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Abstract: The Canadian prairie provinces of Alberta, Saskatchewan, and Manitoba have 

generally reported the highest human incidence of West Nile virus (WNV) in Canada. In this 

study, environmental and biotic factors were used to predict numbers of Culex tarsalis 

Coquillett, which is the primary mosquito vector of WNV in this region, and prevalence of 

WNV infection in Cx. tarsalis in the Canadian prairies. The results showed that higher 

mean temperature and elevated time lagged mean temperature were associated with 

increased numbers of Cx. tarsalis and higher WNV infection rates. However, increasing 

precipitation was associated with higher abundance of Cx. tarsalis and lower WNV 

infection rate. In addition, this study found that increased temperature fluctuation and 

wetland land cover were associated with decreased infection rate in the Cx. tarsalis 

population. The resulting monthly models can be used to inform public health interventions 
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by improving the predictions of population abundance of Cx. tarsalis and the transmission 

intensity of WNV in the Canadian prairies. Furthermore, these models can also be used to 

examine the potential effects of climate change on the vector population abundance and the 

distribution of WNV. 

Keywords: West Nile virus; Culex tarsalis; geographic information system; generalized 

linear mixed model; environmental variables; Canadian prairie 

 

1. Introduction 

Since the introduction of West Nile virus (WNV) into eastern North America in 1999 [1], WNV has 

become an endemic disease in the most of southern Canada, especially in the Canadian prairie 

provinces of Alberta, Saskatchewan, and Manitoba, which have had the highest human infection rate 

in Canada. Of the 2,315 cases in Canada in 2007, more than 98% occurred in these three prairie 

provinces [2]. Saskatchewan alone accounted for over half the human cases reported in Canada. 

Research focusing on the drivers of WNV occurrence in the prairie ecosystem is needed to inform 

WNV control and public health interventions. 

West Nile Virus is primarily transmitted and amplified among local avian fauna and ornithophilic 

mosquito vectors, with occasional spillover into mammalian populations through mosquito blood 

feeding [3–6]. Therefore, the WNV infection rate in mosquito vectors is commonly utilized as an 

indicator of pathogen transmission intensity [7,8] and has been demonstrated to be a better indicator 

for WNV activity than surveillance of dead or infected birds [9]. Surveillance of mosquito infection rate 

also provides sufficient lead time for intervention and management of mosquito borne diseases [7,9]. 

Although WNV has been isolated from at least 59 mosquito species in North America, only a small 

portion including mosquitoes belonging to the genera Culex (Diptera: Culicidae) have been shown to 

be competent vectors [5]. Culex tarsalis Coquillett is considered to be the main vector of WNV in the 

Canadian prairies [3,10]. It is one of the most efficient WNV vectors evaluated in the laboratory 

studies [4] and the predominant species in the Canadian prairies during the summer WNV season [3]. 

Several biological features of Cx. tarsalis also facilitate the transmission of WNV in the enzootic 

cycles. Culex tarsalis can vertically transmit WNV to its offspring [11], it takes several blood meals, 

and it produces multiple generations per season [3]. Furthermore, it is known to feed on both avian and 

mammalian hosts and plays the role of the “bridge vector” which transmits WNV out of its enzootic 

cycle to humans and other mammalian species [12].  

Environmental variables such as temperature, precipitation and habitat type influence both  

Cx. tarsalis population abundance and its WNV infection rate [13–16]. In addition, environmental 

factors may influence seasonal and spatial overlap among key hosts in the sylvatic amplification 

cycles. For instance, drought-induced congregation of mosquitoes and birds on shrinking wetland 

habitats may enhance the transmission of WNV [17]. Therefore, understanding how environmental and 

biotic factors influence abundance of mosquito population and WNV infection rate in mosquitoes is 

important in predicting the risks of WNV. 
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The Canadian prairies are at the northern limit of WNV distribution in the Western hemisphere. 

Climate and habitat suitability for Cx. tarsalis determine the distribution of this mosquito and WNV in 

the prairie provinces [18]. Future alterations in climate or habitat might expand the current spatial and 

temporal distribution of Cx. tarsalis and WNV [19,20]. A predictive model using environmental 

factors as the primary explanatory variables could be applied to evaluate the potential effects of 

climate change.  

Many studies have been conducted to clarify the effects of environmental and biotic factors on the 

risk of WNV and predict the distribution of WNV in North America since its incursion. However these 

models usually cannot be applied to predict risks in other regions, particularly when those regions have 

different ecological dynamics or primary vector species [21]. Previous work had evaluated the effects 

of climate factors on the distribution of WNV by constructing a weekly model to predict the weekly 

variation of WNV infection rate in the Canadian prairies [22]. The objectives of this present study 

were to clarify how environmental and biotic factors affect the abundance and WNV infection rate of 

Cx. tarsalis on a monthly scale and compare this to the weekly model. In addition, due to the limitation 

of time scale of the climate change dataset, it was necessary to construct a monthly model fitted with 

the monthly dataset, the finest time scale for evaluating the effects of climate change [23]. 

2. Materials and Methods 

2.1. Mosquito Data 

WNV infection in pooled female Cx. tarsalis was determined using reverse transcription polymerase 

chain reaction (RT-PCR) [24,25]. Data on mosquito trap locations, abundance as the number of  

Cx. tarsalis per trap night, and WNV infection from across the prairie provinces were obtained from 

May to September for 2005 to 2008 from the Public Health Agency of Canada (PHAC). The original 

data were supplied to PHAC from Alberta Environment, Manitoba Public Health and Healthy Living, 

and Saskatchewan Ministry of Health. 

Mosquito sampling sites were distributed within the different health regions across the southern half 

of the prairie provinces (Figure 1). The new standard miniature light traps with photocell controlled 

CO2 release (Model 1012-CO2; John W. Hock Company, Gainesville, FL, USA) were used for 

mosquito sampling. The mosquito collection period generally began in late May and lasted until the 

end of August (in Manitoba, the collection period ended the first week of September). During each 

week, the trap was operated for one night at each of the mosquito collection sites in Alberta and 

Manitoba, but for one to four nights per week at Saskatchewan collection sites. Monthly mean of  

Cx. tarsalis abundance, individuals per sampling night, was estimated for each collection site. 

WNV infection rate (per 1,000 Cx. tarsalis) was computed using PooledInfRate (version 3.0),  

A Microsoft
®

 Excel plug-in [26] by Maximum Likelihood (ML-IR) and minimum infection rate (MIR) 

methods [26,27]. WNV infection rates in the mosquito population were usually low, especially in the 

early transmission season. In this period, estimations of arbovirus infection rate in mosquitoes with 

values of zero were commonly recorded. Therefore, to achieve reasonable detection probability, large 

mosquito sample size for screening was required [28–30]. Gu and Novak [30] suggested that for a 

medium detection probability of 0.5, 693 mosquitoes are required.  
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Figure 1. Distribution of mosquito sampling sites in the Canadian prairies provinces of 

Alberta, Saskatchewan, and Manitoba for the period from 2005 to 2008. (a) Location of 

prairie provinces (grey spot) in Canada. (b) The distribution of sampling sites across the 

Canadian prairies ecozone. 

 

In addition, we also found extremely high infection rates in some records where a positive result 

was obtained from pooled test which was comprised of only a few mosquitoes. Excluding observations 

from our dataset with low Cx. tarsalis sample sizes in the late season of WNV (usually in the early 

September) might also remove the records with high infection rate; however, female Cx. tarsalis are 

usually inseminated and preparing for hibernation in this period in which they do not take a blood  

meal [3] and the risk of WNV transmission is considered to be low. Based on these findings,  

we excluded observations with samples less than 100 female Cx. tarsalis per site per week from the 

analysis to prevent potential outliers and incorrect estimation of WNV infection rate resulting from 

small sample size [30]. The monthly mean WNV infection rate in Cx. tarsalis was calculated for each 

collection site. 
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2.2. Land Cover 

The land cover dataset was derived from the Advanced Very High Resolution Radiometer 

(AVHRR) sensor operating on board the United States National Oceanic and Atmospheric 

Administration satellites. AVHRR Land Cover Digital Data was downloaded from Natural Resources 

Canada. Although the satellite image was taken in 1995, the land use in this area was considered to 

have remained relatively stable until the start of the study period [31].  

Data for the prairie provinces were extracted and converted to a single 1 km
2
 GIS raster layer. 

Eleven different types of land cover categories were included in the original dataset. According to 

habitat utilization by Cx. tarsalis [18], land cover was simplified into forest including deciduous, 

transitional coniferous and mixed forests, water, barren land, agricultural land including cropland and 

rangeland, and urbanized area. To analyze the association between land cover, Cx. tarsalis population, 

and infection rate, we used 20 km radius buffer zones around collection sites, defined according to the 

flight distance of Cx. tarsalis [10,32] to determine the percentage of primary composition of land 

cover type within the buffer zones. 

2.3. Weather Data 

Daily mean temperature, daily maximum temperature, daily minimum temperature, and daily total 

precipitation were downloaded from the National Climate Data and Information Archive, Environment 

Canada. The daily weather datasets were used to create various predicting variables (Table 1). Daily 

maximum and minimum temperature were used to calculate the accumulative degree days [33] by the 

single sine method [34] for current month, and two and three months accumulative degree days (Table 1). 

We also created the monthly mean degree days predictors by using monthly mean maximum and 

minimum temperature [35]. For estimating the monthly mean degree days, the low temperature 

threshold for WNV amplification in Cx. tarsalis was set as 14.3 °C [15]. Finally, to determinate 

possible nonlinear effects of weather variables on Cx. tarsalis abundance and WNV infection rate, this 

study also created second order polynomial variables using the centered value of temperature and 

precipitation. Weather predictors of each climate station were interpolated by the inverse distance 

weighted method to create prairie-wide climate raster layers in ArcGIS. There was a total of 473 climate 

stations located in the Canadian prairies which were evenly distributed across the study area. 
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Table 1. Descriptions of variables used in both Cx. tarsalis abundance and infection rate models and relationships between explanatory 

variables based on the Pearson correlation and principal component analysis. Variables with the same arabic number indicated that the 

Pearson correlations are larger than 0.8 or have factor loading larger than 0.6 in each component of principal component analysis. 

Variables 

Correlation 

(>0.8) 

PCA component 

(Factor loading >0.6) Variables description 

LMM GLMM LMM GLMM 

Monthly mean temperature 1 1 1 1 Monthly mean temperature of the month of mosquito data collection 

1 month lagged mean temperature 2 2 2 2 1 month lagged mean monthly temperature 

2 month lagged mean temperature 2 2 2 2 2 months lagged mean monthly temperature 

3 months mean temperature 2 2 2 2 Including mosquito collection month, and previous 1 and 2 months 

Winter mean temperature  4 3 3 From December to February 

Monthly mean degree days 3 3 3 3 Monthly mean degree day of the mosquito data collection month 

2 months total of monthly mean degree 

days 
3 3 3 3 

Created by summing the monthly mean degree days of the month of mosquito data 

collection and previous month 

3 months total of monthly mean degree 

days 
- 3 - 3 

Created by summing the monthly mean degree days of the month of mosquito data 

collection, previous one and two months. Not applied in the LMM 

Mean temperature fluctuations 3 3, 4 3 3 Monthly mean maximum temperature minus monthly mean minimum temperature 

1 months accumulative degree days 1 1 1 1 The accumulative degree days of data collection month 

2 months accumulative degree days 2 2 2 2 The accumulative degree days of data collection month and previous months 

3 months accumulative degree days - 2 - 2 
The accumulative degree days of data collection month and previous one and two months. 

Not used in the LMM 

1 month lagged mean precipitation - 4 - 4 1 month lagged monthly mean daily total precipitation. 

Monthly total precipitation     Monthly total precipitation 

1 month lagged total precipitation  4 4 4 1 month lagged monthly total precipitation 

2 month lagged total precipitation   2 2 2 month lagged monthly total precipitation 

Total precipitation of previous year   4 4 Annual total precipitation of previous year 

3 months total precipitation   4 4 
The total precipitation of mosquito collection month, and previous one and  

two months 

LMM: Linear mixed model for predicting Cx. tarsalis abundance; GLMM: Generalized linear mixed model for predicting WNV infection rate in Cx. tarsalis; “-”: variable is not used in the 

model construction. 
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2.4. Data Analysis 

Counts of Cx. tarsalis per trap site per night were transformed by ln(y + 1) to normalize the data 

distribution prior to analysis. Models to predict Cx. tarsalis abundance using environmental factors were 

constructed using linear mixed model (PROC MIXED, SAS ver. 9.2, SAS Institute, Cary, NC, USA). 

A generalized linear mixed model with a log link function (PROC GLIMMIX, SAS ver. 9.2, SAS 

Institute, Cary, NC, USA) was then used to develop a model for Cx. tarsalis infection rate prediction. 

A negative binomial distribution was chosen in the Cx. tarsalis infection rate model according to a 

preliminary analysis where the formula “Pearson Chi-Square divided by degrees of freedom (DF)” 

value was close to one. This formula was used to evaluate overdispersion. 

The Pearson correlation test was used to test for multi-collinearity between explanatory variables.  

If the correlation between any pair of variables was larger than 0.8, the more significant variable  

(lower −2 log likelihood) was chosen for further model construction [36]. We also conducted principal 

component analysis for determining the relationship between explanatory variables and compared the 

results with those of the Pearson correlation. Components selected were based on eigenvalues  

(>than 1) and the cumulative percentage of variance accounted for by the components (>than 80%). 

Factor loading larger than 0.6 of each variables was considered to be highly correlated with the 

component [37]. Health regions where mosquito collection traps were located were used as a random 

effect for both Cx. tarsalis abundance and infection rate models. The variable parameters were 

estimated by the restricted maximum likelihood and Gauss-Hermite quadrature method for Cx. tarsalis 

abundance and infection rate models, respectively [38]. 

2.5. Model Selection and Validation 

Explanatory variables selected in the models of Cx. tarsalis abundance and WNV infection rate 

were based on the Wald test with p threshold value set at 0.05 [38,39] The backward stepwise method 

was adopted for variable selection. The AICc (AIC value corrected for finite sample sizes) values and 

AICc weights were used to assess the models fit and select the best fitted model [38–40]. Four-fifths of 

the records were randomly selected from the dataset for model construction and the remaining  

one-fifth of the records were used for model validation. Standardized residuals and standardized 

Pearson residuals were estimated for the validation dataset of Cx. tarsalis abundance and infection rate 

models, respectively. Values of Root Mean Square Error (RMSE) were calculated for training and 

validation datasets to validate and compare the predictability of the model on each dataset. Moran’s  

I test was used to test the spatial autocorrelation of residuals for the final models.  

The final model of WNV infection rate in Cx. tarsalis was applied to create maps of the predicted 

WNV infection rate in the Canadian prairies using ArcGIS 10 (Environmental System Research 

Institute, Redlands, CA, USA). To compare the predicted Cx. tarsalis infection rate and actual  

human WNV incidence in the prairie provinces, maps of human WNV incidence (cases per  

100,000 individuals) were created for the entire transmission season (May–September) for each health 

region for 2005 to 2008. Human WNV case data was retrieved from prairie provincial governmental 

websites [41–43].  
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3. Results 

3.1. Descriptive Statistics 

Out of 309 mosquito collection sites, 96 were in Alberta, 38 in Saskatchewan and 175 in Manitoba 

(Figure 1). Mosquito collections were conducted from late May to early September and the highest 

observed mean abundance of Cx. tarsalis was in July (for 2005 to 2007) or August (for 2008) (Figure 2). 

The highest observed mean Cx. tarsalis infection rates were in August for 2005 to 2007; there was no 

obvious trend observed in 2008 (Figure 2). 

Figure 2. Temporal trends of (a) Monthly mean temperature (unit 1 °C). (b) Monthly total 

precipitation (unit 1 mm). (c) Monthly mean abundance of Cx. tarsalis, ln(y + 1) transformed, 

compared to monthly mean WNV infection rate in female Cx. tarsalis in the Canadian 

prairies. Error bar indicates the standard deviation of mean Cx. tarsalis infection rate. 

 
  



Int. J. Environ. Res. Public Health 2013, 10 3041 

 

July was the warmest month with temperature around 20 °C. The mean temperature in July 2007 

was higher than other years, ranging from one to three Celsius degree, and 8.6% higher than mean 

temperature in July of study period. The range of monthly temperature fluctuation was from 6.3 to 20 °C 

in the Canadian prairie ecozone. In 2007, total precipitation in May was highest compared to other 

years with a mean temperature closer to 2006 but higher than 2005 and 2008 in the Canadian prairies 

(Figure 2). Agriculture land cover predominated the buffered zones of mosquito collection sites; 

94.3% of sampling sites had agriculture land as the primary land cover type. Mean percentage of 

agriculture land was 86.1% in each buffer zone. The other two primary land cover types identified 

were forest (2.21%) and water (3.52%) (Figure 3).  

Figure 3. Distribution of land cover types in the Canadian prairies. 

 

3.2. Constructed Models 

Based on the results of Pearson correlation and principal component analysis, explanatory variables 

could be grouped into four highly correlated components (Table 1). The cumulative variances 

explained by these four components of principal component analysis were 84.6% and 86.1% for  

Cx. tarsalis abundance and infection rate models, respectively. 

In the final Cx. tarsalis abundance model, increased mean monthly temperature, 1 month lagged 

mean temperature, total precipitation, and temporal lags of precipitation from 1 to 2 months were 

significantly associated with increased Cx. tarsalis abundance, while an inverse association between 

forest land cover and Cx. tarsalis abundance was observed (Table 2). 

In the final WNV infection rate model, we found that increasing Cx. tarsalis abundance, and  

1 month lagged temperature were associated with increased WNV infection rate, while one month 

lagged mean precipitation, 3 months total precipitation, and water land cover were inverse associated 

with infection rate (Table 3). 
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Table 2. Estimated coefficients of explanatory variables in the constructed models of Cx. tarsalis abundance. Single variable indicates the 

explanatory variables which are assessed individually. Final model represents the final fitted model with the lowest AICc value. Full model is 

model fitted with all created explanatory variables.  

Variables 
Single variable Final model Full model 

Coef. 95% CI Coef. 95% CI Coef. 95% CI 

Intercept    −3.48 * −4.05 to −2.91 −3.93 * −4.6 to −3.25 

Weather       

Monthly mean temperature 0.25 * 0.22 to 0.26 0.22 * 0.2 to 0.25 0.22 * 0.19 to 0.25 

1 month lagged temperature 0.08 * 0.07 to 0.1 0.07 * 0.05 to 0.09 0.06 * 0.04 to 0.09 

Winter mean temperature −0.04 * −0.06 to −0.01   −0.03 * −0.06 to −0.01 

Monthly mean degree days 0.28 * 0.23 to 0.33   0.032 −0.04 to 0.1 

Monthly total precipitation −0.003 * −0.004 to −0.001 0.0033 * 0.002 to 0.005 0.0032 * 0.002 to 0.005 

1 month lagged precipitation 0.006 * 0.005 to 0.007 0.0042 * 0.003 to 0.005 0.0037 * 0.002 to 0.004 

2 month lagged precipitation 0.005 * 0.004 to 0.006 0.0033 * 0.002 to 0.004 0.003 * 0.002 to 0.005 

Land cover 1       

Forest −0.48 * −0.91 to −0.04 −0.54 * −0.9 to −0.17 −0.59 * −0.95 to −0.22 

Water −0.11 * −0.47 to −0.26   0.03 −0.28 to 0.34 

Coef.: estimated variable coefficient; * P < 0.05; 1 agriculture land was used as a reference group. 
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Table 3. Estimated coefficients of explanatory variables in the constructed models of WNV infection rate. Single variable indicates the 

explanatory variables which are assessed individually. Final model represents the final fitted model with the lowest AICc value. Full model is 

model fitted with all created explanatory variables.  

Variables 
Single variable Final model Full model 

Coef. 95% CI Coef. 95% CI Coef. 95% CI 

Intercept   −2.26 * −4.47 to −0.05 −1.64 −5.64 to 2.37 

Cx. tarsalis abundance 0.16 * 0.03 to 0.30 0.55 * 0.31 to 0.79 0.58 * 0.28 to 0.87 

Weather       

Monthly mean temperature −0.14 * −0.2 to −0.08   −0.04 −0.18 to 0.10 

1 month lagged temperature 0.25 * 0.21 to 0.29 0.32 * 0.22 to 0.41 0.32 * 0.21 to 0.42 

Winter mean temperature 0.23 * 0.06 to 0.40   0.01 * −0.13 to 0.15 

3 months total of monthly mean degree days 0.20 * 0.16 to 0.24 −0.10 * −0.2 to −0.01 −1.10 −0.21 to 0.002 

Monthly total precipitation −0.015 * −0.02 to −0.01   −0.01 −0.02 to 0.003 

1 month lagged mean precipitation −0.48 * −0.56 to −0.39 −0.27 * −0.36 to −0.18 −0.43 * −0.62 to −0.24 

2 month lagged total precipitation 0.003 −0.001 to 0.01   −0.01 −0.02 to 0.003 

3 months total precipitation −0.085 −0.11 to 0.06 −0.05 * −0.08 to −0.02 0.013 −0.06 to 0.08 

Land cover 1       

Forest −1.3 * −1.84 to −0.76   −0.43 −1.27 to 0.41 

Water −1.31 * −2.8 to −0.182 −1.52 * −2.56 to −0.47 −1.61 * −2.85 to −0.38 

Coef.: estimated variable coefficient; *: P < 0.05; 1: agriculture land was used as a reference group.
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In addition, we found the inverse association between the 3-months total of monthly mean degree 

days and WNV infection rate when the lagged mean temperature was controlled. Time lagged mean 

temperature was the distorter variable which distorted the coefficient of the 3-months total of monthly 

mean degree days from a positive association when this variable was tested alone to negative association. 

Second-order polynomial variables of temperature and precipitation were not significantly 

associated with Cx. tarsalis abundance and infection rate. The RMSE of training and validation dataset 

was 0.97 and 1.0, respectively. Both RMSE values were close to one and close to each other which 

indicated the accuracy and precision of model predictability. There was no significant spatial 

autocorrelation detected for residuals of Cx. tarsalis infection rate by Moran’s I test (p = 0.65).  

We used the Cx. tarsalis infection rate of 20 per 1,000 as a criterion to represent the high risk area 

in our predictive maps based on the mean mosquito infection rate in August 2007, a major epidemic 

period of WNV in the Canadian prairies. In our predictive maps, the southern part of the Canadian 

prairies was generally at higher risk, especially in southeast Alberta, southwest to southeast 

Saskatchewan and southwest Manitoba (Figure 4). 

Figure 4. Maps of predicted WNV infection rate in female Cx. tarsalis per 1,000 in July 

and August 2005–2008 in the Canadian prairies and log transformed human incidence (cases 

per 100,000 individuals) for each health region in the entire WNV transmission season. 
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4. Discussion 

This study analyzed the effects of environmental drivers on Cx. tarsalis abundance and infection 

rate of WNV from 2005 to 2008. Most of the geographic regions at highest risk based on predicted 

WNV infection rate in Cx. tarsalis were consistent with the distribution of human WNV cases between 

2005 and 2008. The slight differences between the distribution of mosquito infection rate and human 

incidence were expected, and can potentially be explained by social and economic factors, population 

density, risk perception, mosquito control programs, and the intensity of human case detection in 

different health regions. However, mosquito infection rate as an indicator for early season forecasting 

or predicting of WNV human incidence has been previously demonstrated [9]. Mosquito infection rate 

was also influenced by variations in climate factors. Of particular interest here, understanding the 

relationship between climate factors and mosquito infection on monthly scale could be adopted to 

predict WNV activity under different climate change scenarios [23].  

In this study, more explanatory variables were evaluated and compared with our previously 

published weekly model [22]. The variables associated significantly with WNV infection rate in this 

study were similar to the weekly model; however, on the monthly time scale, we found an inverse 

relationship between mean degree days and WNV infection rate when time lagged temperature was 

controlled. In addition, we demonstrated the effects of land cover composition in a 20 km radius buffer 

zone on the abundance of Cx. tarsalis and WNV infection rate. We also found a better predictability of 

monthly model than weekly model based on the values of Root Mean Square Error (data not shown). 

In both Cx. tarsalis abundance and WNV infection rate models on the monthly time scale, 

increasing temperature and lagged temperature significantly increased Cx. tarsalis abundance and 

infection rate. The mean temperature in May and June, 2007 was higher than 2005 and 2008, with the 

highest mean temperature in July during study period. High environmental temperature with the 

antecedent highest precipitation in May and Cx. tarsalis abundance in June might have contributed to 

the outbreak of WNV in 2007. Increasing environmental temperature shortens the maturation time 

required for Cx. tarsalis and the extrinsic incubation period of virus. Furthermore, it also accelerates 

the gonotrophic cycle and affects mosquito survival. In combination, these relationships influence 

virus transmission by increasing the contact rate between mosquito and host [15,33]. 

This study found the distorted effect of time lagged mean temperature on the 3 months total of 

monthly mean degree days for the model of WNV infection rate. Increasing 3 months total of monthly 

mean degree days can decrease the WNV infection rate in Cx. tarsalis when the variable of time 

lagged mean temperature was controlled. In addition, the Pearson correlation and principal component 

analysis revealed that mean temperature fluctuations, and 3 months total of monthly mean degree days 

were highly correlated. These variables were all estimated based on the maximum and minimum 

temperature and indicated the degree of temperature fluctuation. These findings indicated that 

increasing temperature fluctuation could decrease the Cx. tarsalis infection rate in the environment 

with similar time lagged mean temperature. The effect of high temperature fluctuation has been 

proposed to limit the midgut infection of flaviviruses in mosquitoes by preventing the virus from 

entering the midgut epithelial cells or limiting initial replication of virus in these midgut cells [44]. 

Adverse effect of high temperature fluctuations have also been observed in the transmission of dengue 

virus by Aedes aegypti [45] and western equine encephalomyelitis by Cx. tarsalis [46,47]. 
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The probable contact rate between an infected competent vector and a susceptible host is essential 

for maintaining the enzootic cycle of an arbovirus in a geographic area, although herd immunity of 

host population might dampen the transmission of WNV [48]. A minimum threshold of vector and 

susceptible host interaction is needed to allow for virus transmission [49]. Therefore, population 

abundance of suitable competent vectors is usually an indicator of the prevalence of pathogen 

occurrence [49–51]. A positive association has been demonstrated for other arboviruses such as 

Japanese encephalitis, western equine encephalitis and St. Louis encephalitis [49,52,53]. Furthermore, 

abundance of Cx. tarsalis, Cx. p. quinquefasciatus, Cx. pipiens and Cx. restuans has also been used as 

indicators to predict human WNV risk in different regions [54–56]. 

In contrast to temperature, the influence of precipitation on the enzootic cycle of WNV is 

paradoxical. Increased precipitation is generally believed to create standing water suitable for mosquito 

breeding and increase mosquito population and the risk of vector borne disease. This reason likely 

accounts for why precipitation and time lagged precipitation were positively associated with mosquito 

abundance in our study. In 2007, total precipitation in May was highest compared to other years with 

the mean temperature closer to 2006 but higher than 2005 and 2008 in the Canadian prairies. The high 

precipitation might have contributed to the explosive occurrence of Cx. tarsalis in June. Other 

researchers have demonstrated that preceding droughts can increase the incidence of WNV in human 

population in the western United States [57] and the Canadian prairies [58]. Potential explanations for 

the effects of precipitation on WNV incidence include drought induced decreases in mosquito 

competitors or predators and increase the abundance of Cx. tarsalis, increased congregation of 

susceptible avian hosts and mosquito vector on dwindling wetland habitat, and changes in the 

composition of the avian host community [17,59,60]. In our study, precipitation was positively 

associated with Cx. tarsalis abundance, similar to studies in California and the northern Great  

Plain habitat in South Dakota [14,16] but an inverse association between precipitation and WNV 

infection rate in Cx. tarsalis was observed. These findings suggest that other factors, such as the 

aggregation of competent hosts and Cx. tarsalis [59], or alterations to composition of the avian 

community might better explain the effects of precipitation on WNV infection rate in Cx. tarsalis in 

the Canadian prairies [61]. 

Nonlinear relationships between climate factors and arthropod vectors are commonly observed.  

For instance, Reisen et al. [14] found that spring Cx. tarsalis population was positively correlated with 

temperature in winter and spring, whereas summer abundance was correlated negatively with spring 

temperature and not correlated with summer temperature in California. A unimodal relationship 

between precipitation and WNV incidence was demonstrated in the northern Great Plains and the 

optimal total precipitation from May to July was approximately 200 mm [62]. In our study, all the 

second-order polynomial variables were not associated with Cx. tarsalis abundance or infection rate. 

Total precipitation in May to July of 2005 to 2008 ranged from 79 to 332 mm and observed high risk 

areas had the lowest precipitation values. The warmest summer mean temperature was around 20 °C  

in July (Figure 2), which was lower than the mean temperature of 30 °C for the same month in 

California [56]. Low summer environmental temperatures across the Canadian prairies could be the 

main reason for our findings. In this temperature range, the development rate of Cx. tarsalis and the 

replication rate of WNV in the Cx. tarsalis are linearly related with environmental temperature [13,15]. 
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Ezenwa et al. [61] found a negative association between WNV infection rate among Culex 

mosquitoes and wetland coverage. Wetland area has been positively associated with bird species 

diversity and thus it is possible that this represents an example of the dilution effect, in which 

increased bird diversity led to overall decreases in the mosquito infection rate [61,63]. In our models, 

Cx. tarsalis abundance was not significantly different between wetland and agriculture as the primary 

composition of land cover types; however, a significant negative association was found between 

wetland and Cx. tarsalis infection rate. This result reflects the effect of possible underlying factors, 

such as the differences of bird species composition between different land cover types and also 

indicates that vector abundance alone was not sufficient to predict the intensity of WNV occurrence. 

5. Conclusions 

Our study clarifies the relationship between environmental factors and the abundance of Cx. tarsalis 

and infection rate of WNV in the Canadian prairies. The observed association between environmental 

temperature and WNV infection rate could provide sufficient time to predict WNV occurrence and 

initiate disease control and public health interventions. In addition, warmer temperature and increased 

variability in precipitation are already being observed and are projected to accelerate in the Canadian 

prairies [64]. Predictive monthly models for vector-borne diseases are critical tools for public health 

and wildlife management in a future of rapid climate change. These models could be adopted to assess 

the effects of changing climate conditions on WNV in the Canadian prairies [23].  
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