100 °C for 10 min and 

centrifuged at 10,000 × g for 6 min. The supernatant was used as the template in PCR assays. 

2.3. Detecting virulence genes using polymerase chain reaction (PCR) 

The presence of virulence genes was examined using two multiplex PCR techniques. The following 

virulence markers were used to detect DEC: eae (structural gene for intimin of EPEC and EHEC), 

bfpA (structural gene for the BFP of typical EPEC), aggR (transcriptional activator for the AAFs of 

EAEC), elt, est (enterotoxins of ETEC), ipaH (invasion plasmid antigen H found in EIEC Shigella), 

stx1, stx2 (Shiga toxins of EHEC) and ehxA (enterohemolysin, which can be found in EHEC). 

Multiplex PCR test methods described previously [22,23] were used, with slight modifications. For 

each gene, the primers sequence, the size of the DNA fragment produced, and the concentration of 

each primer used in the reaction are described in Table 1. The amplification of bacterial DNA was 

performed using 2.5 µL of DNA template in 25 µL of reaction mixture containing 1.5 U Taq 

polymerase (Invitrogen
®
, Carlsbad, CA, USA), 0.2 mM of each deoxynucleoside triphosphate (dNTP, 

Invitrogen
®

), 2.5 mM MgCl2, 2.5 µL PCR Buffer 10× (Invitrogen
®

), the appropriate primers (Table 1) 

and sterile water. The PCR was carried out programming a thermal cycler (Veriti
®

 Applied 
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Biosystems
®

, Foster City, CA, USA) with an initial denaturing cycle of 95 °C for 5 min and 40 cycles 

of 95 °C for 1 min, 54 °C for 1 min and a final cycle of 72 °C for 1 min, as used by Aranda and 

collaborators [22]. For the multiplex PCR described by Paton and Paton [23], samples were subjected 

to 5 min of denaturing at 95 °C, 15 cycles of 94 °C for 1 min, 65 °C for 2 min, 72 °C for 1.5 min and 

20 cycles of 94 °C for 1 min, 60 °C for 2 min, 72 °C for 2.5 min and a final cycle of elongation at  

72 °C for 7 min. A 10-µL aliquot of each reaction mixture was subjected to electrophoresis on 2% 

agarose gel, followed by staining with 1 µL Gel Red 20× (Biotium
®

, Hayward, CA, USA) and 

visualization using a UV transilluminator. A 1-kb DNA ladder (Invitrogen
®
) was loaded on each gel. 

Table 1. PCR primers used in this study. 

Gene 
PCR 

primer 
Primer sequence (5’–3’) 

Fragment 

(bp) 

Concentration 

(pmol/µL) 

Control 

Strains 
Reference 

Primers used for multiplex PCR described by Aranda and collaborators [22] 

eaeA 
F 

R 

CTGAACGGCGATTACGCGAA 

CCAGACGATACGATCCAG 
917 10 

E2348/69 

(EPEC) 
[24] 

bfpA 
F 

R 

AATGGTGCTTGCGCTTGCTGC 

GCCGCTTTATCCAACCTGGTA 
326 1.25 

E2348/69 

(EPEC) 
[24] 

aggR 
F 

R 

GTATACACAAAAGAAGGAAGC 

ACAGAATCGTCAGCATCAGC 
254 2.5 

O42 

(EAEC) 
[25] 

elt 
F 

R 

GGCGACAGATTATACCGTGC 

CGGTCTCTATATTCCCTGTT 
450 0.25 

H10407 

(ETEC) 
[24] 

est 
F 

R 

ATTTTTMTTTCTGTATTRTCTT 

CACCCGGTACARGCAGGATT 
190 6.47 

B41 

(ETEC) 
[24] 

ipaH 
F 

R 

GTTCCTTGACCGCCTTTCCGATACCGTC 

GCCGGTCAGCCACCCTCTGAGAGTAC 
600 1 

EDL 1284 

(EIEC) 
[24] 

stx 
F 

R 

GAGCGAAATAATTTATATGTG 

TGATGATGGCAATTCAGTAT 
518 6 

EDL 933 

(EHEC) 
[26] 

Primers used for multiplex PCR described by Paton and Paton [23] 

eaeA 
F 

R 

GACCCGGCACAAGCATAAGC 

CCACCTGCAGCAACAAGAGG 
384 10 

E2348 

(EPEC) 
[23] 

stx1 
F 

R 

ATAAATCGCCATTCGTTGACTAC 

AGAACGCCCACTGAGATCATC 
180 10 

EDL 933 

(EHEC) 
[23] 

stx2 
F 

R 

GGCACTGTCTGAAACTGCTCC 

TCGCCAGTTATCTGACATTCTG 
255 10 

EDL 933 

(EHEC) 
[23] 

ehxA 
F 

R 

GCATCATCAAGCGTAGCTTCC 

AATGAGCCAAGCTGGTTAAGCT 
534 10 

EDL 933 

(EHEC) 
[23] 

Primers used for multiplex PCR described by Clermont and collaborators [27] 

chuA 
F 

R 

GACGAACCAACGGTCAGGAT 

TGCCGCCAGTACAAAGACA 
279 20 

E. coli 

J96 
[27] 

yjaA 
F 

R 

TGAAGTGTCAGAGACGCTG 

ATGGAGAATGCGTTCCTCAAC 
211 20 

E. coli 

J96 
[27] 

TspE4C2 
F 

R 

GAGTAATGTCGGGGCATTCA 

CGCGCCAACAAAGTATTACG 
152 20 

E. coli 

Strain 20 
[27] 

  



Int. J. Environ. Res. Public Health 2014, 11 8928 

 

2.4. Determination of Phylogenetic Group (PCR) 

E. coli strains were classified into phylogenetic groups using the PCR-based technique previously 

described by Clermont and collaborators [27]. For the PCR assay, the following genes were used: 

chuA (required for heme transport in enterohemorrhagic O157:H7 E. coli), yjaA (initially identified in 

the recent complete genome sequence of E. coli K-12) and a fragment of TspE4C2 (anonymous 

fragment). The PCR test for phylogenetic group was performed using 2.5 µL of supernatant in 10 µL 

of reaction mixture containing 1.5 U Taq polymerase (Invitrogen
®

), 0.2 mM of each deoxynucleoside 

triphosphate (dNTP, Invitrogen
®

), 2.5 mM MgCl2, 2.5 µL PCR Buffer 10X (Invitrogen
®

) and the 

appropriate primers (Table 1). The following cycling parameters were used: 94 °C for 4 min and  

30 cycles of 94 °C for 5 s, 59 °C for 10 s and a final cycle of 72 °C for 5 min. A 10-µL aliquot of each 

reaction mixture was subjected to electrophoresis on a 2% agarose gel, followed by staining with 1 µL 

Gel Red 20× (Biotium
®

) and visualization using a UV transilluminator. A 1-kb DNA ladder 

(Invitrogen
®
) was loaded on each gel. 

2.5. Adherence Assays 

E. coli adherence to HEp-2 and HeLa cells was detected as previously described [28], with slight 

modifications. Cells were grown in 24-well tissue culture microplates (BD Falcon, Bedford, MA, 

USA) in which sterile round cover slips (13 mm in diameter) were placed prior to inoculation. The 

growth medium in each well of the microplate consisted of 0.9 mL of Eagle’s minimal essential 

medium (MEM, Invitrogen
®

) supplemented with 10% fetal calf serum (Invitrogen
®

) and 1% antibiotic 

solution (penicillin 100,000 U and streptomycin 100 µg/mL, Sigma
®

). The HEp-2 monolayer was 

grown overnight at 37 °C with 5 % CO2 to yield at least 70% confluence. The slides were washed three 

times with sterile phosphate-buffered saline 0.05 M, pH 7.4 (PBS). Forty microliters of the overnight 

bacterial culture was incubated in Luria Bertani Broth (LB, Difco
®

) at 37 °C and added to 0.96 mL of 

MEM containing 2% fetal calf serum and 3% D-mannose (Sigma
®

). After 3 h of incubation at 37 °C 

with 5% CO2, the monolayers were washed with sterile PBS and incubated for an additional 3 h. Next, 

the slides were washed five times with PBS, fixed with absolute methanol for 10 min and stained with 

May-Grunwald and Giemsa stain. The slides were examined under a light microscope using an oil 

immersion lens. To determine the adhesion pattern, previously described criteria were used [29–31]. 

2.6. Antimicrobial Susceptibility Testing  

All E. coli isolates that exhibited some virulence factor were tested with antimicrobial agents on 

Mueller Hinton agar (Difco
®

) using the agar disk diffusion method, as recommended by the Clinical 

and Laboratory Standards Institute [32]. The following antimicrobial agents (Laborclin
®

, Pinhais, PR, 

BR) were used: amoxicillin (AC, 10 µg), amoxicillin-clavulanic acid (AMC, 30 µg), aztreonam  

(ATM, 30 µg), tetracycline (TET, 30 µg), cefotaxime (CTX, 30 µg), imipenem (IPM, 10 µg),  

nalidixic acid (NAL, 30 µg), gentamicin (GEN, 10 µg), chloramphenicol (CHL, 30 µg),  

trimethoprim-sulfamethoxazole (SXT, 25 µg), ampicillin (AMP, 10 µg), ciprofloxacin (CIP, 5 µg), 

norfloxacin (NOR, 10 µg) and streptomycin (STR, 10 µg). Enrofloxacin (EFX, 5 µg) was also tested 
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because this antimicrobial is commonly used in veterinary clinics. E. coli strain ATCC 25922 was used 

as a quality control for the antimicrobial susceptibility testing. 

2.7. Biofilm 

Biofilm formation was assessed by the methodology described by Wakimoto and collaborators [33], 

with slight modifications. The strains were grown in Luria Bertani (LB) medium for 24 h at 37 °C with 

shaking. Then, 5 µL of culture was inoculated in 200 µL of Dulbecco’s modified Eagle medium 

(DMEM) containing 0.45% glucose in 96-well flat-bottom microliter polystyrene plates (BD Falcon). 

The plates were covered and incubated aerobically for 24 h at 37 °C. Before staining for five minutes 

with 0.5% crystal violet, the samples were washed four times with PBS 0.01 M, pH 7.4.The dye bound 

to adherent cells was solubilized with 200 µL of 95% (v/v) ethanol per well. The biofilm was 

quantified at 570 nm using an automated plate reader (Synergy™ HT, Bio-Tek, Winooski, VT, USA). 

Strain EAEC O42 and E. coli HB101 were used as a positive and negative control, respectively. The 

isolates were evaluated according to Wakimoto and collaborators into three categories: group 1  

(OD570 > 0.2), strong biofilm formation; group 2 (0.1 ≤ OD570≤ 0.2), moderate biofilm formation and 

group 3 (OD570 < 0.1), without biofilm formation (Table 2).  

2.8. Assay for Cytotoxicity Activity 

The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric assay was 

performed to quantify viable cells in a Vero cell culture after adding the supernatant of a potential 

toxic agent, Shiga toxin. This assay was based on the method of Murakami and collaborators [34]. 

Supernatants of STEC isolates, obtained by centrifugation and filtration, as previously described [35], 

were added to 96-well plates at a concentration of 2 × 10
5 

Vero cells per well in an end-volume of  

100 µL containing MEM and supplemented with 2% fetal calf serum and 1% antibiotic solution 

(penicillin 100,000 U and streptomycin 100 µg/mL); the cells were incubated in 5 % CO2 for 72 h at 

37 °C. The toxin dilution added was 1:10 and was performed in triplicate. The culture medium was 

removed, and the wells were washed with 200 µL of PBS 0.01 M. MTT stock solution (Sigma
®

) was 

added and incubated at 37 °C for 4 h in a 5 % CO2 atmosphere. The medium was removed, and 200 µL 

of lysis reagent was added. The amount of converted MTT solution was quantified using a 

spectrophotometer at 595 nm. The quantity of produced purple formazan was assumed to correlate 

with the amount of viable cells remaining. 

2.9. Statistical Analysis  

Significant differences among the results were examined using X
2
 (Chi-square test) for bacterial 

groups; differences were considered significant at p < 0.05. The data were expressed as the means ± 

SD. The statistical analyses were performed using the BioEstat version 5.0 software (Instituto 

Mamiraúa, Belém, PA, BR). 
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3. Results 

3.1. E. coli Isolates 

A total of 40 organic fertilizer samples were collected in this study. A total of 64 E. coli colonies 

were isolated, and 15 strains (30%) were found to be positive for DEC. Some strains showed a variable 

biochemistry profile, including non-fermentative lactose such as OF-4 and lysine decarboxylase 

negative such as OF-57; other strains were also negative for motility: OF-8, OF-9, OF-6, and OF-57. 

3.2. Virulence Factors of Diarrheagenic E. coli (DEC) 

Of the 64 E. coli isolates, 15 (23.4%) strains were positive for the virulence factors of EPEC, STEC 

and EAEC (Table 2). These results showed that the organic fertilizer samples carry virulence factors. 

The PCR assays detected four strains (6.2%) with the eaeA gene (OF-4, OF-36, OF-42, OF-51). 

The aggR gene (EAEC) was predominant. Ten isolates (12.5%) presented this gene, but two of these 

also had the eaeA gene (OF-42, OF-51), and the stx1 gene (STEC) was found in three strains (4.7%;  

p < 0.05) such as OF-22, OF-23 and OF-24. 

3.3. Phylogenetic Group 

The majority of the DEC strains belonged to phylogenetic group A (60%) and B1 (33.3%) and were 

genetically diverse. Only the strain OF-36 (atypical EPEC) was classified as a member of phylogenetic 

group B2 (Table 2), and therefore, the incidence of groups A and B1 was significantly higher than 

group B2 (p < 0.05). 

3.4. Adherence to HEp-2 and HeLa Cells 

The only adherence pattern observed in the DEC isolates when cultured with HEp-2 and HeLa cells 

was aggregative adherence (AA-100%) (Figure 1A) and was significantly predominant in the organic 

fertilizer samples (p < 0.05). Only isolate OF-34 (Table 2) showed a mixed adherence pattern,  

a combination of aggregative and diffuse adherence (Figure 1B). All of the isolates showed the same 

adherence pattern for both cell types. 

3.5. Antimicrobial Susceptibility 

Resistance to 15 antibiotics was examined in the E. coli isolates that showed some virulence factor 

(Table 2). Only two strains (OF-36 and OF-42) did not show any resistance to antibiotics compared to 

the 86% of isolates that were resistant to at least one antibiotic group (p < 0.05). Three isolates were 

resistant to more than three antibiotics, and isolate OF-61 showed resistance to seven antibiotics. 
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Figure 1. Adherence of E. coli isolated in this study (microscope magnification of 1000×): 

(A) and (B) OF-39 strain showing diffuse adherence and aggregative adherence on HEp-2 

cells; (C) OF-9 EAEC strain showing aggregative adherence on HEp-2 cells and (D) K12 

Hb101 negative control of adherence test. 

 

3.6. Biofilm Test 

The isolates were classified into three groups based on absorbance: group 1 (OD570 > 0.2), 5 strains 

with strong biofilm formation (OF-4, OF-6, OF-8, OF-22, and OF-23); group 2 (0.1 ≤ OD570 ≤ 0.2),  

1 strain (OF-35) considered as moderate and group 3 (OD570 < 0.1), 9 strains without biofilm formation 

(Table 2). The isolates that exhibited biofilm formation showed an aggregative adherence pattern. 

3.7. Evaluation of Cytotoxic Activity 

The MTT assay was positive for all of the STEC isolates. The three STEC strains showed cytotoxic 

activity, but E. coli OF-22 showed a toxigenic potential (80%) higher than the strains OF-23 and  

OF-24 (p < 0.05), at 61% and 52%, respectively. These results were visualized by a rounding of the 

cells under microscopy, indicating cell death and thus cytotoxic activity of the supernatant. 
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Table 2. Genotypic and phenotypic analysis of diarrheagenic E. coli isolates collected 

from organic fertilizer samples. 

Isolate of 

E. coli 

Genetic 

profile 

Pattern of 

adherence 

in HEp-2 

cell 

Resistance 

profile 

Biofilm 

formatio

n (BF) 

Phylogenetic 

group 

OF-4 eae+ AA NAL/AMO/SRT Strong A 

OF-36 eae+ AA Susceptible Non-BF B2 

OF-42 eae+/aggR+ AA Susceptible Non-BF A 

OF-51 eae+/aggR+ AA AMO a/TET Non-BF B1 

OF-6 aggR+ AA AMO a Strong A 

OF-8 aggR+ AA AMO a/ACL Strong B1 

OF-9 aggR+ AA NAL a/AMO a/AMCa/IMPa/AMP Non-BF B1 

OF-22 stx1+ AA AMO a/AMP a Strong A 

OF-23 stx1+ AA NAL a/AMO a/AMP a Strong B1 

OF-24 stx1+ AA AMO a Non-BF A 

OF-35 aggR+ AA TET Moderate A 

OF-39 aggR+ AA/DA AMO a/AMP a Non-BF B1 

OF-44 aggR+ AA STR/SXT/TET Non-BF A 

OF-57 aggR AA STR a Non-BF A 

OF-61 aggR AA 
NAL/AMO/AMC/AMP/STR/IMP/ 

TET 
Non-BF A 

Notes: AA, aggregative adherence; DA, diffuse adherence; AMO, amoxicillin; AMC, amoxicillin-clavulanic acid; 

AMP, ampicillin; TET, tetracycline; IMP, imipenem; NAL, nalidixic acid; SXT, trimethoprim-sulfamethoxazole; 

STR, streptomycin. a Resistance to the indicated drug is intermediate or resistant according to CLSI 

standards. 

4. Discussion 

Most organic fertilizers analyzed in our study underwent some type of exothermic process under 

conditions of aeration and moisture for a sufficient time to inactivate food-borne pathogens. In Brazil, 

chicken litter is very useful as an organic fertilizer soil for the production of fruits and vegetables [5]. 

However, the composting process that is intended to reduce the presence of pathogens from animal 

waste products may not reduce them to acceptable levels on farms. Moreover, STEC and EHEC strains 

can persist in the environment for long periods of time, and the consumption of these pathotypes is 

associated with severe clinical illness in humans [36,37]. In an investigation of an outbreak of EHEC 

strain O157:H7 associated with apple cider in south-eastern Massachusetts, which presumably had 

been contaminated by manure used as fertilizer in the orchard, showed that the organism survived for 

20 days at a pH value below 4, conditions considered sufficient to inhibit the growth and survival of 

bacterial pathogens [38]. 

In our study, we had difficulty in isolating E. coli and other species due to the composting process 

that was able to decrease the presence of these microorganisms. However, we found 15 DEC strains 

identified as EAEC, STEC and EPEC (Table 2), which are considered a potential risk of E. coli 

contamination in fresh produce. EAEC was the most commonly isolated pathotype in the organic 

fertilizer samples. EAEC is emerging as an enteric pathogen of great importance and has been 
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associated with traveler’s diarrhea in both developing and industrialized countries [39]. The last 

outbreak occurred in Germany in 2011, with 3.368 cases, including 36 deaths (European Centre for 

Disease Prevention and Control), and was the second largest outbreak foodborne by E. coli in the 

history. This outbreak was caused by the EHEC strain O104:H4, which shows high genetic similarity 

with EAEC 55989 [40]. Despite the rapid identification and characterization of this strain, there was a 

great difficulty in identifying the source of contamination because many outbreaks of infection are 

associated with water, animals and food directly or indirectly contaminated with organic or inorganic 

fertilizers [41].  

Four EPEC strains were found in this study, and this pathotype is highly linked to childhood 

diarrhea. The EPEC target is the small intestine and causes histopathological alterations termed 

―attaching and effacing (A/E)‖ lesions on the surface of intestinal epithelial cells; in particular, infants 

in developing countries are the most affected [42]. The ability to cause A/E lesions is encoded by a 

large bacterial chromosomal pathogenicity island, the locus of enterocyte effacement (LEE), which 

contains the gene eae that encodes intimin (94 to 97 kDa outer membrane protein) [43]. Moreover, 

there are reports of EPEC infection in animals, such as bovines [44], pigs [45], dogs and cats [46,47]. 

However, as there are few studies involving EPEC in broilers, this work provides interesting results 

about this issue. 

Although EHEC is the pathotype most relevant to outbreaks of human infection, there are very few 

reports about STEC alone. In this work, we found strains harboring stx1 gene, responsible for cause 

severe diarrhea in humans which may result in complications such as hemolytic-uremic syndrome 

(SHU) [13]. Moreover, with a higher toxigenic potential, E. coli OF-22 showed an effect of up to 80% 

in endothelial cells (Vero cells). 

We performed two multiplex PCR assays to identify the five principal pathotypes of DEC in 

organic fertilizer samples. These PCR assays have been validated in humans’ strains [22] and other 

animals, such as dogs and cats [47]. Both multiplex PCR assays showed a high specificity in 

identifying DEC from different sources therefore offering a practical possibility for identification in 

studies involving a large number of strains. In this work, the use of two methodologies to identify 

virulence genes was very important because one multiplex assays for the five pathotypes and the other 

assists in the identification and helps in the subtyping of the stx gene. We believe that these are 

complementary techniques.  

The adherence to epithelial cells in culture is one of the most important tests for infection 

capability. All of the DEC strains isolated in this study showed aggregative adherence to human cells 

(HEp-2 cells), showing a danger of human infection. Furthermore, adherence assays confirmed PCR 

results for EAEC strains because the AA pattern is the only adherence pattern that was describe for 

this pathotype in humans and animals. 

Although organic fertilizers from chicken litter are very useful for food production, they may have 

microorganisms carrying antimicrobial resistance genes that can be transferred to human pathogenic 

bacteria. This represents a risk for the public health, by complicating treatments with antibiotics [5,7]. 

In the poultry industry, antimicrobials are used therapeutically, non-therapeutically and also as 

growth promoters [14,48]. Thus, the use of antimicrobials in animal production may promote the 

dissemination of resistance genes beyond that expected as a direct consequence of selective pressure 

on target organisms [49]. These microorganisms can be introduced into the farm environment many 
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times through animal feces [50], which could lead to the contamination of neighboring water sources 

and agricultural crops [51]. Sulfonamides, amoxicillin, tetracyclines, tylosin, neomycin and penicillin 

are used to treat bacterial diseases in the poultry industry [49]. We found ten isolates with resistance to 

amoxicillin, four isolates with resistance to tetracycline and one strain with resistance to sulfonamide, 

and reports confirm the prevalence of resistance to these antibiotics in broiler chickens and poultry 

manure [7,15,52,53]. Until 2005, quinolones were frequently used for the treatment of certain 

infections in poultry to control mortality, but quinolone-resistant Campylobacter strains began to 

emerge; thus, the Food and Drug Administration (FDA) banned the use of that drug in poultry [54]. 

Our results showed only one strain (OF-61; EAEC) with resistance to nalidixic acid, but this isolate 

presented resistance to six other groups of antimicrobials. This multi-resistant strain represents a public 

health hazard. 

Phylogenetic grouping of E. coli is associated to virulence pathotypes [27,55]. E. coli strains can be 

divided in four main phylogenetic groups: A, B1, B2 and D [27], according to the presence or absence 

of chuA and yjaA genes, and a fragment of TspE4.C2, later characterized as a lipase esterase  

gene [56]. The majority of our isolates of DEC belonged to groups A (60%) and B1 (33.3%). Similar 

results were reported by Escobar-Páramo and collaborators [57] in a phylogenetic analysis from 

different bacterial collections isolated from several studies, in which most groups into D and B2, with 

only one strain of EPEC classified as group B2. Another study performed by Miller and  

collaborators [7] showed the same results in obligatory pathogens responsible for acute and severe 

diarrhea. Our results showed the same groups A and B1 in E. coli strains isolated from organic 

fertilizers, with the same antibiotic resistance found by Miller and collaborators in their study.  

To our knowledge, the present study is the first report to focus on the presence of five principal 

pathotypes of DEC in organic chicken fertilizer used on farms that could represent a significant public 

health safety hazard. Our findings suggest that some strains have developed multi-resistance to 

antibiotics.  

5. Conclusions 

This study shows that pathogens may be present in organic fertilizers after the thermophilic phase 

of composting and provides important data with regard to the epidemiological aspects of infections 

caused by E. coli. The presence of these DEC strains with resistance to antimicrobials represents 

 a great risk to public health. 
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