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Abstract: This study aimed to describe past time trends of the prevalence of former 

smokers in Italy and to estimate prevalence projections using a Bayesian approach.  

An age-period-cohort (APC) analysis has been carried out in order to investigate the effect 

of the age, period and birth cohort on the prevalence of former smokers during 1980–2009.  

A Bayesian APC model with an autoregressive structure for the age, period and cohort 

parameters has been used to estimate future trends. Results showed that awareness of harm 

from smoking occurred at younger ages with each advancing cohort, and that women were 

more likely to attempt to stop smoking during pregnancies and breastfeeding, whereas men 

attempted to quit only when smoking-related diseases became evident. Projections of 

future trend recorded a further increase in the number of former smokers in future decades, 

showing an estimate of the “end of smoking” around years 2060 and 2055 in men and 

women, respectively. The application of the APC analysis to study the prevalence of 

former smokers turned out to be a useful method for the evaluation of past smoking trends, 

reflecting the effects of tobacco control policies on time and generations, and to make 

projections of future trend. 
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1. Introduction 

Smoking is a major risk factor for many tumours and other chronic diseases, and reduces length and 

quality of life [1]. The implementation of tobacco control policies (TCP) recommended by the World 

Health Organization–Framework Convention on Tobacco Control (WHO-FCTC) is considered the 

leading primary prevention strategy to reduce smoking prevalence [2]. 

In Italy, several policies have been already implemented since the 1970s. A smoking ban in 

hospitals, schools, cinemas, and public transportations was introduced in 1975, followed by a smoking 

ban in front-offices of public administrations in 1995, and finally by a comprehensive smoking ban in 

all workplaces and in the hospitality sector in 2005 [3]. Tobacco advertising and promotion were 

almost totally banned in Italy since 1991, as in most European countries [4]. Moreover, the real price 

of cigarettes in 1990–2000 increased at an annual 3% rate [5]. In addition, several smoking cessation 

services were established since the end of the 1990s [3]. 

In response to all these efforts, smoking rates in Italy have progressively declined. Male smoking 

prevalence declined from 41.6% in 1986 to 29.5% in 2009, an average annual drop of 1.2%. 

Meanwhile, female smoking prevalence declined from 19.2% in 1986 to 17.0% in 1993, and stalled at 

that level [6]. At the same time, the prevalence of former smokers in men almost doubled from 15.2% 

in 1986 to 29.8% in 2009, whereas in women increased more than four times (from 3.4% to 15.8%). 

Prevalence of former smokers is a cumulated measure of smoking cessation, which accounts for those 

who stopped smoking in previous years. The proportion of annually quitters, however, was estimated 

to be very low in Italy: it was higher than 5% only in elderly persons and in women aged < 30 years, 

while in adults aged 30–49 and 50–59 cessations were about 2% and 3–5%, respectively. In addition, 

most of quit probabilities stalled from 1986 to 2009 [7]. 

The effect of smoking cessation policies may be highlighted by studying the prevalence of former 

smokers. Variations in prevalence of former smokers over time may be due to age, to a period effect, 

which is a reflection of changes in pro-tobacco efforts and smoking cessation policies in time, as well 

as to a cohort effect that may reflect different cumulative exposures to pro- and anti-tobacco  

efforts [8]. The age-period-cohort (APC) model is a descriptive tool for observations from a Lexis 

diagram that describes rates as a product of an age, a period, and a cohort effect in order to give an 

overview of the magnitude of the rates, the variation by age and time trends in the rates [9]. Such 

model is typically used in investigating vital rates with data from cancer registries or other disease 

registers. Two studies used the APC method to analyze smoking trends by applying the APC models to 

the prevalence of adolescent never smokers, and showing the effect of anti-tobacco programs to 

prevent adolescents from starting to smoke, primarily through a cohort effect [8,10]. 

This study investigated the effects of age, time period, and birth cohort on trends of Italian former 

smokers as a reflection of smoking cessation policies, by using the APC models on the trends  

of prevalence of former smokers. In addition, we predicted future trends of the prevalence of  

former smokers in Italy using a Bayesian APC approach, which incorporates prior information about 

smoothness on each time scale to reduce random variation and improve the precision of the  

projections [11].  

The purpose is to use methods typically used in other contexts in order to advance our 

understanding of the trends of tobacco smoking and to provide data supporting evidence-based 
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planning for more effective tobacco control. In addition, an estimate of the end of tobacco smoking 

may be given using this approach. 

2. Methods 

Data on smoking prevalence by gender and age were available from the Italian National Institute of 

Statistics (ISTAT) Multipurpose Surveys “Health conditions and access to health services” and 

“Aspects of daily living”. The two surveys are a surveillance system carried out almost every year 

between 1980 and 2009, and were based on similar scientific design providing comparable data on 

smoking habits over the years [12]. Sampling methods and data collection were already described 

elsewhere [6] and are briefly summarized herein. Surveys used a two-step sampling method: in the 

first step, about 900 municipalities were chosen, using different stratification criteria (demographic, 

geographic, and economic), and in the second step, a systematic sample of the families was selected 

within the municipality on the basis of demographic registries. Surveys were carried out on 

representative samples of the Italian population, and each survey was administered on average to 

24,000 families and 54,000 persons distributed in about 850 Italian municipalities of different 

population sizes. Information was collected through questionnaires administered by professional 

interviewers. Smoking status was based on participant self-report as never, former, or current  

smoker [12]. Former smokers were those who reported smoking during their lifetimes but currently did 

not smoke. Prevalence of each smoking status in each survey was computed with sampling weight 

adjustment. Only former smokers over 25 years of age were considered, since the relative risks of 

death for smoking-related diseases are not discernable for those who quit smoking before that age [13]. 

Time trends of the prevalence of former smokers were evaluated through an APC analysis. Data 

were arranged in six 5-year periods (1980–1984, 1985–1989, 1990–1994, 1995–1999, 2000–2004, and 

2005–2009) and twelve 5-year age groups (25–29 to 80–84 years). These age groups and calendar 

periods involved 17 overlapping 5-year cohorts identified by central year of birth, and defined using 

the relationship cohort = period − age [14,15] starting with 1900 and finishing with the cohort 1980.  

It should be noted that there are fewer observations for the earliest and most recent cohorts which may 

lead to less precision in the estimates of these cohorts. 

We assessed the age, period, and cohort effects by means of generalized linear models assuming 

that the number of former smokers follows a Binomial distribution [14,15], since the more common 

Poisson distribution assumption of rare events is not appropriate for the prevalence of former smokers. 

Three models were used: the full APC model, age-period, and age-cohort (AC). In the APC analysis, 

there is the non-identifiable problem as age, period and cohort are linearly related [14,15]. In order to 

avoid the non-identifiability problem, we estimated the parameters of the full APC model using a  

two-step procedure [9]. In the first step, we fitted an AC model, using 1930 as the reference cohort in 

men and 1950 in women. The reference cohorts were chosen because they were the most exposed to 

cigarette smoking in Italy among men and women, respectively [12]. In the second step, we fitted a 

period effect to the residuals of the AC model by means of a Binomial model for the number of former 

smokers with the log of the fitted values from the AC model as offset. By this procedure, the standard 

deviations of the estimated values of the effects can be obtained assuming that the secular trend is 

related with the cohort effect [9]. Comparison between the nested models was evaluated by the 
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changes in deviance (Δ-Dev) [9]. The Akaike Information Criterion (AIC) was also considered to 

identify the best-fitting model considering the best model the one with the lower AIC value [16]. 

Bayesian APC methods are often considered more appropriate for long-term projections due to the 

problem of random variation in classical parameter estimates of APC models [17] and consequently 

projections based on these estimates, particularly of the most recent cohort effects, are sensitive to this 

instability [11,18]. A Bayesian APC model smoothing the age, period and cohort effects and 

estimating the age-specific rates from their posterior distribution by Markov chain Monte Carlo 

(MCMC) techniques was used (see appendix) [11,18–20]. Constraints on first-order differences were 

set for the age, period and cohort effects (see appendix) [11,18–20]. For the analyses presented, 

posterior inferences were based on 1,000,000 iterations of the Gibbs sampler after a burn-in of 500,000 

iterations was discarded. Convergence was assessed by using the Geweke statistic [21]. We carried out 

a sensitivity analysis on the prior distributions to evaluate the robustness of the results (appendix).  

In order to evaluate the goodness of fit the observed prevalence of former smokers cumulated by age 

was plotted together to the fitted one. The statistical software used for the analyses was R [22] and 

JAGS [23]. 

3. Results and Discussion 

Figure 1 shows the patterns of age-specific rates by birth cohort and time period for both genders. 

Younger cohorts have higher prevalence rates for all ages both in males and in females (Figure 1a,c).  

In fact, as an example, men former smokers aged 47 years are 12.0% and 29.2% in the 1982 and 2007 

birth cohorts, respectively. The rates appear to increase steadily with age with no evidence of downturn 

in males (Figure 1a,b). This was not true for females among whom the proportion of former smokers is 

similar for all age groups, with prevalence values smaller than that recorded in males (Figure 1c,d).  

An increasing trend for all age groups was observed mainly up to 1992 in males, whereas in females 

the rates showed an increased trend in the whole time period. 

In the APC analysis we obtained similar results for both genders (Table 1). The APC model showed 

the lowest AIC value, thus both cohort and period effects should be taken into account. The Δ-Dev was 

higher for the AC model than for the AP one. Thus, the period effect was more important than the 

cohort effect in describing prevalence of former smokers. An APC analysis restricted to the period 

1995–2009 showed however for both genders an AIC value for the AC model comparable to the APC 

one, revealing that cohort effect was the most important factor to explain the variability in the 

prevalence of former smokers during that period. 

In Figure 2 the age, period, and cohort effects from the APC model over the period 1980–2009 for 

males and females are reported. For both genders the age effect grew with the increasing of age,  

the period effect was almost negligible reaching a peak in 1992–2002, and the cohort effect showed an 

increasing trend in the whole period. For both males and females confidence intervals of the estimated 

effects resulted very narrow. 
  



Int. J. Environ. Res. Public Health 2014, 11 5 

 

 

Figure 1. Age-specific prevalence of former smokers (a) by birth cohort and (b) by time 

period in males. Age-specific prevalence of former smokers (c) by birth cohort and (d) by 

time period in females. 

 

Table 1. APC model assessment for prevalence of former smokers in Italy in periods 

1980–2009, and 1995–2009 for males and females. 

 1980–2009 1995–2009 
Males AIC DEV Δ-Dev AIC DEV Δ-Dev 
APC 627 43,391 - 168 5276 - 
AP 1642 115,482 72,091 687 23,494 49,635 
AC 5,689 402,846 359,455 181 5,734 392 

Females       
APC 559 38,613 - 196 6,293 - 
AP 2,829 199,872 161,259 1338 46,301 40,007 
AC 5,398 382,230 343,618 239 7,791 1,497 
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Figure 2. Age, period, and cohort effects from the APC model over the period 1980–2009 

for (a) males and (b) females. 

 

Bayesian projections showed a global convergence with the Geweke statistic over 1.96 for 3 and  

8 parameters out of 132 for males and females, respectively. Sensitivity analyses confirmed the 

stability of posterior prevalence values over different values of the prior hyper parameters, producing 

posterior prevalence values that fell inside the credible interval. In particular, the maximum difference 

among posterior projections was of 0.44 and 2.32 points percentage in males and in females 

respectively, in both cases observed for the last year of projections.  

Age-specific former-smoker prevalence fitted and projected by cohort using the APC Bayesian 

model with the 1980–2009 period as basis for projections are reported in Figure 3. The former smokers 

in men will continue to show an age-gradient being higher for the older age groups and lower for the 

younger. The prevalence of former smokers for older men will reach 62.5% of the population in 2030. 

The prevalence for younger men will reach 19.9%. The prevalence of former smokers in females 

showed similar values and future trend for all age-classes reaching on average 36.1% of the population 

in 2030. In females projections showed very fast rates of increase. However, estimates for the last 

period were highly uncertain. In fact, while the width of the 95% credible intervals for the fitted rates 

indicated precise estimates, on the other hand projections showed a progressive widening of the 

credible intervals (data not shown).  

In Figure 4 the fitted and projected prevalence curves cumulated by age (25–85 years) with the 95% 

credible intervals are reported. Also the observed prevalence of former smokers is reported in Figure 4, 

indicating a good model fit. Former smokers in 2030 will be around 42.7% of men and 32.1% of 
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women. As in the age-specific estimates, also in this case projections for the last period were highly 

uncertain with credible intervals rapidly widening (Figure 4). 

Figure 3. Age-specific prevalence of former smokers by period, fitted in 1980–2009 (solid 

line) and projected for 2010–2030 (dotted line) for males and females. 

 

Figure 4. Fitted and projected prevalence of former smokers cumulated by age (25–85 

years) with 95% credible intervals by period for males and females. Dots are the observed 

cumulated prevalence. 
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We described time trends of the prevalence of former smokers and projected trends for the next 

decades in Italy. In 1980–2009 younger cohorts showed higher prevalence values for all ages in both 

genders. Rise in prevalence occurred earlier in life, as for more recent cohorts. This is likely to reflect 

awareness of harm from smoking that occurred at younger ages in each advancing cohort [24]. The 

prevalence increased with age in males, and was similar for all age-groups in females. This is probably 

due to the fact that women were more likely to attempt to stop smoking at younger age during 

pregnancies and breastfeeding. On the contrary, men attempted to quit only when smoking-related 

diseases became evident [7].  

The APC analyses showed that the period effect reached its maximum in 1992–2002, as an effect of 

the laws implemented in that period, such as smoking ban on TV advertisement (1991), smoking ban 

on public administrations (1995), and rise in cigarettes taxes (from 1990). At the same time, the cohort 

effect showed a progressive continuous increase since the first generation, suggesting that awareness 

of harm from smoking progressively became stronger. The analysis restricted to the time period  

1995–2010 revealed an increasing importance of the cohort. 

Projections of the cumulated prevalence showed that former smokers will reach 42.7% of men and 

32.1% of women in 2030 (Figure 4). These estimates should be considered together with the gender 

specific prevalence of non smokers and smokers, being the population mutually composed by smokers, 

non smokers, and former smokers. The prevalence of non smokers in males showed an increasing 

trend in the last decades reaching the value of 41.2% in 2012. In females, even if the prevalence is still 

higher than the males one (66.3% in 2012), the opposite trend was observed [12]. By linearly 

projecting gender specific non smokers prevalence, it is possible to roughly estimate the “end of 

smoking” in Italy. Under these assumptions the “end of smoking” will be around 2060 in men and 

2055 in women (Table 2), a more optimistic estimate respect to a recent English research by Citigroup 

that estimated the Italian “end of smoking” in 2091 [25]. These estimates are however based on a 

linear regression from UK smokers prevalence data. By making the same computations using Italian 

specific data on the last decade, the “end of smoking” will occur in 2046. 

Table 2. Projections on the smokers prevalence (%) for males and females. 

Year 
Prevalence (%) 

Males Females 

2012 23.44 14.55 
2017 22.10 14.24 
2022 19.37 12.06 
2027 16.96 9.58 
2032 14.72 7.05 
2037 11.73 6.37 
2042 9.09 4.58 
2047 6.45 2.80 
2052 3.80 1.01 
2057 1.16 0.00 
2062 0.00 0.00 
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The novelty of this work is the use of APC methods, which are usually used for the study of trends 

in deaths rates, to study trends in the prevalence of former smoker, and to make projections in a 

Bayesian perspective. 

This study has some limitations. First, prevalence projections resulted highly uncertain. The credible 

intervals encompass both uncertainty associated with the choice of the model and uncertainty associated 

with projecting beyond the range of the data. This is necessarily reflected by the rapidly increasing width 

of the intervals as the length of the projection increases [18]. Second, the use of MCMC algorithms in the 

field of latent Gaussian models, as regression models for longitudinal data, has been criticized in terms of 

both computational time and mixing due to strong dependencies of parameters in the posterior 

distribution, and of weak identifiability. Several alternatives were proposed to overcome these problems, 

as integrated nested Laplace approximations [26]. However our application did not exhibit convergence 

problems with the use of MCMC, even if computational times were rather long. A third limitation is that 

further measures to improve cessation rates, such as, a further increase in cigarette taxes and promoting 

smoking cessation strategies (reimbursement of cessation treatments, setting up an active quit line for 

smokers, and promoting widespread use of cessation counselling among health professionals) could be 

implemented in the period for which we made projections [27]. 

4. Conclusions 

In conclusion, this study showed a constant increase in prevalence of former smokers in Italy since 

1980s, and regarding all generations and age-groups. Projections of future trend recorded a further 

increase in the number of former smokers in future decades, showing an estimate of the “end of 

smoking” around years 2060 and 2055 in men and women, respectively. 
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Appendix—Autoregressive APC Model for Projections of the Prevalence of Former Smokers 

Following Breslow and Clayton [19], Berzuini and Clayton [20] and Bray [11,18] we specify a 

Gaussian autoregressive prior model in the forward direction to smooth effects on each timescale and 

to extrapolate period and cohort effects. 

According to this model each point (except the first two on each scale) is predicted by linear 

extrapolation from its two immediate predecessors, plus a random error from a normal distribution 

with mean 0. The first two parameters for age, period and cohort effects are given non-informative 

priors. The distributions for the α1,…, αA age, β1,…, βP period, and γ1,…, γC cohort effects, can be 

defined as follows: 
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The precision of the normal distributions can be represented as a hyperparameter for which the prior 

distribution reflects prior belief concerning the smoothness of the parameters. In our analyses we use 

non-informative hyperprior distributions so that the hyperparameters are estimated solely from the data: 
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pap is the unknown prevalence. Fitted and projected prevalence of former smokers are then obtained 

through a recombination of the smoothed age, period and cohort effects according to: 
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We carried out a sensitivity analysis on the prior distributions, to evaluate the robustness of the 

results. In particular, we changed the mean of the normal distributions for the first two parameters for 

age, period, and cohort from 0 to 0.01. Then we changed the shape and inverse scale parameters of the 

Gamma distributions for the age, period and cohort one at time from 0.001 to 0.005. 
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