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We thank Dr. Baverstock [1] for his interest in reading our article and his time in writing his 

comments for our work [2]. We, however, respectfully disagree with his statement that we made “two 

category errors” associated with the assessment of the occurrence of “genomic instability” by 

determining the frequencies of delayed- or late-occurring chromosomal damage. Our disagreement is 

based upon the well-known fact that radiation-induced genomic instability (or delayed/late-occurring 

damage) can be manifested in many ways. These include late-occurring chromosomal damage, or 

mutations, or gene expression, or gene amplifications, or transformation, or microsatellite instability, 

or cell killing [3–9]. Such phenomena have been detected many cell generations after irradiation. We 

agree that genomic instability may well be the consequence of epigenetic changes. Another mechanism 

mentioned by Dr. Bavertock as being probably unlikely is the reversibility of damage. This potential 

may not be discarded off-hand, as Dr. Baverstock prefers to do. There is much reproducible evidence 

of adaptive protection that depending on absorbed dose precisely may reverse early damage, and 

damage appearing late may be due to some form of residual damage letting the cell become genetically 
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unstable. In other words, the argument by Dr. Baverstock regarding upward or downward causation 

appears to be rather speculative and far from being settled.  

We stated very clearly in the Abstract section of our article that we determined the occurrence of 

genomic instability by the presence of late-occurring chromosomal damage, which is one of the known 

phenomenon associated with radiation-induced genomic instability. We clearly understand the 

meaning of genomic instability related to radiation exposure. We have used cytogenetic assays (both 

conventional and molecular cytogenetic methodologies) for studying biological effects of radiation 

(including radiation leukemogenesis) for about 20 years. Currently, we are also conducting 

experiments to study a link between radiation-induced genomic instability in vivo (assessed by the 

occurrence of delayed- or late-occurring chromosomal damage) and chronic inflammation, including 

aberrant DNA methylation patterns. 

Kadhim et al. [10] was the first to describe the phenomenon of radiation-induced genomic 

instability using the chromosome aberration assay by detecting a significantly greater number of 

clonogenic survivors of exposed cells. Subsequently, several groups of investigators reported 

radiation-induced genomic instability, determined by other biological assays such as mutations, gene 

expression, or cell killing [3–9,11]. Numerous studies have reported the existence of genomic 

instability, as determined by the presence of delayed/late-occurring chromosome aberrations in the 

descendants of cells surviving radiation exposure [10,12–19]. Evidently, Dr. Baverstock’s argument is 

against not only our work but also the research of scientists around the world who are using 

cytogenetic and other assays (such as cell killings or cell transformation) to determine the occurrence 

of radiation-induced genomic instability. It should be noted that, as stated by Mothersill and  

Seymour [20] and Huang et al. [21], chromosome aberrations are the best-characterized end point of 

radiation-induced genomic instability. 

It also is well known that there are two chromosome instability forms of genomic instability:  

non-clonal aberrations (such as chromatid breaks) and clonal aberrations (such as  

rearrangements) [5,14,20]. In our study, increases in these two types of chromosome aberrations were 

observed in bone marrow cells collected at 6 months after exposure of SCID mice to 0.1 or 1.0 Gy, but 

not 0.05 Gy, of 
137

Cs  rays. Hence, Dr. Baverstock’s statement indicating that we made “a 

fundamental category error” associated with the assessment of the occurrence of genomic instability by 

determining the frequencies of late-occurring chromosomal damage is a scientifically unfounded 

criticism. Apparently, Dr. Baverstock’s argument against our work was based upon a narrow 

interpretation of radiation-induced genomic instability. Dr. Baverstock seems to pick and choose 

biological endpoints to determine the occurrence of genomic instability. For example, he chose 

epigenetics, as he cited his own article [22]. Of note, it is true that there is increasing evidence of a link 

between epigenetic events and radiation-induced damaged [23,24]. However, at this stage, Dr. 

Baverstock’s claim seems to be speculation and more work is needed to prove this point. Dr. 

Baverstock also selectively cited the paper by Falt et al. [25] which suggested that gene mutations play 

a role in radiation-induced genomic instability. This is not new because, as we pointed out earlier, the 

gene mutation assay also has been used to detected radiation-induced genomic instability. Further, one 

of the most relevant articles relating to clonal chromosome aberrations and genomic instability has 

been reported from this group of investigators two decades ago [16]. 
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It also should be noted that previously reported data from other groups of investigators  

(using cytogenetic assays for determining the occurrence of radiation-induced genomic  

instability) [10,12,13,19,26,27] were derived from studies conducted with a combination of either: (i) 

in vitro irradiation and in vitro expression of genomic instability, or (ii) in vivo irradiation and in vitro 

expression of genomic instability, or (iii) in vitro irradiation and in vivo expression of genomic 

instability. In contrast, the approach used in our study [2] was in vivo irradiation/in vivo expression of 

genomic instability.  

Additionally, we would like to inform Dr. Baverstock about the correct mouse strains that we used 

in our previous work [28]. Dr. Baverstock indicated in his comments that “their early work at higher 

doses (0.1 and 1.0 Gy) on the same strain of mouse indicated that de novo chromosome aberrations 

were detected at 6 months post-irradiation”. This is an incorrect statement. The fact is that we used two 

other mouse strains, one with constitutively high (C57BL/6, a radioresistant strain) and one with 

intermediate levels (BALB/cJ, a radiosensitive strain) of the repair enzyme DNA-dependent protein-

kinase catalytic-subunit (DNA-PKcs). 

In that study, we reported no evidence of an in vivo induction of genomic instability (determined by 

delayed/late-occurring chromosomal damage) in bone marrow cells of BALB/cJ or C57BL/6 mice 

exposed to a single dose of 0.05 Gy of 
137

Cs  rays. Taken together, a single dose of 0.05 Gy of 
137

Cs  

rays was incapable of inducing delayed/late-occurring chromosomal damage or genomic instability in 

bone marrow cells of three mouse strains with difference levels of endogeneous DNA-PKcs, i.e., 

extremely low (SCID mice), intermediate (BALB/cJ mice), and high (C57BL/6J mice) levels. In 

contrast, the results from our studies demonstrated that a single dose of 0.1 or 1.0 Gy of 
137

Cs  rays 

was capable of inducing genomic instability in bone marrow cells of exposed SCID and BALB/cJ, but 

not C57BL/6J mice. These findings indicate an influence of genetic background on radiosensitivity as 

previously reported by several investigators [29–33], and an important role of DNA-PKcs in DNA 

repair. Further, our findings in the mouse models support the observations of the linear relationship for 

human cancer that appears to hold to a dose of 0.1 Gy as suggested by several investigators [34–37]. 

Dr. Baverstock’s defense of the linear no threshold model (as stated in his comments that 

“epidemiological evidence from radiation exposed populations leaves little doubt……that the dose 

response is linear…..”) can be countered by several articles such as Averbeck et al. [38], Cohen [37], 

Cuttler [39], Dauer et al. [40], Feinendegen et al. [41], Jaworowski [42], Ogura et al. [43], Scott [44], 

and Tubiana et al. [45]. Regarding the f0 male mice injected with 
239

Pu cited by Dr. Baverstock, it is 

clear that the results from Ogura [43] demonstrated a reduction, not an increase, in mutation 

frequency by very low-dose gamma irradiation (500 µGy) after exposure of Drosophila melanogaster. 

Importantly, the results from the studies of low-dose radiation by Ogura and colleagues are 

contradictory to the LNT dose response theory that has been applied for radiation protection. 

Overall, there is a large body of evidence demonstrating differences between biological responses to 

low (less than or equal to 0.1 Gy) and higher doses (more than 0.1 Gy) of radiation. It is now time to 

move forward beyond self-ideology. Each biological endpoint has its own merits and disadvantages. 

The best approach for future research is perhaps to use a combined testing paradigm as a metric for 

investigating both genetic and epigenetic events after exposure to low and high doses of radiation. A 

combination of different “omics” technologies would be useful. However, it is clear that in this 
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constrained budgetary atmosphere, it is difficult (if not impossible) for a single laboratory to undertake 

the burden. Possibly, it is the time for global collaborative efforts.  
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