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Abstract: Ecological land is one of the key resources and conditions for the survival of 

humans because it can provide ecosystem services and is particularly important to public 

health and safety. It is extremely valuable for effective ecological management to explore 

the evolution mechanisms of ecological land. Based on spatial statistical analyses, we 

explored the spatial disparities and primary potential drivers of ecological land change in the 

Poyang Lake Eco-economic Zone of China. The results demonstrated that the global 

Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant 

positive spatial correlation (p < 0.05). The results also imply that the clustering trend of 

ecological land changes weakened in the study area. Some potential driving forces were 

identified by applying the spatial autoregressive model in this study. The results 

demonstrated that the higher economic development level and industrialization rate were the 

main drivers for the faster change of ecological land in the study area. This study also tested 

the superiority of the spatial autoregressive model to study the mechanisms of ecological 

land change by comparing it with the traditional linear regressive model. 
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1. Introduction 

Land use is defined as the activities of human beings that use their labor to obtain material goods and 

services. Land use activities are generally manifested as processes of exchange and conversion between 

humans and substances, energy, and information [1,2]. As the core project of the International Human 

Dimensions Program (IHDP) and the International Geosphere-Biosphere Program (IGBP), the Global 

Land Project (GLP) has been gaining attention from scholars because of its close relationship with social, 

economic, and environmental issues [3–9]. Land Use and Land Cover Change (LUCC) is one of the 

important research topics of the GLP. LUCC not only brings about tremendous changes in the landscape 

structure, but also affects the nutrient cycling and energy flow and has a profound impact on the regional 

biosafety and ecological balance. In contrast with construction land meeting the need of urban 

development and farmland supporting food security, ecological land is defined as the land resources that 

provide natural ecosystem services and maintain regional ecological security. It is one of the basic 

resources and conditions for the survival of humans and other organisms. Ecological land plays an 

irreplaceable role in the healthy maintenance of urban or regional ecosystems. Furthermore, ecological 

land makes the lives of urban residents better by providing a variety of ecosystem services, including the 

provision of clean drinking water, regulating climate, and controlling floods. In the 21st century, 

urbanization is an irrepressible trend as human society develops. Urban expansion cannot be avoided; 

consequently, many ecological lands, which play a pivotal role in ecological service functions, will be 

converted to construction land [10]. Urban expansion has caused extremely large impacts on regional 

and global ecosystems [11]. Protecting ecological land, which is gradually improving, and restoring the 

serious ecological damage zone and refunding the natural land is significant because it can maintain the 

ecological balance, improve the quality of a regional eco-environment, promote the harmonious 

co-existence of man and nature, and realize sustainable economic and social growth. 

In China, the land use management objectives are to ensure survival, economic development, and 

environmental protection. The object of environmental protection in China now still rests on the 

traditionally rational level, and is less considered in land use planning practices. Because of the impacts 

of policies that can be characterized as taking into account food problems first, and economical 

construction and ecological protection last, land administration departments in China have long 

highlighted the functions of carrying, producing, and utilizing land resources [12]. The land 

management department in China has not paid sufficient attention to land functions that support and 

maintain the stability of natural and artificial ecosystems. Because the current land classification system 

in China has no classification for ecological land, the goals of environmental protection cannot be 

reflected in the various levels of land-use planning programs. Because of the increasing demand for 

construction land, ecological land in China faces the threat of agricultural exploitation because of the 

policy “cultivated land requisition-compensation balance”.  
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The Poyang Lake Region of China is an important eco-zone that was delineated by the World Wide 

Fund for Nature (WWF). Since the beginning of the 1990s, however, rapid industrial development 

coupled with multiple pressures—including population growth, energy consumption, and environmental 

degradation—has caused increasingly prominent ecological and environmental problems in the Poyang 

Lake Eco-economic Zone. It is necessary to study the evolved mechanisms of ecological land in the 

Poyang Lake Eco-economic Zone because the information is highly valuable for understanding 

ecological land and the vast eco-environment effects of the LUCC. It is particularly beneficial for 

enriching the spatial strategy of maintaining regional ecological security. It is urgent to study the 

evolutionary characteristics and the factors that influence ecological land change in the Poyang Lake 

Eco-economic Zone.  

Most of the traditional methods that measure the spatial difference in land-use changes assume that 

the studied spatial entities are independent and include little consideration of spatial correlations. It is 

difficult to reflect the overall regional differences and spatial heterogeneity of land-use changes. Spatial 

statistical methods, including exploratory spatial data analysis (ESDA) and spatial autoregressive 

analysis, can address spatial autocorrelation problems. Among them, ESDA is one of a series of spatial 

data analysis methods and technologies [13]. Through the description and visualization of the spatial 

pattern of land use change, ESDA can determine the spatial concentration and heterogeneity and reveal 

the spatial interaction mechanisms between research objects. To date, the ESDA method has been 

widely used in regional economic development, fire risk analyses, and studies of house price patterns, 

water environment management, land-use change studies, and other research areas [13–19]. When 

determining the driving forces of land use change by a classic linear regression model, we usually ignore 

the influence of spatial autocorrelation. The spatial autoregressive model is suitable for processing 

spatial data and providing a statistically reasonable method. Thus, the advantage is that the spatial 

autoregressive model identifies the spatial variation in the driving forces. The spatial autoregressive 

model is also widely applied for studying point-source pollution, groundwater nitrate concentration, 

ecology, water quality, and land use change [19–27]. 

The main purposes of this study are: (1) to explore the spatial correlation and heterogeneity of 

ecological land change in the Poyang Lake Eco-economic Zone, (2) to find the potential influencing 

factors of ecological land change in the study area, and (3) to test the superiority of the spatial 

autoregressive model by comparing it with the traditional linear regressive model. 

2. Materials and Methods 

2.1. Study Area 

The Poyang Lake Eco-economic Zone (28°30′N–30°06′N, 114°29′E–117°25′E) is located in the 

northern part of Jiangxi Province, China and is approximately 51,200 km2 in area (Figure 1). In natural 

conditions, the study area belongs to a subtropical humid climate zone with an annual average 

temperature of 16 to 18 °C and rainfall average of 1,600 mm. The main soil types include humid-thermo 

ferralitics, red earths, and yellow earths. The Poyang Lake Eco-economic Zone study area includes 38 

counties and had a population of 20.53 million and a GDP of 5,544.76 billion Yuan (RMB) in 2010. The 

study area provides ecosystem services of flood-water storage, climate regulation, and pollution 
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degradation. Unreasonable land-use patterns have led to heavier soil erosion, loss of biodiversity, 

deforestation, and degradation of wetland functions. The Poyang Lake Eco-economic Zone is in a stage 

of rapid urbanization and industrialization. This is not only a golden period of economic development 

but also a critical period of increasing resources and energy pressures, which deteriorates ecosystems.  

Figure 1. Map of the location of the Poyang Lake Eco-economic Zone in China. 

 

2.2. Data 

The land-use data used in this study were derived from the 1:100,000 national land-use database of 

the Data Center for Resources and Environmental Sciences of the Chinese Academy of Sciences 

(RESDC), which has successively collected data every five years since the late 1980s (henceforth 

referred to as 1990) [28]. To verify the accuracy of ecological land data, we used 1,000 samples for 

verification by random spatial sampling. The results of the validation study demonstrate that the 

land-use data for 1990, 2000, and 2005 have an accuracy of greater than 90%. The classification 

accuracy of land-use data for 1995, however, is not high at only 69.12%. Thus, the land-use data for 

1990, 2000, and 2005 were selected to study the mechanisms of ecological land changes. The ecological 

land types were divided into forestland, grassland, and wetland. DEM data with a spatial resolution of 30 

m × 30 m were also collected from the Data Center for Resources and Environmental Sciences of the 

Chinese Academy of Sciences. All of the data were resampled to a resolution of 100 m × 100 m and 

aggregated at the county level to match the counties. Socioeconomic data at the county level was derived 
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from the statistics yearbook in the Jiangxi Province from 2000 to 2010 and included the total population, 

rural population, total employees, employees in the primary sector, net per capita income of farmers, 

number of rural laborers, and GDP. 

2.3. Methods 

2.3.1. Global Spatial Autocorrelation 

There are two different scales to measure regional spatial dependence: The global spatial 

autocorrelation and the local spatial autocorrelation. The global spatial autocorrelation is a measure of 

the overall clustering of some geographical phenomena. Three common statistical algorithms in the 

global spatial autocorrelation are Moran’s I, Geary’s C, and Getis’s G [2–32]. Moran’s I is a weighted 

correlation coefficient that is used to detect departures from spatial randomness. Moran’s I is used to 

determine whether neighboring areas are more similar than would be expected under the null hypothesis. 

In this paper, Moran’s I was used to measure the global spatial autocorrelation of ecological land change 

in the Poyang Lake Eco-economic Zone of China. Moran’s I is defined as: 
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where N is the number of spatial units indexed by i and j, X is the ratio of ecological land change, X  is 

the mean of X, and Wij is the matrix of weights that, in some cases, is equivalent to a binary matrix with 

ones in position i,j whenever observation i is a neighbor of observation j and zero otherwise. 

Negative (positive) values of Moran’s I indicate a negative (positive) spatial autocorrelation. Moran’s I 

values range from −1 (indicating perfect dispersion) to +1 (perfect correlation). A zero value indicates a 

random spatial pattern. For statistical hypothesis testing, Moran's I values can be transformed to a Zscore, 

in which values greater than 1.96 or less than −1.96 indicate a spatial autocorrelation that is statistically 

significant at the 5% level. The significance of Moran’s I can be judged by calculating the variance of 

Moran’s I and then comparing the following statistic to the standard normal distribution. The Zscore is 

defined as: 
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In Equation (2), E (I) is the expected value of Moran’s I and Var (I) is the variance of Moran’s I.  
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Ii is the indicator of spatial association (LISA), Z is the deviation of the variable of the ratio of ecological 

land change with respect to the mean, and N is the number of analysis units in the map. 

A scatter plot of Moran’s I in a spatial autocorrelation analysis can directly reflect the degree of spatial 

autocorrelation [30]. The first (high-high) and third (low-low) quadrant in the Moran’s I scatter plot 

represent spatial clustering of similar values (either high or low), which is expressed as a positive local 

spatial autocorrelation. The second (low-high) and fourth (high-low) quadrant in the Moran’s I scatter 

plot represent clustering of dissimilar values (e.g., a location with high values surrounded by neighbors 

with low values), which is expressed as a negative local spatial autocorrelation. Local spatial clusters, 

which are sometimes referred to as hot spots, may be identified as those locations or sets of contiguous 

locations for which the LISA is significant. The LISA definition presented here is easy to implement and 

readily lends itself to visualization [30]. In this study, we use the ecological land change ratio as the 

dependent variable, and two periods from 1990 to 2005 are considered at the Poyang Lake Economic 

Zone county level. The equation for ecological land change ratio is as follows: 
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where t1, t2 are, respectively, the early year and last year (t2 > t1), and 
1t

x , 
2tx represent the ecological 

land area at time t1 and t2, respectively.  

2.3.3. Spatial Autoregressive Model 

The most general formulation of a spatial autoregressive model is Euqation (5) [25,29–31]:  

(5)  

where y is an (n × 1) vector that represents the dependent variable, x is an (n × k) matrix that represents 

the k − 1 independent variables, β is a (k × 1) vector of error terms that are presumed to have a covariance 

structure, ρ is a spatial lag parameter to be estimated, W is an (n × n) “weights” matrix that defines the 

“neighborhood” structure in the spatial process such that Wu is an n × 1 vector of spatial lags of the 

model disturbance term u, and ɛ is an (n × 1) vector of independently (but not necessarily identically) 

distributed errors. From the general formulation of the spatial autoregressive model, we can derive four 

spatial regressive models. When ρ = 0 and λ = 0, Euqation (5) transforms into the ordinary linear 

regression model, which implies that there is no spatial attribute influence in the regression model. 

When ρ ≠ 0, β = 0, and λ = 0, Euqation (5) transforms into the first-order spatial autoregressive model, 

which is similar to the first-order autoregressive model in the time series analysis. It reflects the related 

characteristics of variables in space, which implies that the dependent variable in the research area is 

impacted by the dependent variable in its adjacent areas. 

When ρ ≠ 0, β ≠ 0, and λ = 0, Euqation (5) transforms into the mixed first-order spatial autoregressive 

model, namely the spatial lag model (SLM). In this model, the dependent variable (Y) in the research 

area is not only related with independent variables (X) in its area but also with the dependent variable 

(WY) in its adjacent areas. The SLM probes into the variables as if there is a diffusion phenomenon of 

each variable in a region (overflow effect). 

),0(~ 2

2

1

nIN

uwu

uxywy











Int. J. Environ. Res. Public Health 2014, 11 589 

 

 

When ρ = 0, β ≠ 0, and λ ≠ 0, Equation (5) transforms into the residual spatial autoregressive model, 

namely the spatial error model (SEM). In this model, the dependent variable (Y) in the research area is 

not only related with the independent variables (X) in its area but also with the independent variable 

(WY) and the dependent variables (WX) in adjacent areas. 

The traditional R2 measure of fit is not suitable for the spatial regressive model. Instead, a number of 

so-called pseudo R2 measures can be computed. In spatial statistics, the pseudo R2 is defined as the ratio 

of the variance of the predicted values to the variance of the observed values for the dependent  

variable [25,30]. This variance ratio is equivalent to the R2 in the standard regression model but not in 

the spatial lag model and the SEM [25,30]. Measure indicators of fit for the spatial regressive models 

based on the maximum likelihood estimation include the Akaike information criterion (AIC), the 

maximized log likelihood (LIK), and the Schwartz criterion (SC). The model with the least AIC, greatest 

LIK, or least SC has the best goodness-of-fit [25,30]. 

3. Results 

3.1. Change of Ecological Land  

Table 1 shows the changes in ecological land of the Poyang Lake Eco-economic Zone from 1990 to 2005. 

From Table 1, we can conclude that forestland is the main type of ecological land in the Poyang Lake 

Eco-economic Zone. Although the percentage of forestland increased from 72.17% in 1990 to 72.58%  

in 2005, the percentage of wetland decreased from 20.69% in 1990 to 20.42% in 2005. The total area of 

ecological land in the Poyang Lake Eco-economic Zone decreased by 178.17 km2 from 1990 to 2005. 

To better reflect the evolutionary characteristics of the spatial disparities of ecological land change, 

the study time is divided into two sub-stages. At the 95% confidence level, the Moran’s I value of 

ecological land change from 2000 to 2005 is significantly positive. This result indicates that the high or 

low values of ecological land changes in the research area are the same as its surrounding counties. From 

Table 2, we can see that the global Moran’s I value decreased from 0.2091 during the 1990 to 2000 time 

period to 0.1380 during the 2000 to 2005 period, which implies that the clustering trend of ecological 

land change in the Poyang Lake Eco-economic Zone is weakening.  

3.2. Local Spatial Disparities of Ecological Land 

3.2.1. Local Moran’s Ii  

To explore in depth the local spatial disparities of ecological land change from 1990 to 2005 in the 

Poyang Lake Eco-economic Zone, we used the OpenGeoda software package and obtained the results of 

the local Moran’s I and its significant test during the 1990 to 2000, 2000 to 2005, and 1990 to 2005 time 

periods (see Table 3).  

Table 3 presents the range of local Moran’s I values from 1990 to 2005 of each county in the Poyang 

Lake Eco-economic Zone (−0.5106, 1.3989). The negative value of the local Moran's I imply that there 

is spatial heterogeneity in the ecological land. The range of local Moran’s I values of each county in the 

study area is 1.8825 during the 1990 to 2000 time period. The maximum value of the local Moran’s I is 

1.2356 during the 2000 to 2005 time period and 1.3989 during the 1990 to 2005 time period, and all the 
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maximum values are from Nanchang County. The minimum value of the local Moran’s I is −0.8155 

during the 1990 to 2000 and is located in Jingdezhen County. The minimum value of the local Moran’s I 

during the 2000 to 2005 time period is located in Jinxian County. Table 3 also indicates that 12% of the 

counties during the 1990 to 2000 time period and 19% of the counties during the 2000 to 2005 time 

period are significantly heterogeneous. The changes in the rate of local Moran’s I values indicate the 

upward and downward trends, respectively. Table 3 also indicates that the spatial clustering of 

ecological land change at the county level weakened and the spatial heterogeneity increased.  

Table 1. Ecological land changes in the Poyang Lake Eco-economic Zone from 1990 to 2005. 

Ecological Land Type 
1990 2000 2005 

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

Forestland 22,044.98 72.17 22,056.81 72.25 22,040.23 72.58 

Grassland 2,182.70 7.15 2,165.48 7.09 2,127.52 7.01 

Wetland 6,318.69 20.69 6,306.43 20.66 6,200.45 20.42 

Ecological land 30,546.37 100.00 30,528.72 100.00 30,368.20 100.00 

Table 2. Global Moran’s I value and its statistical test for ecological land change from 1990 to 2005. 

Time period Moran’s I E(I) Mean ZScore 

1990~2000 0.2091 * −0.0323 0.0298 2.2269 

2000~2005 0.1380 * −0.0323 −0.0299 1.9848 

1990~2005 0.1646 * −0.0323 −0.0302 2.0425 

Note: * p < 0.05. 

Table 3. Related parameters of the local Moran’s I for ecological land change in the Poyang 

Lake Eco-economic Zone from 1990 to 2005. 

Time period Minimum  Maximum Mean Moran’s Ii (+) Moran’s Ii (−) Range 

1990~2000 −0.8155 1.0670 0.2025 9.2379 2.7569 1.8825 
2000~2005 −0.4629 1.2356 0.1144 5.5991 1.9398 1.6985 
1990~2005 −0.5106 1.3989 0.5943 7.4170 2.3153 1.9095 

3.2.2. Spatial Association and Distribution Features Based on the Local Moran’s Ii 

If the variable Z and spatial variable Wz at the research unit are calculated and used as the lateral axis 

and longitudinal axis, we can obtain the Moran scatter plot of ecological land change. Thus, the 

standardized value (Std-Iclc) of the research observations is used as the lateral axis, and the spatial lag 

value (Lag-Iclc) is the longitudinal axis. The Moran scatter plot of ecological land change composed of 

the local Moran’s Ii for each county in the Poyang Lake Eco-economic Zone is shown in Figure 2.  

A positive Std-Iclc value indicates that the research unit belongs to those areas that have high values of 

ecological land changes. A negative Std-Iclc belongs to those areas that have low values of ecological 

land change. The number of areas with a positive Std-Iclc value accounts for 72% of the land area during 

1990 to 2005 (see Table 4). The positive Lag-Iclc value in the Moran scatter plot indicates that the 

surrounding areas of research unit belong to those areas with high values of ecological land change. 

From Table 4, we can see that the number of areas with a positive Lag-Iclc value account for 40% during 
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1990 to 2005. The number of areas with a positive Lag-Iclc value increased from 44% during 1990 to 

2000 to 84% during 2000 to 2005, which implies that number of surrounding areas of research units with 

a high value of ecological land change increased because of the spatial association. The number of areas 

with a positive Std-Iclc value increased from 31% during 1990 to 2000 to 38% during 2000 to 2005. 

Figure 2. Moran scatter plot of the ecological land at the county level from 1990 to 2005.  

 

Table 4. Related parameters and disparity type of the standardized variable Z for ecological 

land change at the county level (%). 

Time period 

Std-Iclc 

>0 

Std-Iclc 

<0 

Lag-Iclc 

>0 

Lag-Iclc 

<0 
H–H L–L L–L H–L 

Ratio Ratio Ratio Ratio 
Comparison 

ratio 
Ratio

Comparison 

ratio 
Ratio

Comparison 

ratio 
Ratio 

Comparison 

ratio 
Ratio

1990~2000 68.75 31.25 43.75 56.25 S+L+ 34.38 S+L− 34.38 S−L− 21.88 S−L+ 9.38 

2000~2005 62.50 37.50 84.38 15.63 S+L+ 59.38 S+L− 3.13 S−L− 25.00 S−L+ 12.50

1990~2005 71.88 28.13 40.63 59.38 S+L+ 37.50 S+L− 34.38 S−L− 25.00 S−L+ 3.13 

Using to the positive or negative attributes of the Std-Iclc and Lag-Iclc values, we can obtain the four 

types of areas of ecological land change (Table 4). The four types of areas are referred to as the 

High-High (H-H) type, which has a positive correlation; the Low-Low (L-L) type, which has a positive 

correlation; the Low-High (L-H) type, which has a negative correlation; and the High-Low (H-L) type, 

which has a negative correlation.  

From Table 4, we can conclude that the number of areas that belong to the L-L type accounted for 

30% during 1990 to 2005 (e.g., the counties of Yugang, Pengze, and Fuliang). This result occurred 

primarily because of the low urbanization and industrialization in the aforementioned areas. From Table 4, 

we can see that the number of the areas that belong to the H-H type accounted for 34% during 1990 to 2005, 

(e.g., Jiujiang, Fuzhoushi, and Xinyushi countie). This result occurred because of the greater urbanization 

and industrialization level in the aforementioned areas. 
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To effectively explore the spatial characteristics of ecological land change in the Poyang Lake 

Eco-economic Zone during 1990 to 2005, LISA clustering maps of two time stages formed by matching the 

type to which the area belongs with the corresponding spatial location of each county during 1990 to 2000 

and during 2000 to 2005 are shown in Figures 3 and 4. 

Figure 3. LISA clustering of ecological land change in the Poyang Lake Eco-economic 

Zone during 1990-2000 at the county level.  

 

Figures 3 and 4 indicate that the areas that belong to the H-H type have a positive spatial 

autocorrelation during 1990 to 2000 and during 2000 to 2005, where Std-Iclc > 0 and Lag-Iclc > 0. The 

local spatial disparities of ecological land change are stronger with local homogeneity in those areas, 

where high values are surrounded by neighbors with high values. Table 4 indicates that the proportion of 

those type of areas increased from 34% during 1990 to 2000 to 59% during 2000 to 2005. Especially at 

the 5% significance level, the Xingan, Yingtan, and Xinzi counties have a significantly positive 

relationship for 1990 to 2000 and 2000 to 2005 (Figures 3 and 4).  

From Figures 3 and 4, we can conclude that the areas that belong to the L-L type have a positive spatial 

autocorrelation, where Std-Iclc < 0 and Lag-Iclc < 0. This result implies that the local spatial disparities of 

ecological land change is small in those areas, and low values are surrounded by neighbors with low 

values. The number of L-L-type areas increased from 7 during 1990 to 2000 to 8 during 2000 to 2005.  

The L-L type area ratio (22%) is less than the average level in the Poyang Lake Eco-economic Zone 

during 1999 to 2000. All areas that belong to this type are significantly distributed in the surrounding 

areas of the Poyang Lake, where protection policies of ecological land have been effective in the past 15 

years. At the 5% significance level, Poyang and Yugang Counties both have significantly positive 

relationships during 1990 to 2005 and during 2000 to 2005 (Figures 3 and 4).  
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Figure 4. LISA clustering of ecological land change in the Poyang Lake Eco-economic 

Zone during 2000–2005 at the county level. 

 

The areas that belong to the H-L type exhibit a negative spatial autocorrelation, where Std-Iclc > 0 and 

Lag-Iclc < 0. This result implies that clusters of dissimilar values (e.g., locations with high values 

surrounded by neighbors with low values) forms the hot spots of local heterogeneity. There are three 

areas that belonged to the H-L type during 1990 to 2000 and four areas that belonged during 2000 to 2005. 

At the 5% significance level, Duchang and Fuliang Counties have significantly negative relationships 

during 1990 to 2005 (Figure 3). 

The areas that belong to the L-H type have a negative spatial autocorrelation, where Std-Iclc < 0 and 

Lag-Iclc > 0 (Figures 3 and 4). This result implies that clusters of dissimilar values (e.g., locations with 

low values surrounded by neighbors with high values) form cold spots of local heterogeneity. There 

were 11 L-H types during 1990 to 2000 and 1 during 2000 to 2005.  

The above results demonstrate that cluster plot of LISA can measure the spatial heterogeneity and 

identify the hot and cold spots of spatial clustering in the local space for ecological land change. 

3.3. Influencing Factors of Ecological Land Change 

To explore the influencing factors of ecological change during 2000 to 2005 in the Poyang Lake 

Eco-economic Zone, seven independent variables were selected for the standard regression model. 

Before conducting the regression analysis, we performed a preliminary analysis between independent 

variables. Preliminary results of the correction analysis between ecological land change and six 

economic variables can be observed in Figure 5.  

From Figure 5, we can conclude that the variables per capita GDP and change of per capita net 

income are positively related with ecological land change from 2000 to 2005 in the study area.  

In contrast, there are positive relationships between the ratio of population growth, percentage of 
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agricultural population, and ecological land change during 2000 to 2005 in the Poyang Lake 

Eco-economic Zone (Figure 5). 

Figure 5. Scatter plot of ecological land change during 2000 to 2005 in Poyang Lake 

Eco-economic Zone.  

  

  

  

The coefficient of determination, R2, between the independent variables ranges from 0.06 to 0.52, 

which is less than the critical value of 0.8. All of the independent variables can be incorporated into the 

three regression models. Table 5 presents the results of statistical tests of three regression models.  

The SEM has the best goodness-of-fit compared with the other two models because of its lowest AIC, 
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highest LIK, or lowest SC (Table 5). Thus, the SEM is better than the linear regression model and the 

SLM for analyzing the factors that affect ecological land change in the study area.  

Table 5. Statistical tests of three regression models. 

Model type R2 or Pseudo R2 LIK AIC SC 

Linear regression model 0.416 93.476 −170.953 −158.981 
Spatial lag model 0.459 94.261 −170.522 −157.053 

Spatial error model 0.644 101.646 −187.292 −175.319 

The results for the parameters of the three regression models are listed in Table 6. The statistical test 

of linear regression model indicates that there is no significant relationship between the variables and 

ecological land change in the traditional linear regression model. Compared with the significance of the 

parameters of three models, we can conclude that the significance level of some parameters increased 

and two variables, the percentage of agricultural population and the percentage of farm employees 

number, are significantly correlated with ecological land change in the SEM (p < 0.05). The SEM was 

used to analyze the driving forces of ecological land in the Poyang Lake Eco-economic Zone.  

From the statistical test of spatial error model, we can see that the error parameter, λ, of the SEM 

passed the significance test, which implies that the ecological land change of the 38 counties in the 

Poyang Lake Eco-economic Zone is strongly spatially dependent. This result illustrates that the spatially 

dependent effect of the adjacent areas of ecological land change in the study area exists in the error term 

and not only contains the interaction of ecological land change between regions but is also present in the 

space of various complex factors.  

From the statistical test of spatial error model, we can conclude that the most influential factor is the 

variable per capita GDP, which implies that ecological land change in Poyang Lake Eco-economic Zone 

during 2000 to 2005 was primarily induced by economic development, i.e., the higher the economic 

development level, the greater the changes in ecological land.  

Table 6 also demonstrates that the variables percentage of agricultural population and percentage of 

farm employees number are the second-most crucial factors that impacted ecological land change in the 

Poyang Lake Eco-economic Zone during 2000 to 2005. From Table 6, we can see that the variable mean 

altitude is positively related with ecological land change. This result implies that the greater ecological 

land change is likely to occur in the mountainous area. The spatial lag model demonstrates that the 

variables percentage of agricultural population and percentage of farm employees number are 

negatively related with ecological land change at the 5% significance level. This result implies that the 

lower the percentage of agricultural population and farm employees number, the greater the ecological 

land change. The two variables percentage of agricultural population and percentage of farm employees 

number are also expressions of the level of urbanization. Urbanization makes more farmers engage in 

non-agricultural industries and move out of rural areas. In those more-urbanized area, more ecological 

land disappeared because of urban construction. The result also proves that the spatial autoregressive 

model can find some potentially influencing drivers of ecological land change compared with the 

traditional linear regression model.  



Int. J. Environ. Res. Public Health 2014, 11 596 

 

 

Table 6. Parameters of the three regression models for ecological land change in the Poyang 

Lake Eco-economic Zone during 2000 to 2005. 

Variable Coefficient Std. Error t Statistic Probability

(A) Linear regression model 
Constant 0.016 0.029 0.540 0.594 

Per capita GDP (104￥/per) 0.002 0.001 1.881 0.072 
Ratio of population growth (2000–2005) (%) −0.037 0.079 −0.474 0.639 

Mean altitude (m) 6.42E−05 4.44E−05 1.447 0.160 
Percentage of agricultural population (%) −0.053 0.037 −1.435 0.164 

Percentage of farm employees number (%) −0.055 0.0339 −1.657 0.110 
Per capita net income (￥/per) −2.41E−06 3.66E−06 −0.659 0.516 

Change of per capita net income (2000–2005) (￥/per) 0.008 0.011 0.725 0.475 

Variable Coefficient Std. Error Z Statistic Probability

(B) Spatial lag model 
Ρ −0.366 0.239 −1.529 0.126 

Constant 0.019 0.025 0.793 0.428 
Per capita GDP (104￥/per) 0.003 0.001 2.725 0.006 

Ratio of population growth (2000–2005) (%) −0.055 0.067 −0.823 0.411 
Mean altitude (m) 7.70E−05 3.86E−05 1.995 0.046 

Percentage of agricultural population (%) −0.056 0.0312 −1.779 0.075 
Percentage of farm employees number (%) −0.072 0.029 −2.495 0.013 

Per capita net income (￥/per) −3.15E−06 3.15E−06 −0.999 0.317 
Change of per capita net income (2000–2005) (￥/per) 0.009 0.009 0.963 0.335 

Variable Coefficient Std. Error Z Statistic Probability

(C) Spatial error model 
Λ −0.828 0.240 −3.447 0.001 

Constant 0.019 0.020 0.937 0.348 
Per capita GDP (104￥/per) 0.004 0.000 3.888 0.000 

Ratio of population growth (2000–2005) (%) −0.061 0.062 −0.986 0.324 
Mean altitude(m) 4.37E−05 3.20E−05 1.3666 0.172 

Percentage of agricultural population (%) −0.069 0.029 −2.362 0.018 
Percentage of farm employees number (%) −0.070 0.022 −3.132 0.002 

Per capita net income (￥/per) −8.63E−07 2.44E−06 −0.354 0.724 
Change of per capita net income (2000–2005) (￥/per) 0.007 0.006 1.170 0.242 

4. Discussion and Conclusions 

The ESDA, which measures spatial association, can solve the spatial relationship problem.  

It provides stronger support for the quantitative analysis of spatial disparities in ecological land change. 

We can conclude that the ESDA is an effective method for measuring spatial patterns of ecological land 

changes and can be used to explore the distribution characteristics, local heterogeneity, and local 

homogeneity by comparing it with the general clustering analysis.  

The regional distribution of ecological land change had significant clustering characteristics during 

1990 to 2005 in the Poyang Lake Eco-economic Zone, which indicates that the ecological land changes 

of the research unit and its surrounding areas are faster than in other areas. Moran’s I value of ecological 
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land change had a declining trend during 1990 to 2005, which implies that the clustering trend of 

ecological land changes weakened in the study area.  

Based on the compound attribute of the Std-Iclc and Lag-Iclc values, four disparity types and two 

spatial associations were identified. Those types and their surrounding areas with less ecological land 

change are significantly distributed around the Poyang Lake. 

The spatial dependence of ecological land change may be related to the spillover effects of the 

regional economy, regional population flow and concentration, the diffusion effect of urbanization of 

ecological land, and other factors [29]. The results of the spatial autoregressive model demonstrate that 

the ecological land change in the Poyang Lake Eco-economic Zone is primarily induced by the  

per capita GDP, percentage of agricultural population, and percentage of farm employees’ number. The 

high urbanization rate and economic development level may be the main causes for ecological land 

change. Meanwhile, those results also demonstrate that the spatial autoregressive model can better 

distinguish the main drivers of ecological land change in the study area. 

In this paper, the influential factors of ecological land changes in China were analyzed using the 

classic linear regression model, and the effects of spatial autocorrelation were ignored. The spatial 

regression model provides a statistically reasonable solution. Compared with the classic linear 

regression model, there is no spatial autocorrelation of the residuals in the SEM, and it has a better 

goodness-of-fit. The SEM can reveal various factors of ecological land change and effectively solve the 

problem of ecological land change that is related to the spatial distribution. The estimated results of are 

spatial autoregressive model more accurate and reliable. This paper also demonstrated that some 

potential driving forces for economical land change can be found by applying the spatial autoregressive 

model rather than the general linear regressive analysis. 

Although economic factors are always the most important driving force of land use changes, the 

mechanisms of land use changes cannot be comprehensively and systematically reflected from only an 

economic angle [5,11]. There are many other factors that influence ecological land change, such as land 

and agricultural policy in China, which includes the conversion of cropland to forest and grassland 

project, the agricultural subsidy policy, and the cultivated land protection policy. Therefore, considering 

how to determine policies is very important for exploring the mechanisms of ecological land in the 

spatial autoregressive model.  
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