The Global Contribution of Outdoor Air Pollution to the Incidence, Prevalence, Mortality and Hospital Admission for Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis **Table S1.** The study characteristics for included articles. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect size | adjusted factors | |-------------------------|---------------------------|------------------------------|--|-------------------|---|--|---| | 1991 [1] | Cohort | California | no smoking California Seventh-Day Adventists were monitored for a 6-year period, | TSP | New cases of
definite symptoms
of chronic
bronchitis | Significant association was observed | Age, education, sex,
childhood colds, childhood air
obstructive disease, possible
symptoms, years smoked,
years lived with a smoker, and
years worked with a smoker. | | 2003 [2] | Nested case-control study | Athens | 84 cases and 168 healthy controls | Black
Smoke | Incidence of COPD | Significant association was observed | Age, gender, smoking habits and education | | 2006 [3] | Cohort | 21 cities in 10 EU countries | Randomized subjects from 21 cities | PM _{2.5} | prevalence chronic bronchitis | No significant association was observed | Age, Smoking status, respiratory infections, rhinitis, social class and traffic | | 1993 [4] | cross-sectional study | 53 USurban
areas | Representative sample of US population | TSP | Prevalence of
Chronic Bronchitis | Significant association was observed | Age, race, sex and smoking | | 1993 [5] | cross-sectional
study | Beijing | 1576 subjects with smoking status in age of 40–69 | TSP | Prevalence of chronic bronchitis | Significant
association was
observed | Income, indoor crowding, occupational exposure, cooking gases or fumes, indoor coal combustion and passive smoking | Table S1. Cont. | Publication Year | Study Design | Research Field | settings | Exposure | Outcome | Effect size | adjusted factors | |-------------------------|-------------------------|--------------------------|--|--|------------|--|---| | 2008 [6] | Cohort | 34 cities in US | COPD cases | PM_{10} | COPD death | Significant association was observed for PM_{10} | Age, gender, race, Season of admission, number of days of coronary and medical intensive care, previous diagnoses for some diseases, time period and season | | 2007 [7] | Cohort | Oslo, Norway | All inhabitants of
Oslo, Norway,
aged 51–90 years
on 1992 | PM ₁₀ and PM _{2.5} | COPD death | Both increased COPD mortality in both genders | occupational class and length of education | | 2004 [8] | case-crossover
study | Cook County,
Illinois | Elderly residents with a history of hospitalization for heart or lung disease | PM_{10} | COPD death | No significant association was observed | Mean temperature, humidity, and barometric pressure | | 2001 [9] | case-crossover
study | Barcelona | Residents > 35
years, attended
emergency room
for COPD
1985–1989 and
died 1990–1995 | PM ₁₀ | COPD death | PM ₁₀ increase
associated with
the higher
mortality of
COPD | Temperature, humidity, hot days and influenza days | | 2003 [10] | case-crossover
study | Shanghai | Data of cause-specific mortality and air pollution 2000–2001 | PM_{10} | COPD death | No significant association was observed | Mean temperature and humidity | Table S1. Cont. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect Size | Adjusted Factors | |-------------------------|--------------------------|----------------|--|--|------------|---|--| | 2001 [11] | Time-series study | 10 US cities | Subjects from 10 cities of US | PM_{10} | COPD death | Significant association was observed | Weather and season | | 1992 [12] | Time-series study | Philadelphia | Daily death from 1973–1980 | TSP | COPD death | Significant association was observed | Year, season, temperature, humidity | | 2000 [13] | Time-series study | Mexico | Mortality data of
Mexico city
population | PM_{10} | COPD death | Increased
mortality
associated with
PM | time, month, temperature,
relative humidity, day of the
week and holidays | | 2003 [14] | Time-series
study | Netherland | Mortality counts
from 1986–1994 | PM ₁₀ and
Black
Smoke | COPD death | In some age-specific groups, the significant association was observed | Long-term trends, seasonal
trends, influenza epidemics,
ambient temperature, ambient
relative humidity, day of the
week and holidays | | 1997 [15] | Time-series
study | Birmingham | Mortality data of
Birmingham
population
1992–1994 | PM_{10} | COPD death | The significant association existed in some lag day | Temperature and relative humidity | | 2005 [16] | cross-sectional
study | Japan | The annual statistics and air pollution estimates throughout Japan | PM ₁₀ and PM _{2.5} | COPD death | In females, a
significant
association was
observed | Age and smoking rate | Table S1. Cont. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect Size | Adjusted Factors | |-------------------------|----------------------|-----------------------|---|-------------------|----------------------------------|--|---| | 2002 [17] | Time-series
study | Hong Kong | Daily mortalities
for respiratory
and
cardiovascular
diseases
1995–1998 | PM_{10} | COPD death | Significant
association was
observed | Day of the time series, days of
the week, seasonal variations,
temperature and humidity | | 2009 [18] | Time-series study | Hong Kong | Daily counts of hospitalization and mortalities from the 14 general hospitals 1996–2002 | PM_{10} | COPD death | No significant association was observed | Daily mean temperature, relative humidity and influenza | | 2000 [19] | Time-series study | Shenyang,
China | Air pollution in
1992 and daily
mortality data of
1992 | TSP | COPD death | No significant association was observed | Temperature, humidity, and Sunday | | 2002 [20] | Time-series study | 14 cities in US | Persons ≥ 65
years from
14 cities and
daily PM ₁₀
measurements
1985–1994 | PM_{10} | Hospital
admission of
COPD | No significant association was observed | Season, weather variables (24-h means of temperature, relative humidity, and barometric pressure) and day of week | | 2006 [21] | Time-series study | 204 US urban counties | National database
comprising daily
time-series data
1999–2002 | PM _{2.5} | Hospital admissions for COPD | Significant association was observed | Temperature and dew-point temperature | Table S1. Cont. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect Size | Adjusted Factors | |-------------------------|----------------------|---------------------------|--|--|------------------------------------|---|--| | 2000 [22] | Time-series study | 3 counties in US | Daily hospital
admissions
1987–1995 | PM_{10} and $PM_{2.5}$ | Hospital
admission of
COPD | Significant association was observed | Temporal trends, temperature, relative humidity, and day of week | | 2000 [23] | Time-series study | Nevada | Daily hospital
admissions
1990–1994. | PM_{10} | Hospital
admission of
COPD | Significant association was observed | Weather variables, day of week, seasons, and time trend | | 1994 [24] | Time-series
study | Birmingham,
Alabama | Records for pneumonia and COPD, 1986–1989 | PM_{10} | Hospital admissions for COPD | Significant
association
existed | Time trends, seasonal fluctuations, and weather | | 1994 [25] | Time-series
study | Minneapolis,
Minnesota | Medicare
records for the
years 1986
through 1989. | PM_{10} | Hospital
admissions for
COPD | In lag 0–1 day,
the significant
association was
observed | Temperature, dew point temperature and time terms | | 2005 [26] | Time-series
study | Atlanta | Hospital
admission of
COPD
1993–2000 | PM ₁₀ ,
coarse PM
& PM _{2.5} | Hospital
admissions for
COPD | Non-significant association existed in lag 0–2 day | Day-of-week, hospital
entry/exit, and holidays, time
with monthly knots, season
indicator
variables,temperature and
dew point temperature | | 1994 [27] | Time-series study | Detroit,
Michigan | Hospital
admission of
COPD
1986–1989 | PM_{10} | Hospital
admission of
COPD | Significant
association
existed | Seasonal, temporal trends,
temperature and dew point
temperature | | 2000 [28] | Time-series study | Michigan | Hospital
admission of
COPD
1982–1994 | PM ₁₀ | Hospital admission of COPD | Significant
association was
observed in the
lag 3 day | Temperature, humidity, seasonal cycles and influenza epidemics | Table S1. Cont. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect Size | Adjusted Factors | |-------------------------|----------------------|--|---|--|------------------------------------|---|--| | 2005 [29] | Time-series study | Vancouver,
British
Columbia,
Canada | Dailycounts of
acute COPD
hospitalization
1994–1998 | PM_{10} | Hospital admissions for COPD | Significant
association was
observed | Weather conditions | | 1997 [15] | Time-series study. | Birmingham,
United
Kingdom | Air pollution data
were taken from a
national network
monitoring
station
1992–1994 | PM_{10} | Hospital
admissions for
COPD | Non-significant
association
existed | Day of the week and month,
Maximum daily temperature
and mean daily
relative humidity | | 1993 [30] | Time-series
study | Barcelona | Daily emergency room admissions for residents ≥ 14 years with COPD, 1985–1989 | Black
smoke | Hospital
admissions for
COPD | Significant
association
existed in winter | Temperature, day of the week, and year | | 1996 [31] | Time-series study | Paris | Hospital
admission for
COPD,
1987–1992 | Black
smoke and
PM ₁₃ | Hospital
admission for
COPD | Non-significant association was observed | Linear trend, , day of the week, influenza A epidemic, holidays, temperature, humidity | | 2001 [32] | Time-series
study | Rome | Emergency hospital admissions for respiratory conditions, 1995–1997 | TSP | hospital
admissions for
COPD | Non-significant
association was
observed | The day of study, mean
temperature, mean humidity,
influenza epidemics, and
indicator variables for day of
the week and holidays | Table S1. Cont. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect Size | Adjusted Factors | |-------------------------|-----------------------|-----------------------------------|---|--|--|---|---| | 2009 [33] | Time-series
study | Drobeta-Turnu
Severin, Romania | Hospital admissions of chronic bronchitis and COPD in 586 days | TSP | Hospital
admissions for
COPD and chronic
bronchitis | Significant
association was
observed | Day of the week and holiday
and nonlinear effects of time,
of temperature, of infectious
diseases and humidity | | 2009 [34] | Time-series
study | Nis, Serbia | Daily counts of emergency room visits and air pollution in 2002 | Black
smoke | Emergency room visit for COPD | In lag 0–2 day,
significant
association was
observed | Time trend, seasonal variation, days of week, temperature, relative humidity air pressure, precipitation, rainfall, snowfall and wind | | 1999 [35] | Time-series
study | Hong Kong | Hospital
admission of
COPD in Hong
Kong
1994–1995 | PM_{10} | Hospital
admissions for
COPD | In lag 0–3 day,
significant
association was
observed | Trend, season, and other cyclical factors, temperature, and humidity | | 2007 [36] | Time-series
study. | Hong Kong | Hospital
admission for
COPD and air
condition in
HK 2000–2004 | PM ₁₀ and PM _{2.5} | Hospital
admission for
COPD | Significant
association could
be got in some
lag day | Time trend, season, other cyclical factors, temperature and humidity | | 2009 [18] | Time-series
study | Hong Kong | Hospitalization
from the 14
general
hospitals,
1996–2002 | PM_{10} | Hospital
admission for
COPD | Significant association was observed in lag 0–1 day | Daily mean temperature, relative humidity and influenza | Table S1. Cont. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect Size | Adjusted Factors | |-------------------------|----------------------|----------------|--|------------------|------------------------------------|--|--| | 1998 [37] | Time-series study | Sydney | Hospital
admission of
COPD
1990–1994 | PM_{10} | Hospital
admissions for
COPD | There was a non-significant association in lag 0 day | Weather, seasonal trends and temperature | | 2002 [38] | Time-series
study | Delhi | Daily emergency room visits and air pollution data 1997–1998 | TSP | Emergency room visits for COPD | Non-significant association existed | Season, day of the week, temperature and humidity | | 2011 [39] | Time-series study | Cartagena | Daily
emergency
room visits and
air pollution
data 1995–1998 | TSP | Emergency room visits for COPD | Significant associations were observed in lag 0 day | Season, weather indicators, influenza, day of the week, andpublic holidays | | 2009 [40] | Time-series
study | Sa~o Paulo | COPD emergency room visits and air pollution data 2001–2003 | PM_{10} | Emergency room visits for COPD | Significant associations were observed in lag 0–2 days | Season, temperature and humidity | | 2009 [41] | case crossover study | England | Daily COPD
admissions
were recorded,
2006–2007 | PM ₁₀ | Daily COPD admissions | Non-significant association existed in the mean 8 days | Maximum temperature, pollen, and influenza infection. | Table S1. Cont. | Publication Year | Study Design | Research Field | Settings | Exposure | Outcome | Effect Size | Adjusted Factors | |-------------------------|-------------------------|----------------------|---|-----------|------------------------------------|--|-----------------------------| | 2007 [42] | case crossover study | Taipei, Taiwan | Hospital admissions for COPD and ambient air pollution | PM_{10} | Hospital
admissions for
COPD | In higher temperature, a significant association was | Temperature and humidity. | | | | | data for Taipei
1996–2003 | | | observed | | | 2007 [43] | case crossover
study | Kaohsiung,
Taiwan | Hospital admissions for COPD and ambient air pollution data for Kaohsiung 1996–2003 | PM_{10} | Hospital
admissions for
COPD | Significant association existed | Temperature and humidity. | | 2006 [44] | case crossover
study | 36 US cities | Respiratory hospital admissions and air pollution data 1986–1999 | PM_{10} | Hospital
admission for
COPD | In warm season,
there was a
significant
association | Day of the week and weather | Figure S1. Flow diagram for study search, inclusions and exclusions. Figure S2. Funnel plot for the studies on COPD mortality. Figure S3. Funnel plot for the studies about hospital admission for COPD. ## References - 1. Abbey, D.E.; Mills, P.K.; Petersen, F.F.; Beeson, W.L. Long-Term ambient concentrations of total suspended particulates and oxidants as related to incidence of chronic disease in california seventh-day adventists. *Environ. Health Perspect.* **1991**, *94*, 43–50. - 2. Karakatsani, A.; Andreadaki, S.; Katsouyanni, K.; Dimitroulis, I.; Trichopoulos, D.; Benetou, V.; Trichopoulou, A. Air pollution in relation to manifestations of chronic pulmonary disease: A nested case-control study in Athens, Greece. *Eur. J. Epidemiol.* **2003**, *18*, 45–53. - 3. Sunyer, J.; Jarvis, D.; Gotschi, T.; Garcia-Esteban, R.; Jacquemin, B.; Aguilera, I.; Ackerman, U.; Marco, R.D.; Forsberg, B.; Gislason, T.; Heinrich, J.; Norbäck, D.; Villani, S.; Künzli, N. Chronic bronchitis and urban air pollution in an international study. *Occup. Environ. Med.* **2006**, *63*, 836–843. - 4. Schwartz, J. Particulate air pollution and chronic respiratory disease. *Environ. Res.* **1993**, *62*, 7–13. - 5. Xu, X.; Wang, L. Association of indoor and outdoor particulate level with chronic respiratory illness. *Am. Rev. Respir. Dis.* **1993**, *148*, 1516–1522. - 6. Zanobetti, A.; Bind, M.-A.C.; Schwartz, J. Particulate air pollution and survival in a COPD cohort. *Environ. Health* **2008**, *7*, doi:10.1186/1476-069X-7-48. - 7. Næss, Ø.; Nafstad, P.; Aamodt, G.; Claussen, B.; Rosland, P. Relation between concentration of air pollution and cause-specific mortality: Four-year exposures to nitrogen dioxide and particulate matter pollutants in 470 neighborhoods in Oslo, Norway. *Am. J. Epidemiol.* **2007**, *165*, 435–443. - 8. Bateson, T.F.; Schwartz, J. Who is sensitive to the effects of particulate air pollution on mortality? A case-crossover analysis of effect modifiers. *Epidemiology* **2004**, *15*, 143–149. - 9. Sunyer, J.; Basagaña, X. Particles, and not gases, are associated with the risk of death in patients with chronic obstructive pulmonary disease. *Int. J. Epidemiol.* **2001**, *30*, 1138–1140. - 10. Kan, H.; Chen, B.; Jia, J. A case-crossover study of ambient air pollution and daily mortality in Shanghai. *Zhonghua Liu Xing Bing Xue Za Zhi* **2003**, *24*, 863–867. - 11. Braga, A.L.F.; Schwartz, J. The lag structure between particulate air pollution and respiratory and cardiovascular deaths in 10 US cities. *J. Occup. Environ. Med.* **2001**, *43*, 927–933. - 12. Schwartz, J.; Dcokery, D.W. Increased mortality in Philadelphia associated with daily air pollution concentrations. *Am. Rev. Respir. Dis.* **1992**, *145*, 600–604. - 13. Téllez-Rojo, M.M.; Romieu, I.; Ruiz-Velasco, S.; Lezana, M.A.; Hernández-Avila, M.M. Daily respiratory mortality and PM₁₀ pollution in Mexico City: Importance of considering place of death. *Eur. Respir. J.* **2000**, *16*, 391–396. - 14. Fischer, P.; Hoek, G.; Brunekreef, B.; Verhoeff, A.; Wijnenz, J.V., Air pollution and mortality in The Netherlands: Are the elderly more at risk? *Eur. Respir. J.* **2003**, *21*, 34s–38s. - 15. Wordley, J.; Walters, S.; Ayres, J.G. Short term variations in hospital admissions and mortality and particulate air pollution. *Occup. Environ. Med.* **1997**, *54*, 108–116. - 16. Iwai, K.; Mizuno, S.; Miyasaka, Y.; Mori, T. Correlation between suspended particles in the environmental air and causes of disease among inhabitants: Cross-sectional studies using the vital statistics and air pollution data in Japan. *Environ. Res.* **2005**, *99*, 106–117. - 17. Wong, T.W.; Tam, W.S.; Yu, T.S.; Wong, A.H.S. Associations between daily mortalities from respiratory and cardiovascular diseases and air pollution in Hong Kong, China. *Occup. Environ. Med.* **2002**, *59*, 30–35. - 18. Wong, C.M.; Yang, L.; Thach, T.Q.; Chau, P.Y.K.; Chan, K.P.; Thomas, G.N.; Lam, T.H.; Wong, T.W.; Hedley, A.J.; Peiris, J.S.M. Modification by influenza on health effects of air pollution in Hong Kong. *Environ. Health Perspect.* **2009**, *117*, 248–253. - 19. Xu, Z.; Yu, D.; Jing, L.; Xu, X. Air pollution and daily mortality in Shenyang, China. *Arch. Environ. Health* **2000**, *55*, 115–120. - 20. Janssen, N.A.H.; Schwartz, J.; Zanobetti, A.; Suh, H.H. Air conditioning and source-specific particles as modifiers of the effect of PM₁₀ on hospital admissions for heart and lung disease. *Environ. Health Perspect.* **2002**, *110*, 43–49. - 21. Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. *JAMA* **2006**, *295*, 1127–1134. - 22. Moolgavkar, S.H. Air pollution and hospital admissions for chronic obstructive pulmonary disease in three metropolitan areas in the United States. *Inhal. Toxicol.* **2000**, *12*, 75–90. - 23. Chen, L.; Yang, W.; Jennison, B.L.; Omaye, S.T. Air particulate pollution and hospital admissions for chronic obstructive pulmonary disease in Reno, Nevada. *Inhal. Toxicol.* **2000**, *12*, 281–298. - 24. Schwartz, J. Air pollution and hospital admissions for the elderly in Birmingham, Alabama. *Am. J. Epidemiol.* **1994**, *139*, 589–598. - 25. Schwartz, J. PM₁₀, ozone, and hospital admissions for the elderly in Minneapolis-St. Paul, Minnesota. *Arch. Environ. Health* **1994**, *49*, 366–374. - 26. Peel, J.L.; Tolbert, P.E.; Klein, M.; Metzger, K.B.; Flanders, W.D.; Todd, K.; Mulholland, J.A.; Ryan, P.B.; Frumkin, H. Ambient air pollution and respiratory emergency department visits. *Epidemiology* **2005**, *16*, 164–174. - 27. Schwartz, J. Air pollution and hospital admissions for the elderly in Detroit, Michigan. *Am. J. Respir. Crit. Care Med.* **1994**, *150*, 648–655. - 28. Lippmann, M.; Ito, K.; Nádas, A.; Burnett, R.T. Association of particulate matter components with daily mortality and morbidity in urban populations. *Res. Rep. Health Effect Inst.* **2000**, *95*, 5–72. - 29. Yang, Q.Y.; Chen, Y.; Krewski, D.; Burnett, R.T.; Shi, Y.L.; McGrail, K.M. Effect of short-term exposure to low levels of gaseous pollutants on chronic obstructive pulmonary disease hospitalizations. *Environ. Res.* **2005**, *99*, 99–105. - 30. Sunyer, J.; Sáez, M.; Murillo, C.; Castellsague, J.; Martínez, F.; Antó, J.M. Air pollution and emergency room admissions for chronic obstructive pulmonary disease: A 5-year study. *Am. J. Epidemiol.* **1993**, *137*, 701–705. - 31. Dab, W.; Medina, S.; Quénel, P.; Moullec, Y.L.; Tertre, A.L.; Thelot, B.; Monteil, C.; Lameloise, P.; Pirard, P.; Momas, I.; Ferry, R.; Festy, B. Short term respiratory health effects of ambient air pollution: Results of the APHEA project in Paris. *J. Epidemiol. Community Health* **1996**, *50*, 42s–46s. - 32. Fusco, D.; Forastiere, F.; Michelozzi, P.; Spadea, T.; Ostro, B.; Arcà, M.; Perucci, C.A. Air pollution and hospital admissions for respiratory conditions in Rome, Italy. *Eur. Respir. J.* **2001**, *17*, 1143–1150. - 33. Leitte, A.M.; Petrescu, C.; Franck, U.; Richter, M.; Suciu, O.; Ionovici, R.; Herbarth, O.; Schlink, U. Respiratory health, effects of ambient air pollution and its modification by air humidity in Drobeta-Turnu Severin, Romania. *Sci. Total Environ.* **2009**, *407*, 4004–4011. - 34. Milutinović, S.; Nikić, D.; Stosić, L.; Stanković, A.; Bogdanović, D. Short-term association between air pollution and emergency room admissions for chronic obstructive pulmonary disease in Nis, Serbia. *Cent. Eur. J. Public Health* **2009**, *17*, 8–13. - 35. Wong, T.W.; Lau, T.S.; Yu, T.S.; Neller, A.; Wong, S.L.; Tam, W.; Pang, S.W. Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. *Occup. Environ. Med.* **1999**, *56*, 679–683. - 36. Ko, F.W.S.; Tam, W.; Wong, T.W.; Chan, D.P.S.; Tung, A.H.; Lai, C.K.W.; Hui, D.S.C. Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong. *Thorax* **2007**, *62*, 780–785. - 37. Morgan, G.; Corbett, S.; Wlodarczyk, J. Air pollution and hospital admissions in Sydney, Australia, 1990 to 1994. *Am. J. Public Health* **1998**, *88*, 1761–1766. - 38. Pande, J.N.; Bhatta, N.; Biswas, D.; Pandey, R.M.; Ahluwalia, G.; Siddaramaiah, N.H.; Khilnani, G.C. Outdoor air pollution and emergency room visits at a hospital in Delhi. *Indian J. Chest Dis. Allied Sci.* **2002**, *44*, 13–19. - 39. Cirera, L.; Garcia-Marcos, L.; Gimenez, J.; Moreno-Grau, S.; Tobias, A.; Perez-Fernandez, V.; Elvira-Rendeles, B.; Guillen, J.J.; Navarro, C. Daily effects of air pollutants and pollen types on asthma and COPD hospital emergency visits in the industrial and Mediterranean Spanish city of Cartagena. *Aller. Immunopathol. (Madr.)* **2011**, *40*, 231–237. - 40. Arbex, M.A.; de Souza Conceicao, G.M.; Cendon, S.P.; Arbex, F.F.; Lopes, A.C.; Moyses, E.P.; Santiago, S.L.; Saldiva, P.H.; Pereira, L.A.; Braga, A.L. Urban air pollution and chronic obstructive pulmonary disease-related emergency department visits. *J. Epidemiol. Community Health* **2009**, *63*, 777–783. - 41. Sauerzapf, V.; Jones, A.P.; Cross, J. Environmental factors and hospitalisation for chronic obstructive pulmonary disease in a rural county of England. *J. Epidemiol. Community Health* **2009**, 63, 324–328. - 42. Yang, C.Y.; Chen, C.J. Air pollution and hospital admissions for chronic obstructive pulmonary disease in a subtropical city: Taipei, Taiwan. *J. Toxicol. Environ. Health* **2007**, *70*, 1214–1219. - 43. Lee, I.M.; Tsai, S.S.; Chang, C.C.; Ho, C.K.; Yang, C.-Y. Air pollution and hospital admissions for chronic obstructive pulmonary disease in a tropical city: Kaohsiung, Taiwan. *Inhal. Toxicol.* **2007**, *19*, 393–398. - 44. Medina-Ramón, M.; Zanobetti, A.; Schwartz, J. The effect of ozone and PM₁₀ on hospital admissions for pneumonia and chronic obstructive pulmonary disease: A national multicity study. *Am. J. Epidemiol.* **2006**, *163*, 579–588. - © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).