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Abstract: The aim of this study was to characterize the placental transfer of some 

environmental pollutants, and to explore the possibility of quantitatively predicting in utero 

exposure to these contaminants from concentrations assessed in maternal blood. Levels of 

toxic substances such as pesticides (p,p’-DDE, β-HCH, and HCB), polychlorinated 

biphenyls (PCBs), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA) 

were determined in serum samples of 38 pregnant women living in Rome and in samples 

of cord blood from their respective newborns. The study was carried out in the years  

2008–2009. PCB mean concentrations in maternal serum and cord serum ranged from 

0.058 to 0.30, and from 0.018 to 0.064 ng/g·fw respectively. Arithmetic means of PFOS 

and PFOA concentrations in mothers and newborns were 3.2 and 1.4 ng/g·fw, and 2.9 and 
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1.6 ng/g·fw. A strong correlation was observed between concentrations in the maternal and 

the foetal compartment for PFOS (Spearman r = 0.74, p < 0.001), PFOA (Spearman 

r = 0.70, p < 0.001), PCB 153 (Spearman r = 0.60, p < 0.001), HCB (Spearman r = 0.68, 

p < 0.001), PCB 180 (Spearman r = 0.55, p = 0.0012), and p,p’-DDE (Spearman r = 0.53, 

p = 0.0099). A weak correlation (p < 0.1) was observed for PCBs 118 and 138.  

Keywords: p,p’-DDE; β-HCH; HCB; polychlorinated biphenyls (PCBs); perfluorooctane 

sulfonate (PFOS); perfluorooctanoic acid (PFOA); in utero exposure; placental transfer 

 

1. Introduction 

Persistent organic pollutants (POPs) are a group of toxic chemicals widely distributed in the 

environment which includes polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans 

(PCDFs), polychlorinated biphenyls (PCBs), organochlorinated pesticides and perfluorinated organic 

compounds (PFCs). These chemicals have been recognised as a threat to the environment and human 

health because of their high chemico-physical stability, long environmental and biological persistence, 

and a wide range of toxic effects. A number of studies suggest that exposure to PCBs and 

organochlorinated pesticides may lead to increased cancer risk [1–5], nervous system damage [6,7], 

reproductive disorders [8–11], and immune system disruption [12,13] . 

As to the two most abundant members of the perfluorinated compound family, perfluorooctane 

sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the main effects observed in animal models are 

hepatotoxicity, developmental toxicity, immunotoxicity and hormonal effects. Animal studies also 

suggest that at relatively high doses PFOS and PFOA may be carcinogenic [14–19]. 

As a consequence of POP toxic effects on human health, a number of regulatory measures have 

been undertaken at an international level to eliminate or reduce their release into the environment and 

human exposure. Human exposure monitoring over time allows one to evaluate if measures undertaken 

are effective in reducing the release of POPs into the environment. Biomonitoring is recognised as the 

most effective tool to characterize exposure to POPs since it provides the direct measurement of the 

internal dose of a chemical resulting from all sources and pathways, which represents the most 

appropriate dose-metric for risk assessment [20].  

Exposure of infants and children is one of the major points of concern associated to POPs. In fact, 

many epidemiological studies suggest that prenatal and postnatal exposure to organochlorinated 

compounds is linked to a number of adverse effects in children such as neurodevelopmental delays and 

disorders [21–25]. In addition, effects that may become evident later in life [13] are also associated 

with exposure that occurs in this stage of life. With regard to PFCs, prenatal exposure to PFOS and 

PFOA has been associated to decreased fecundity and reduced sperm counts, motility and 

morphology [26,27], although conflicting results have been reported by different studies [17,26,28,29]. 

Elevated exposures to PFCs in children aged 5 and 7 years have been associated with a decreased 

immune response to childhood vaccines, which might reflect a more general immune system 

deficit [30]. 
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While perinatal exposure to POPs through breastfeeding may be quite well characterized through 

the analysis of breast milk and the application of appropriate toxicokinetic models, the characterization 

of in utero exposure through the analysis of POPs in cord serum is still inadequate. In fact, practical 

and ethical problems often hamper the availability of cord serum samples and/or of the sample volume 

needed for the analysis of these lipophilic compounds in a matrix, such as cord blood, characterized by 

a low fat content.  

The main aim of the present human biomonitoring study was to assess if a quantitative relationship 

may be established to characterize the placental transfer of a group of POPs present in greatest 

abundance in human tissues, and therefore to predict in utero exposure to these contaminants from 

levels assessed in maternal blood. 

The most abundant PCB congeners (the so-called “indicator” PCBs 28, 52, 101, 138, 153, and 180 

plus PCBs 118 and 156), the organochlorinated pesticides p,p'-dichlorodiphenyldichloroethylene  

(p,p’-DDE), β-hexachlorocyclohexane (β-HCH) and hexachlorobenzene (HCB), and the two main 

members of the family of the perfluorinated compounds (PFOS and PFOA) were therefore analysed in 

matched mother-newborn pairs. 

2. Materials and Methods 

2.1. Recruitment of Study Participants, Sample Collection and Analysis 

Women subject enrolment was carried out between May 2008 and May 2009 at the Department of 

Gynaecology-Obstetrics and Urology, Policlinico Umberto I, University of Rome “Sapienza”. The 

study, approved by the Local Research Ethic committee, involved 38 mother-child pairs.  

A sample of about 30 mL of blood was withdrawn from each woman at the time of hospitalization 

or the next hours after delivery. Cord blood samples were taken during the delivery, either vaginal or 

by caesarean section, between childbirth and placental expulsion. All women gave informed consent 

for themselves and for their infants before participating in the study.  

Blood samples were centrifuged to obtain serum. Only a few milliliters of serum were obtained 

from the umbilical cord blood, due to the high hematocrit (average value of 44–62%) of fetal 

blood [31]. Serum samples were stored at −20 °C until time of analysis.  

Birth weight of infants was measured within 1 hour from delivery with an electronic balance and 

recorded to the nearest gram. Birth crown-heel length and head circumference were measured within 

1 h with a Harpenden neonatometer and an inelastic tape, respectively, and recorded to the nearest 

millimeter. Percentile was calculated using Italian Neonatal Anthropometric Charts [32]. Apgar score 

was evaluated by the attending neonatologist in the delivery room at one and five minutes after birth. 

2.2. Analysis  

2.2.1. Organochlorinated Pesticides and PCBs 

An aliquot of about 4–12 mL of each maternal serum sample and about 3–5 mL of each cord serum 

were added with a mixture of 13C labelled PCBs (28, 52, 101, 118, 138, 153, 156, 180), and a mixture 

of 13C labelled pesticides (p,p’DDE, HCB, β−HCH), and allowed to rest overnight at 4 °C. Formic 

acid/2-propanol (4/1, v/v, 15 mL) were added to the samples, which were sonicated and extracted by 
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manual shaking with n-hexane. After centrifugation, the organic phase was removed and collected. 

This extraction process was repeated two times. The n-hexane extracts were treated with concentrated 

sulphuric acid, separated by centrifugation and then concentrated and transferred into 1 mL 

autosampler vials. After addition of 1 μL of tetradecane, extracts were concentrated to dryness, an 

isooctane solution of the injection standard (200 μL) was added, and samples were quantified [33–35].  

Instrumental analysis was carried out by ion trap mass spectrometry (Thermo Finnigan Polaris Q) 

coupled to high resolution gas chromatography used in the MS–MS mode. The isotope dilution 

technique was applied throughout. Recoveries ranged from 60–120%. 

Analytical reliability was warranted by the use of an in-house validated method [33]. The laboratory 

has considerable experience in the analysis of halogenated organic microcontaminants and periodically 

participates in interlaboratory comparison exercises and proficiency tests on the analysis of PCDDs, 

PCDFs, PCBs, organochlorinated pesticides, and brominated flame retardants in dietary, biological, 

and environmental matrices. 

2.2.2. PFOS and PFOA 

An aliquot of about 250 μL of each serum sample was fortified with a mixture of 13C-labelled PFOS 

and PFOA and allowed to stand overnight at 4 °C. Extraction was performed with acetonitrile by 

manual shaking in a centrifuge tube, followed by centrifugation at 3,500 revolutions per minute (rpm) 

for 10 min. Acetonitrile aliquots were removed, collected in centrifuge tubes, carefully concentrated by 

a multiple samples evaporator system and transferred to an autosampler vial to undergo instrumental 

analysis [36]. Instrumental analysis was carried out by HPLC (Waters 2695 separations module) 

interfaced to a mass spectrometer (Waters Micromass Quattro micro API) operated in the electrospray 

negative mode. Data were acquired using multiple reaction monitoring (MRM). The isotope dilution 

technique was applied throughout. Recovery ranges of 13C-labelled internal standards were 70–110%. 

Analysis of blanks and control samples was systematically carried out to check the analytical 

reliability. Limits of detection for PFOS and PFOA were 0.05 ng/g·fw and 0.1 ng/g·fw, 

respectively [36]. 

2.3. Statistical Analysis 

The Shapiro-Wilk test was used to test the normal distribution of data. The Spearman test was used 

to evaluate the correlation between concentrations of organochlorinated pesticides, PCBs and PFCs in 

maternal and cord serum and the correlation between concentrations of all the analytes. Linear 

regression analysis was used to investigate the transfer behaviour of all compounds. The Spearman test 

was also used to evaluate the correlation between levels of POPs in maternal and foetal serum and 

gestational age, Apgar scores and weight at birth. All statistical analyses were carried out using 

STATISTICA, version 8.0 (StatSoft, Inc., Tulsa, Oklahoma).  

3. Results 

A total of 38 Italian Caucasian women aged 26–45 years (mean age, 34.5 years) and their newborns 

were included in this study. In Table 1, the general characteristics of the women and their infants are 
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reported. Out of the enrolled women, 23 women were at their first pregnancy. Mean gestational age 

was 39 weeks (range 35–42 weeks). 

Table 1. General characteristics of the enrolled women and their newborns. 

Characteristics of Women (n = 38) Min Median Mean Max 

Age 26.0 34.0 34.6 45.0 
Gestational age (weeks) 35 39 39 42 

BMI pre pregnancy 18.0 22.7 22.3 25.2 
Characteristics of newborns (n = 38)     

Baby birth weight (g) 2,190 3,213 3,239 4,420 
Baby birth length (cm) 45.1 49.0 49.6 57.0 

Baby head circumference (cm) 31.0 34.5 34.1 36.0 
Apgar score (1 min) 4.0 8.0 8.2 9.0 
Apgar score (5 min) 7.0 9.0 9.4 10.0 

Sample volume was sufficient for the analysis of PFOS and PFOA in all samples, while only 32 out 

of the 38 samples had a volume sufficient for the analysis of the organochlorinated compounds. With 

regard to maternal serum samples, 24% had concentrations below the limit of quantification (LOQ) of 

β-HCH and PCB 118, 16% of PCBs 180, 138 and 153, and <5% of HCB, p,p’-DDE, PFOS and PFOA. 

LOQ values ranged from 1 to 10 pg/g·fw for PCBs and organochlorinated pesticides and were of 0.1 

and 0.5 ng/g·fw for PFOS and PFOA respectively. 

With regard to cord serum, the percent of samples with concentrations below LOQs were 74% for 

β-HCH, 53% for PCB 118, 47% for HCB, 39% for p,p’-DDE, 29% for PCB 138 and PFOA, 26% for 

PCB 153, 18% for PCB 180, and 3% for PFOS. Concentrations of PCBs 28, 52, 101, and 156 were 

always below their respective LOQs in cord blood samples. 

Concentrations of β-HCH, HCB, p,p’-DDE, and PCBs 118, 138, 153 and 180, PFOS and PFOA 

assessed in maternal and cord serum are shown in Table 2, summarized by arithmetic means, medians, 

minimum and maximum values, 25th and 75th percentiles. Values are expressed on a fresh weight 

basis since lipid content of cord serum samples could not be determined because the majority of cord 

samples were hemolyzed, this unabling the application of enzymatic methods currently used for lipid 

determination [37]. 

The pesticide found at the highest concentration in both maternal and cord serum samples was  

p,p’-DDE. Mean concentrations of this pollutant in maternal serum and cord serum were 2.0 and 

0.52 ng/g·fw respectively. Concentrations of HCB and β-HCH in maternal serum and cord serum were 

0.31 and 0.13 in cord ng/g·fw, and 0.16 ng/g·fw and 0.047 ng/g·fw respectively. 

As to the PCB congeners, a similar pattern in relative abundance was observed in the maternal and 

foetal compartments, with levels of PCB 153 > PCB 180 > PCB 138 > PCB 118. PCB mean 

concentrations in maternal serum and cord serum were 0.30 and 0.064 ng/g·fw for PCB 153, 0.14 and 

0.030 ng/g·fw for PCB 138, 0.22 and 0.043 ng/g·fw for PCB 180. Mean concentrations of the  

dioxin-like PCB 118 were 0.058 and 0.018 ng/g·fw in maternal and cord serum, respectively. 

Arithmetic means of PFOS concentrations were 3.2 and 1.4 ng/g·fw in mothers and infants, 

respectively, while PFOA mean concentrations were 2.9 and 1.6 ng/g·fw. 
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Table 2. Serum concentrations (ng/g, fresh weight) of organochlorinated pesticides  

(β-HCH, HCB and DDE), four congeners of polychlorobiphenyls (PCBs) and 

perfluorinated compounds (PFCs) in maternal and cord samples. Values rounded off to two 

figures. Concentrations <LOQ included in the analysis. 

Compounds  N Min P25 Median Mean P75 Max 

        
β-HCH Maternal serum 32 0.0090 0.039 0.065 0.16 0.13 1.5 
β-HCH Cord serum  32 0.0014 0.014 0.024 0.047 0.057 0.25 

        
HCB Maternal serum 32 0.060 0.12 0.17 0.31 0.44 1.4 

HCB Cord serum 32 0.003 0.020 0.044 0.13 0.11 1.2 
        

p,p’-DDE Maternal serum 32 0.24 0.57 0.78 2.0 1.3 25 
p,p’-DDE Cord serum 32 0.0050 0.12 0.22 0.52 0.48 4.0 

        
PCB 118 Maternal serum 32 0.0006 0.029 0.055 0.058 0.068 0.219 

PCB 118 Cord serum 32 0.0008 0.002 0.013 0.018 0.030 0.068 
        

PCB 138 Maternal serum 32 0.033 0.094 0.12 0.14 0.15 0.45 
PCB 138 Cord serum 32 0.0017 0.016 0.031 0.030 0.043 0.073 

        
PCB 153 Maternal serum 32 0.090 0.17 0.27 0.30 0.32 0.94 

PCB 153 Cord serum 32 0.023 0.037 0.057 0.064 0.084 0.16 
        

PCB 180 Maternal serum 32 0.040 0.14 0.20 0.22 0.25 0.61 
PCB 180 Cord serum 32 0.0052 0.027 0.041 0.043 0.051 0.11 

        
PFOS Maternal serum 38 0.062 1.9 2.9 3.2 3.9 13 

PFOS Cord serum 38 0.23 0.75 1.1 1.4 1.8 3.7 
        

PFOA Maternal serum 38 0.20 1.9 2.4 2.9 4.0 9.1 
PFOA Cord serum 38 0.17 0.29 1.6 1.6 2.2 5.0 

        

3.1. Correlation Analyses 

For all analytes, data distributions were approximately log-normal. The Spearman non-parametric 

test was applied to all compounds, followed by a linear regression analysis performed on  

log-transformed data. 

As shown in Table 3, a strong correlation was observed between concentrations in the maternal and 

the foetal compartment for PFOS (Spearman r = 0.74, p << 0.001), PFOA (Spearman r = 0.70,  

p << 0.001), PCB 153 (Spearman r = 0.60, p < 0.001), HCB (Spearman r = 0.68, p < 0.001), PCB 180 

(Spearman r = 0.55, p = 0.0012), and p,p’-DDE (Spearman r = 0.53, p = 0.0099). A weak correlation 

(p < 0.1) was observed for PCBs 118 and 138, and not significant correlation was found for β-HCH. 
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The regression analysis confirmed the results of the Spearman test and showed linear correlation 

between maternal and cord log-transformed concentrations for all the analytes with the exception of  

β-HCH, PCB 118 and PCB 138. With the exception of these latter compounds regression equations 

were calculated for all analytes. Intercepts and regression coefficients are reported in Table 3.  

Table 3. Results from the Spearman and Pearson correlation analysis. Pearson regression 

was performed on log transformed data. 

Cord serum vs. 
maternal serum 

β-

HCH 
HCB p,p’-DDE PCB 118 PCB 138 PCB 153 

PCB 

180 
PFOA PFOS 

          

N 10 20 23 17 27 28 31 26 37 

          

Spearman 

correlation 
         

          

Coefficient (r) 0.21 0.68*** 0.53** 0.45* 0.33 * 0.60*** 0.55** 0.70*** 0.74*** 

          

p 0.56 0.00088 0.0099 0.073 0.098 0.0007 0.0012 <<0.001 <<0.001 

          

Pearson correlation          

          

Coefficient (r) 0.27 0.69*** 0.55** 0.3 0.29 0.57** 0.51** 0.75*** 0.64*** 

          

p 0.44 0.0008 0.0064 0.24 0.14 0.0017 0.0034 <<0.001 <<0.001 

          

Intercept – −0.353 -0.45 – – −0.881 −0.973 −0.033 −0.298 

          

Regression 

coefficient 
– 1.130 0.686 – – 0.551 0.661 0.768 0.78 

* p < 0.1; ** p < 0.05; *** p < 0.001.  

A significative (p < 0.05) correlation was found among the concentrations of all compounds, with 

the exception of PFOA, which correlates only with PFOS, and of PFOS, which does not correlate with 

PCB 118 and p,p’-DDE.  

No association could be observed for levels in maternal and cord blood, with birth weight and 

gestational age. However, a statistically significant correlation (Spearman test, p < 0.1) was found 

between increasing levels of PCBs 118 (16 data) and 138 (22 data) in cord serum and decreasing 

Apgar score at 1 min (A1) and 5 min (A5) post-birth. 

4. Discussion and Conclusions 

Because of the importance of the fetal period with regard to development and differentiation,  

in utero exposure to POPs is of particular concern. Many of these compounds are in fact toxic for the 

immune, neurological, and endocrine systems, which experience critical developmental stages in the 

fetus. Transfer of toxic chemicals from maternal to fetal compartment across the placenta is similar to 
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transfer across other biological membranes, and known to increase as the fetal growth rate 

increases [38]. 

This study addressed the partition of priority POPs between maternal and fetal serum, with the main 

objective to explore if a quantitative correlation could be defined to predict in utero exposure from 

maternal serum levels. To this aim, we enrolled a group of women from Rome, a city characterised by 

the absence of major industrial activities. 

Concentrations of organochlorinated pollutants assessed in the group of women enrolled in the 

present study, expressed on a lipid basis for comparative purposes, are in agreement with those found 

in groups of women of the same age, determined by our group in studies conducted in the same 

years [39]. Levels of PFCs in maternal and cord serum observed in this study are generally lower than 

those found in other countries in the years 2004–2010 [26,28,40–43], and in agreement with levels 

detected in Germany and South Africa in the same period [44,45]. Our data confirm a comparatively 

low exposure of the Italian general population to PFCs, as we had already observed in a previous 

study [36]. 

The correlation analysis of measured POP concentrations shows that samples with comparatively 

higher levels of PCBs also have higher concentrations of organochlorinated pesticides, but not 

necessarily of PFOS and PFOA. This finding is not surprising because exposure to PCBs and 

organochlorinated pesticides occurs through the same routes (mainly diet, and primarily consumption 

of food of animal origin with high fat content), while exposure to PFOS and PFOA occurs via different 

routes. In fact, although food is considered the major intake pathway of PFCs in humans, release from 

food packaging products and inhalation of contaminated house dust may contribute a non-negligible 

fraction to the overall exposure [19]. 

As to the inverse correlation we observed between Apgar scores A1 and A5 and levels of PCB 118, 

this result is in line with what was observed by some authors in similar studies [50,51]. Nevertheless, 

because of the small number of data available for analysis, this finding can only be considered weakly 

indicative and therefore needs to be further investigated with a larger dataset. 

Most of the POPs analysed were shown to cross the placental barrier, since they could be found in 

the fetal compartment, although the frequency of detection varied, ranging from 27% for β-HCH to 

nearly 100% for PFOS and PCB 180, and to 100% of PFOA. Because all the analysed chemicals share 

common physical-chemical properties, it is very likely that, also for undetected compounds, a placental 

passage may occur, and they were not detected in cord serum samples only because of the small 

amount of cord sample (< 5 mL) available. Analysis of the concentration ratios between the fetal and 

maternal compartments (Table 4) shows that the placental barrier partially only reduces the transport to 

the fetus and that some compounds, such as PFOA, and PCB 118 (and, to a lesser extent, PFOS, PCB 

138 and p,p’-DDE) may even concentrate in the fetal compartment.  
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Table 4. POP ratios (%) between concentrations in fetal and maternal compartments. 

Compounds N Min Mean Max 

β-HCH 10 2 18 54 

HCB 20 5 39 100 

p,p’-DDE 23 5 40 106 

PCB 118 17 18 63 130 

PCB 138 27 6 33 114 

PCB 153 28 13 27 74 

PCB 180 31 4 21 40 

PFOS 37 10 46 110 

PFOA 26 17 87 177 

Although a straightforward comparison with results from other similar studies is hindered by a 

number of factors (such as the way to express concentrations, and the statistical approach) our results 

are consistent with findings obtained in another study carried out in Italy, in the polluted urban area of 

Brescia [46], which evidenced a linear correlation between levels of p,p’-DDE, HCB, and total PCBs 

in maternal and cord serum, and with a study recently published by Needham et al. [47]. As to PFCs, 

our results confirm the good correlation between the maternal and the foetal compartment consistently 

observed for PFOS in published studies [44,47–49], while studies carried out on PFOA provide, on the 

whole, conflicting results [44,47–49]. 

 The results of this study, to be considered preliminary because of the small number of samples 

analysed, show that, for a number of priority POPs (PFOS, PFOA, PCB 153, PCB 180, HCB and  

p,p’-DDE), the placental transfer may be estimated through regression equations from concentrations 

assessed in maternal blood. A further investigation on a larger number of mother-newborn pairs would 

allow to better describe the quantitative relationships which characterize the transfer behaviour of 

priority POPs to the fetal compartment. 
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