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Abstract: It is valuable to study the spatiotemporal pattern of Japanese encephalitis (JE)
and its association with the contextual risk factors in southwest China, which is the most
endemic area in China. Using data from 2004 to 2009, we applied GISmapping and
spatial autocorrelation analysis to analyze reported incidence data of JE in 438 counties
in southwest China, finding that JE cases were not randomly distributed, and a Bayesian
hierarchical spatiotemporal model identified the east part of southwest China as a high risk
area. Meanwhile, the Bayesian hierarchical spatial model in 2006 demonstrated a statistically
significant association between JE and the agricultural and climatic variables, including the
proportion of rural population, the pig-to-human ratio, the monthly precipitation and the



Int. J. Environ. Res. Public Health 2014, 11 4202

monthly mean minimum and maximum temperatures. Particular emphasis was placed on the
time-lagged effect for climatic factors. The regression method and the Spearman correlation
analysis both identified a two-month lag for the precipitation, while the regression method
found a one-month lag for temperature. The results show that the high risk area in the east
part of southwest China may be connected to the agricultural and climatic factors. The
routine surveillance and the allocation of health resources should be given more attention in
this area. Moreover, the meteorological variables might be considered as possible predictors
of JE in southwest China.

Keywords: Japanese encephalitis; contextual risk factors; meteorological factors; southwest
China; Bayesian hierarchical model

1. Introduction

Japanese encephalitis (JE) is a mosquito-borne viral disease, which is widely distributed in South
Asia, Southeast Asia, East Asia and the Pacific [1]. It is estimated that about three billion people live in
countries where the JE virus is endemic [2]. JE not only causes death, but also induces permanent and
psychiatric sequelae [3]. Historically, JE was serious in China. The number of JE cases has declined
substantially after the long-term nationwide immunization program starting in the 1970s. However,
JE still remains a significant public health issue in China, with approximately a half of the global
cases annually [4], and JE virus is one of the four principal arboviruses of public health importance in
China [5]. In the past few decades, the Chinese Center for Disease Control and Prevention reported
that the annual numbers of death from JE ranked 2–6 among the 26 most serious national notifiable
communicable diseases [6,7].

As a mosquito-borne arboviral infection, JE is caused by a flavivirus transmitted by mosquitoes of
the Culex species. The spread of JE involves many ecological, environmental, climatic and human
behavioral factors, of which two groups are significant; these are climatic factors and agricultural
factors. On the one hand, climatic factors can influence the transmission of JE through their effects
on mosquitoes. Temperature and precipitation have been reported to be associated with the density
of mosquitoes [8]. Although suitable climatic condition could increase JE vector proliferation and
longevity, the potential impact of climate change on JE remains to be investigated [2]. Particularly,
like other vector-borne diseases, two common questions for JE could be whether the association
with meteorological factors exists and if it does exist, what is the time-lagged pattern for the
association [9]. On the other hand, two major agricultural factors affecting the JE transmission are
pig rearing and the rice-irrigated areas [1,10]. Domestic pigs are the most important reservoir hosts,
amplifying the transmission process [3]. The rural population has a greater chance for exposure to
mosquitoes compared with the general population [11]. In addition, other socioeconomic variables may
affect the transmission process, such as population immunity and housing conditions [12].
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There is no specific therapy for JE other than supportive care; therefore, a better understanding
of the impact from contextual factors is beneficial to prevent JE, and several studies have been
conducted. In [11], it was demonstrated that at the provincial level, the risk of JE seemed to be
governed by high proportions of rice-planting area, rural population and the extent of pig rearing.
The authors of [13–15] studied the impact of the climate variability on the transmission of JE.
These studies give evidence on the association between JE cases and the contextual risk factors,
including agricultural and climatic factors. However, several limitations and gaps are noticeable in
those studies. First, no research has been conducted to assesses the association between JE cases
and the contextual risk factors in southwest China, which is the most endemic area in China [16].
The aforementioned single-site studies are in eastern China, and their results may not be valid in
southwest China. Meanwhile, a better understanding of the spatiotemporal pattern of JE in southwest
China would help identify areas and populations at high risk in southwest China. Second, existing
studies focused on only one site to assess the association between JE and climatic variables [17].
There are two drawbacks for this approach. One is that the conclusion is hard to generalize to other
sites, resulting in some inconsistent findings between the single-site studies. For example, while
[14] reported that a one-month lag is the best time lag for monthly rainfall, [13,18] reported that
a two-month lag is the best time lag for monthly rainfall. The other drawback is that it is not
sufficient to analyze the association between meteorological factors without adjusting for agricultural
variables [13–15]. In summary, there is no large-scale analysis (such as over 300 counties) at a small
unit (such as the county level) in China to study the association between JE and the contextual factors.
To the best of our knowledge, there are few large-scale studies in other countries, with the exception
being in Nepal [19]. The study in Nepal analyzed the data in 2005 at the district-level to fit a spatial lag
regression model with climatic, agricultural and land-cover variables.

Our aim was to assess the association between JE cases and contextual risk factors in southwest China
and to identify the high risk area. This may help in understanding JE epidemiology and provide guidance
for JE prevention. Specifically, we applied the Bayesian hierarchical model to explore the spatiotemporal
pattern of JE in 438 counties in southwest China from 2004 to 2009. Moreover, the spatial ecological
regression was conducted between JE and contextual risk factors (including agricultural and climatic
variables) in 2006. This is due to the large number of cases that occurred in that year. Particular attention
was given to the lag effect for climatic factors.

2. Materials and Methods

2.1. Study Region

Southwest China (21◦14′ to 34◦31′N, 97◦35′ to 110◦19′E) consists of four provinces, Sichuan,
Chongqing, Yunnan and Guizhou. The area has a population of 189,977,077 (the sixth national census
in 2010) and encompasses 1,137,570 square kilometers. There are 47 cities (autonomous prefectures),
which can be further divided into 483 counties (county-level cities and districts).
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2.2. Data Collection

JE monthly cases were obtained from 2004 to 2009 for the 483 counties, facilitated by the Chinese
Information System for Infectious Diseases Control and Prevention (CISIDCP), which was put in place
in 2004 and was more sensitive and efficient than the previous case-reporting system.

Population data for every county from 2004 to 2009 were retrieved from the National Bureau of
Statistics of China. The proportion of rural population was from the statistical yearbook of these four
provinces. The pig-rearing number came from the census statistics of the four provincial Bureau of
Statistics at the prefecture-city level, an administrative division below a province and above a county in
China’s administrative structure.

County-level Geographical Information System (GIS) shapefiles of southwest China were acquired
from the Chinese Institute of Geographic Sciences and Natural Resources Research.

The meteorological data contained monthly precipitation and mean temperatures, including mean
minimum and maximum temperatures. They were collected from the 0.5◦ × 0.5◦ grid monthly
precipitation and monthly mean temperature datasets, publicly available at the Chinese Meteorological
Data Sharing Service System “http://cdc.cma.gov.cn/home.do”, which were constructed by the Chinese
National Meteorological Information Center. They are meant to serve as a high resolution source of
climate data interpolated from various climate sources [20,21]. We retrieved three monthly climatic
variables in 2006 in the format of the 0.5◦ × 0.5◦ grid covering the entirety of China, which can be
matched to each county. In general, each county only contained one grid point, and all counties took the
climatic information of the grid point closest to their administrative centroids.

2.3. Exploratory Analysis

2.3.1. GIS Mapping

All JE cases were geo-coded and matched to the county-level maps by administrative codes, and we
calculated annualized incidences of JE at each county over the 6 years. For the descriptive ecological
correlation analysis in 2006, the preceding geo-coding was also executed for the agricultural and climatic
data. Finally, this information was visualized in the form of maps. All of the implementation above,
including the spatial visualization, was accomplished by R. R is a free software programming language
and a software environment for statistical computing and graphics [22].

2.3.2. Spatial Autocorrelation Analysis

Global spatial autocorrelation analyses were performed for each year to discern the spatial
autocorrelation of JE in southwest China after adjusting for population heterogeneity. The classic and
simplest boundary-based neighborhood matrix was used. Thus, the weight is 1 if two counties share
a boundary; otherwise, the weight is 0. The analysis was accomplished using R via the Assunção and
Reis’s global Moran’s I statistics [23] in R package “spdep”.
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2.3.3. Spearman Correlation Analysis

We examined the relationship between monthly incidences of JE and monthly climatic variables over
438 counties. Spearman’s correlation was used to quantify the relationship with lags from 1 to 3 months.

2.4. Bayesian Hierarchical Spatial and Spatiotemporal Modeling

Traditional regression methods assume that the observations are mutually independent, which is not
valid, due to the spatial structure. Bayesian hierarchical spatial or spatiotemporal models [24,25] do not
make such an assumption, inducing spatial correlation through random effects representing unmeasured
(or perhaps unmeasurable) effects not included in the model. It can also take into account the variation
of population and overdispersion [26]. These models are extensively applied to epidemiology [27].

2.4.1. Spatiotemporal Model for County-Specific Relative Risks from 2004–2009

The first stage describes the observed data, yijk, the number of cases in county j in month k of the i-th
year, as a function of the spatiotemporal-specific relative risk of disease, θijk, and the expected cases,
eijk. The expected cases, eijk, were calculated by the internal standardization method, assuming that the
disease risk was constant over southwest China. A zero inflated Poisson model was employed to model
the observed data, as the county × month combination would lead to excessive zeros compared to the
simple Poisson model [28].

yijk ∼

π + (1− π)× Poisson(yijk = 0|eijkθijk) if yijk = 0,

(1− π)× Poisson(yijk|eijkθijk) if yijk > 0.

π is the probability of a zero count, and the log-relative risks log θijk are assumed to have
the decomposition:

log θijk = µ+ φj + ψj + αi + γi

where:

µ: the intercept quantifying the average Poisson relative risk in the whole
of southwest China

φj: the non-spatial random effect for the overdispersion for county j
ψj: the spatially structured random effect for county j, accounting for the assumption

that geographically close areas are more related than distant areas
αi: the unstructured temporal effect for year i
γi: the temporally structured effect for year i

More generally, we may expand this model to allow for an interaction between space and time, δi,j ,
which would explain differences in the time trend of JE risk over the six years for different counties.

All random effects were modeled, and default minimally informative hyperpriors were set [29].
Firstly, the spatial effect was modeled as the first order intrinsic Gaussian Markov random field (IGMRF)
[30]. The IGMRF accounts for spatial autocorrelation by assuming that the conditional distribution in
region i depends on the neighboring regions, j. Secondly, the temporally structured effect was modeled
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dynamically through a time neighboring structure. Finally, the unstructured spatial and temporal effects
were both specified by Gaussian models with a mean of zero. The Gamma (1, 0.0005) was chosen as the
prior for the precision of the above Gaussian random effects.

2.4.2. Spatial Model with Contextual Risk Factors in 2006

To examine the association between the JE relative risks and contextual risk factors, data in 2006 was
used, due to the large number of cases in that year. As with [13,14], analysis was restricted to endemic
months. We restricted to July, August and September, because most of the JE cases in southwest China
occurred in these 3 months. The observed number of JE cases in county j in month k, yjk, was modeled
as a function of the county-month-specific expected cases, ejk, and the relative risk of disease, θjk, with
θjk allowing for the contextual factors:

log θjk = µ+ φj + ψj + β1 × xj(k−l1),1 + β2 × xj(k−l1),2 + β3 × xj,3 + β4 × xj,4

where µ, φj and ψj are the same as the spatiotemporal model; the others denote the contextual variables
as follows:

xj(k−l1),1: the temperature of the (k − l1) month for county j
xj(k−l2),2: the precipitation of the (k − l2) month for county j

xj,3: the proportion of rural population for county j
xj,4: the pig-to-human ratio for county j

Here, l1 and l2 represent the lagged effects for the temperature and the precipitation, respectively, and
they varied from 1 to 3 months. Moreover, similar to [13], the monthly mean minimum and maximum
temperatures were modeled separately, as the two temperatures are highly correlated.

The random effects were exactly the same as the spatiotemporal model. The default highly dispersed
Gaussian distribution with the mean equal to 0 and the variance equal to 1,000 was specified for all the
fixed effects, β1 to β4.

Two groups of models were fitted using a forward stepwise procedure with an increasing complexity.
The first group only included climatic variables to choose the best time lags, while the second model
further included the proportion of rural population and the pig-to-human ratio, in order to investigate
the association. A Berkson-type measurement error model was used for the pig-to-human ratio.
Berkson-type error occurs in biological or epidemiological studies, where averages of exposures in areas
are assigned to individuals living or working close-by [31]. Roughly speaking, the method was used
to deal with the multiple resolution of the exposure variables. The pig-to-human ratio was observed at
a coarser level [32,33], the prefectural level, as opposed to the county level. The prefecture-city level
is an administrative division below a province and above a county in China’s administrative structure.
All covariates were standardized to eliminate the scale effect and to improve the accuracy of parameter
estimates.
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2.4.3. Computation and Model Choice

All models were computed using integrated nested Laplace approximations (INLA), a method for
approximate Bayesian inference within latent Gaussian models. INLA outperforms traditional Markov
chain Monte Carlo (MCMC) in terms of computational time, while keeping very precise results [34].
Analyses can be performed using R-INLA, available at “http://www.r-inla.org/”. Competing models
were compared and selected using deviance information criterion (DIC), and a smaller DIC indicates a
better trade-off between the model fit and complexity [35].

3. Results

3.1. Descriptive Results

A total of 17,007 JE cases were reported in southwest China from 2004 to 2009. There were
10,489 male and 6,518 female cases. Children under five years old accounted for 48%, 5- to 15-year-old
school children for 45.8% and those >15 years old for 6.2%.

Figure 1 shows a time series of JE cases, a significant seasonal peak with 83.3% of cases occurring in
July–August, and 93.8% in July–September. Furthermore, the annual incidence peaked in 2006.

Figure 1. Temporal distribution patterns of Japanese encephalitis (JE) cases in southwest
China from 2004 to 2009. (A) The figure shows the epidemic curve of monthly JE cases;
(B) the seasonal epidemic patterns of the JE distribution. The bottom and top of the box
indicates the lower quartile (P25) and the upper quartile (P75), respectively; the line in the
middle of the box represents the median value; whiskers represents 1.5 times the height of
the box.

Figure 2 demonstrates annualized incidences of JE maps from 2004 to 2009, while Table 1 presents
spatial autocorrelation analyses of JE for each year. They show that Moran’s I was significant for each
year, implying that the distribution of JE was spatially autocorrelated in southwest China. Moreover,
Moran’s I of the first three years is significantly higher than those of the subsequent three years, implying
the autocorrelation became smaller later. This is also evident from Figure 2.
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Figure 2. Annualized incidence of JE maps in southwest China from 2004 to 2009. The
figure shows the crude annual incidence (number of cases per 100,000) in the following
years: (A) 2004; (B) 2005; (C) 2006; (D) 2007; (E) 2008; (F) 2009.
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Table 1. Spatial autocorrelation analyses for the annualized incidence of JE in southwest
China from 2004 to 2009.

Year Moran’s I p-value Pattern

2004 0.5196 0.001 Clustered
2005 0.5014 0.001 Clustered
2006 0.5146 0.001 Clustered
2007 0.3555 0.001 Clustered
2008 0.2945 0.001 Clustered
2009 0.3874 0.001 Clustered

Figure 3 presents the following county-level information in 2006: the crude incidence rates of JE
in August, the proportion of the rural population, the pig-to-human ratio, the monthly mean minimum
temperature and precipitation, with month lags varying from one to three to August. These graphs
show several features. Firstly, the JE cases generally concentrated in the east area. Secondly, there
is some degree of similarity between the spatial pattern of JE cases and those of the mean minimum
temperature, the proportion of the rural population and the pig-to-human ratio. Thirdly, the geographical
pattern for the precipitation did not show a clear correlation with JE cases. Finally, the spatial patterns
of the precipitation varied from June to August, while the geographical pattern of the mean minimum
temperature was preserved with continuing change in the magnitude. Here, to preserve space, we just
reported the monthly mean minimum temperature. Similar results could be found for the monthly mean
maximum temperature.

Table 2 shows the Spearman correlation coefficients between monthly incidences (from July to
September) and the three climatic variables with different time lags in 2006. The highest positive
correlation constantly occurred with a two-month lag for the precipitation, whereas the correlation for
the two temperatures does not show a clear pattern.

3.2. Bayesian Hierarchical Spatial and Spatiotemporal Modeling

3.2.1. Results of Spatiotemporal Model for County-Specific Relative Risks from 2004–2009

Two different spatiotemporal models were fitted, with and without a space-time interaction. The
model with the interaction had a greater fit (DIC = 26,281.63) than the model without interaction
(DIC = 28,529.48). Figure 4A presents the posterior mean of county-specific excessive relative risks,
the sum of spatially structured random and non-spatial random effects. This reflects the excessive spatial
trend of disease risks for the 438 counties after allowing for sparse counts and correlation effects, and it
is evident that high risk areas are located in the eastern and that some are far southern areas. Figure 4B
shows the excessive temporal trend posterior mean of year-specific excessive relative risks and the sum
of temporally structured and unstructured effects. Overall, JE presented a declining temporal trend in
southwest China, with a peak in 2006.
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Figure 3. County-level information in southwest China in 2006. The figure
shows the following information in 2006 at the county level: (A) the crude monthly incidence
in August (number of cases per 100,000); (B) the proportion of rural population; (C)
the pig density (the number of pigs per 1,00 people); (D) the monthly mean minimum
temperature in July; (E) the monthly mean minimum temperature in June; (F) the monthly
mean minimum temperature in May; (G) the precipitation in July; (H) the precipitation in
June; and (I) the precipitation in May.
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Table 2. Spearman correlation coefficients between monthly incidences and climatic
variables with different time lags, from July to September in 2006.

Month of incidence Precipitation Monthly mean minimum temperature Monthly mean maximum temperature
1-month lag 2-month lag 3-month lag 1-month lag 2-month lag 3-month lag 1-month lag 2-month lag 3-month lag

July 0.233 ?? 0.432 ?? 0.423 ?? 0.331 ?? 0.335 ?? 0.332 ?? 0.258 ?? 0.268 ?? 0.131 ??

August 0.139 ?? 0.237 ?? 0.187 ?? 0.258 ?? 0.259 ?? 0.245 ?? 0.221?? 0.229 ?? 0.101 ??

September 0.063 0.087 ? −0.038 −0.067 −0.074 −0.077 −0.051 −0.055 −0.063

?? The difference between the correlation coefficient and zero is statistically significant, p < 0.05;
? the difference between the correlation coefficient and zero is statistically significant, p < 0.1.

Figure 4. Spatiotemporal trend in southwest China from 2004 to 2009. (A) The posterior
mean of county-specific excessive relative risks and the sum of spatially and non-spatial
random effects; (B) the excessive temporal trend, posterior mean of year-specific excessive
relative risks and the sum of temporally structured and unstructured effects.

3.2.2. Spatial Model with Contextual Risk Factors in 2006

First, DICs were used to select the best time lags for meteorological variables. Table 3 reports the
DICs of models with different month lags for rainfall and temperature. The first column “precipitation”
shows the DICs of models with rainfall as the only covariate, and the best fit model is the two-month lag
precipitation, with DIC being 8614.96. The result is consistent with the Spearman’s correlation analysis.
Together with the two-month lag precipitation, different month lags for the monthly mean minimum
temperature were modeled. The result is reported in the second column, and the one-month lag presents
the best fit, with DIC equal to 8503.39. The monthly mean maximum temperature shows a similar result
with the best fit with DIC equal to 8508.47. The minimum temperature shows a slightly better fit than
the maximum temperature by the comparison of DICs.

Table 4 presents estimated parameters of models with spatial random effects and all contextual factors,
including agricultural variables and the selected time-lagged climatic variables. Monthly mean minimum
and maximum temperatures were modeled separately. The two models show a pronounced increase in
model fit over the models just with climatic covariates, with the DIC decreasing by about 34% from a
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comparison of Tables 3 and 4. Besides, as before, the model with monthly mean minimum temperature
has a greater fit (DIC = 5470.98) compared to the model with monthly mean maximum temperature
(DIC = 5702.9). These contextual variables all show a statistically significant positive association
with JE, as their 95% credible intervals are over zero. Although the monthly mean minimum and
maximum temperatures are not directly comparable as they are in different models, the former presents
a greater regression coefficient over that of the latter, 1.097 (C.I.= 0.979, 1.222) versus 0.483 (C.I. =
0.408, 0.559). Since all contextual variables are standardized, this may suggest that the variation of the
minimum temperature has a greater association with JE cases compared to the maximum temperature.
This is consistent with the result of DICs. Furthermore, in both models, the regression coefficients of
temperature are greater than the precipitation. For example, in the model with the minimum temperature,
the coefficient for the monthly mean minimum temperature is 1.097, while the coefficient for the
precipitation is 0.261. Since all independent variables were standardized, this may imply that the
variation of temperature is more important for JE variation than precipitation. Moreover, examining
Figure 3 shall lead to the same conclusion, as temperature shows a remarkably greater geographic
similarity with JE than the precipitation. As expected, coefficients for the proportion of rural population
and the pig-to-human ratio are both statistically positively significant.

Table 3. Deviance information criteria (DICs) of models with different month lags for the
precipitation and temperature in 2006.

Time lag Precipitation
Monthly mean minimum temperature
+2-month lag precipitation

Monthly mean maximum temperature
+2-month lag precipitation

1-month 8,707.21 8,503.39 8,508.47
2-month 8,614.96 8,614.06 8,554.03
3-month 8,618.33 8,582.91 8,616.4

Table 4. Parameter estimates of models with agriculture related variables and the selected
time-lagged climatic variables, in addition to the spatial random effects.

Variable
Model with monthly mean minimum temperature Model with monthly mean maximum temperature
mean SD 95% Credible interval mean SD 95% Credible interval

temperature 1.097 0.06 0.979 1.223 0.483 0.039 0.408 0.559
precipitation 0.261 0.024 0.215 0.307 0.235 0.023 0.19 0.28
rural 0.35 0.091 0.172 0.529 0.311 0.084 0.15 0.48
pig 0.242 0.087 0.067 0.41 0.333 0.081 0.177 0.485
intercept −1.017 0.101 −1.22 −0.819 −0.797 0.103 −1 −0.566
DIC 5470.98 5702.9

4. Discussion

Japanese encephalitis still remains one of the major national arboviral diseases in China [5] and
is mainly located in southwest China [36], which is our focus. Unlike existing studies in a single
site, our study used data from 438 counties in southwest China. Besides, our analysis was relatively
comprehensive by including meteorological and agricultural variables.
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There are two main findings in the current work. First, spatiotemporal analysis has identified
the east part of southwest China as a high risk area and that area may be connected to agricultural
and climatic factors. Based on the ecological regression analysis, the high risk area is associated
with the high pig-to-human ratio, a high proportion of rural population and weather change.
An unpublished thesis [37] had analyzed the association between agricultural factors and JE in the
southwest of China at the prefecture-city level, an administrative division below a province and above
a county in China’s administrative structure, but found no statistically significant factors. Including
a comprehensive set of variables and the county-level analysis are the unique characteristics of this
study. The model-based approach confirms the association between JE and contextual risk factors. Since
southwest China is a less-developed area compared with the other parts in China, it has limited funds
for JE control. These identified high risk areas should get the priority in allocating health resources to
promote the existing surveillance, infrastructure redevelopment and in-house workforce training. Two
strategies may be implemented for pig-rearing, pig immunization and the separation of pig rearing
from human settlements. Besides, monitoring the infection rate in pigs may supply information for
possible outbreaks.

Second, the time-lagged association between JE incidences and temperature and precipitation are
quantified with an adjustment for other agricultural variables. It is important to study the impact of
climate on JE transmission, because global warming might change the patterns of temperature and
precipitation, which may influence the development of mosquitoes and the virus.

Minimum and maximum temperatures are found to be positively associated with JE incidences, which
is biologically plausible. Temperature can affect three aspects of JE transmission: the survival and
reproduction rates of mosquitoes, the biting rate of mosquitoes and the development of JE virus within
mosquitoes. Thus, higher temperatures, within limits, can lead to the quicker development of larvae,
shorter times between blood meals and faster incubation times for viral infections within mosquitoes.
As a result, higher temperatures cause mosquito populations to reach a higher density faster and to be
maintained for a longer period, thereby increasing the chance for viral transmission [38].

The minimum temperature results in a better model fit and a greater regression coefficient compared
to the maximum temperature, implying that the minimum temperature presents a greater effect on JE
transmission compared with the maximum temperature. Minimum temperatures might play a more
important role for larvae survival in cold conditions. Similar results were reported for other vector-borne
diseases [39–41].

Precipitation is found to be positively associated with JE incidences. Precipitation would bring a high
relative humidity, which may increase the propagation and development of mosquitoes. High rainfall
can also provide water support for the development of mosquitoes at the larval and pupal stages.

The one-month lag for temperature is consistent with [14,18], and the two-month lag for precipitation
is consistent with [13,18]. There are several periods to be considered for the lagged effect, such as
the time for mosquitoes to develop, the development period of JE virus within the mosquito and the
incubation period of the virus within the human body. The lag times are distinct between temperature
and rainfall, with a shorter lag for temperature. This might result from the difference regarding the
biological mechanisms. The temperature can contribute to the transmission of JE through its effect on the
development of mosquitoes and the viruses within them, whereas rainfall may just affect the mosquitoes.
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Hence, temperature may present a faster and stronger effect. The stronger effect can be observed from
Figure 3 and the regression coefficient in Table 4, in which the variable temperature factors demonstrate
a larger regression coefficient than the precipitation. The interaction between temperature and rainfall
was not included in the model for two reasons. First, it is not unreasonable to assume there is no such an
interaction, which is the usual assumption from most existing studies for vector-borne diseases [17,42].
Second, the preliminary exploratory analysis did not show a significant interaction.

The relationship between climate and JE may be highly dependent on local environmental factors, and
it is not always possible to extrapolate to a broader scale [15]. Therefore, existing results from other sites
may not be appropriate for southwest China. Due to the severe consequences of JE, surveillance for the
early warning of epidemics based on meteorological factors in combination with agricultural variables
may be of paramount importance in southwest China. Our findings give a better understanding for the
JE epidemiology in this area. When designing a JE early warning system in southwest China, health
departments should consider the lag patterns for meteorological factors, as well as the strongest impact
from minimum temperatures.

The limitations of this study should be acknowledged. Firstly, some factors were not included in the
ecological regression, such as the population immunity (including vaccination), the area of the irrigated
land, the socioeconomic status and the control measures for mosquitoes. Unfortunately, those data were
unavailable over the 438 counties in 2006. The hierarchical Bayesian spatial method was used as an effort
to better estimate the parameters for the observed variables by allowing for unmeasured covariates [43].
However, the potential bias cannot be eliminated. Secondly, only the data in 2006 was used to investigate
the association, as it is very difficult in practice to collect all variables over the 438 counties for the
six years.

5. Conclusion

Climate change, especially global warming, has already brought and will continue to bring about
challenges for infectious disease control [44]. In our work, a county-level analysis identified the east part
of southwest China as the high risk area, which may be connected to agricultural and climatic factors, and
therefore, the routine surveillance and the allocation of health resources should be given more attention
in this area. Pig immunization and the separation of pig rearing from human settlements may also assist
in limiting the transmission. Moreover, the monthly mean minimum and maximum temperatures and
monthly rainfall showed lagged correlations with JE. Temperature demonstrated a greater correlation
than rainfall, and the minimum temperature presented a greater model fit than the maximum temperature.
The climatic factors might be considered as possible predictors of JE in southwest China.
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