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Abstract: The effects on water quality of land use and land cover changes, which are 

associated with human activities and natural factors, are poorly identified. Fine resolution 

satellite imagery provides opportunities for land cover monitoring and assessment.  

The multiple satellite images after typhoon events collected from 2001 to 2010 covering 

land areas and land cover conditions are evaluated by the Normalized Difference 

Vegetation Index (NDVI). The relationship between land cover and observed water 

quality, such as suspended solids (SS) and nitrate-nitrogens (NO3-N), are explored in the 

study area. Results show that the long-term variations in water quality are explained by 

NDVI data in the reservoir buffer zones. Suspended solid and nitrate concentrations are 

related to average NDVI values on multiple spatial scales. Annual NO3-N concentrations are 

positively correlated with an average NDVI with a 1 km reservoir buffer area, and the SS 

after typhoon events associated with landslides are negatively correlated with the average 

NDVI in the entire watershed. This study provides an approach for assessing the influences 

of land cover on variations in water quality. 
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1. Introduction 

Land use and land cover changes, associated with human activities and natural factors, compromise 

many ecosystem services in a watershed [1,2]. For example, forestland converted to agricultural or 

urban land may have increased erosion, runoff, and flooding [3]. Changes in land use and land cover 

interact with anthropogenic and natural drivers to affect the water quality of watersheds. Studies have 

used environmental and landscape data to examine the relationships between land use and land cover 

changes and suspended sediments [4–7] and nutrients [1,7–10]. Ahearn et al. showed that land use and 

land cover exert the greatest control over water quality in the Cosumnes Watershed, California [7].  

The percentage of agricultural coverage had a significant influence on nutrient loading. Sliva and 

Williams used multivariate analysis to determine whether there was a correlation between water quality 

and landscape characteristics within the local Southern Ontario watersheds in Canada. They compared 

the influences of buffer zones and whole catchment landscape characteristics on water quality [9].  

Li et al. showed the impact of land use and land cover on the water quality in the Upper Han River 

basin, China [10]. The correlation and regression analysis indicated that water quality was significantly 

related to vegetated coverage.  

Water quality is controlled by numerous anthropogenic and natural factors [7]. The quality of 

receiving waters is affected by human activities in a watershed by point sources, such as wastewater 

treatment facilities, and non-point sources, such as runoff from urban areas and farmland [11]. 

Understanding non-point source pollution requires an understanding of how particular land covers 

influence water quality within a watershed. The extent that land covers hierarchically affect water 

quality at space-time scales is a key question. The most widely used land cover index in this context is 

the normalized difference vegetation index (NDVI), which is a function of red and near-infrared 

spectral bands [12]. On a regional scale, multi-temporal NDVI images are practical for monitoring 

vegetation dynamics. The multi-temporal NDVI is useful for classifying land cover and detecting the 

dynamics of vegetation [13,14]. However, major changes in the NDVI are noted near landslides that 

were induced by disturbances in Taiwan [15,16]. For example, a typhoon is one of major natural 

disturbances to land cover. Sequent typhoons and rainstorms cause abnormal destruction to the 

vegetation; this destruction is influenced by rainfall distributions and typhoon paths [15].  

The NDVI data were derived from SPOT satellite images in the Tseng-Wen Reservoir Watershed, 

Taiwan, before and after Typhoon Morakot and several other large typhoons (e.g., Typhoon Mindulle 

in 2004, Haitang in 2005, Sepat in 2007, Kalmaegi in 2008, and Fanapi in 2010) [17] to identify the 

changes to land cover. To represent land use and land cover change, an evaluation of multiple NDVI 

spatial scales was conducted. The study identified and delineated the relationships between temporal 

variations of the NDVI and water quality in the study area. 

2. Materials and Methods 

2.1. Study Area 

The Tseng-Wen Reservoir is a multipurpose reservoir designed for flood control, hydroelectric 

power generation, irrigation, water supply, recreation, and flow augmentation. The storage capacity of 

the Tseng-Wen reservoir is 608 × 106 m3, but its effective water storage is 490 × 106 m3, and the 
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hydroelectric plant capacity is 50 MW. The Tseng-Wen Reservoir Basin is located in the upstream 

area of the Tseng-Wen River system in Chiayi County (Figure 1). The entire watershed area of this 

river basin is 1,176 km2, in which the Tseng-Wen Reservoir watershed covers 481 km2. The average 

slope of this river basin is approximately 1/57. Average rainfall in this watershed area is approximately 

3,000 mm per year and annual average temperature is about 23.4° Celsius. Rich soil in the watershed is 

suitable for fruit and tea farms. Agriculture has restricted near the reservoir but tourism has developed 

in recent years.  

Numerous major typhoons have struck Taiwan, such as Typhoon Mindulle in 2004, Haitang in 2005, 

Sepat in 2007, Kalmaegi in 2008, Morakot in 2009, and Fanapi in 2010 [17]. Especially, Typhoon 

Morakot struck Taiwan from 7 to 9 August, 2009, and produced record-breaking rainfall and catastrophic 

damage in Southern Taiwan. The typhoon produced copious amounts of rainfall peaking at 2,777 mm. 

Figure 1. Location of Tseng-Wen Reservoir watershed and water quality sampling stations. 

 

2.2. Satellite Images 

Multi-temporal Système Pour l'Observation de la Terre (SPOT) satellite images obtained after 

typhoons in 2001, 2003–2005, and 2007–2010 were used to quantify land cover changes in our study. 

Details for the dates are listed in Table 1. For atmospheric correction, Fast Line of Sight Atmospheric 
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Analysis of Spectral Hypercube (FLAASH) is applied to correct the visible and near-infrared 

wavelengths in the satellite images [18]. Then, the NDVI maps were derived from the SPOT images 

taken in 2001 with a 20 m resolution, and with a 10 m resolution in 2003–2010. Moreover, the SPOT 

images were classified using supervised classification by the software package ERDAS IMAGINE. 

Land-use types were classified into the following six categories: forested land, built-up land, landslide, 

grassland, water, and bare land [19]. The reference maps were the aerial photographs by the Aerial 

Survey Office, Forestry Bureau, Taiwan. 

Table 1. Mean and standard deviation of NDVI maps during 2001–2010. 

 Date Mean SD 

2001 2001/10/22 0.585 0.205 

2003 2003/12/30 0.704 0.163 

2004 2004/12/29 0.600 0.171 

2005 2005/11/05 0.663 0.191 

2007 2008/01/05 0.563 0.209 

2008 2008/11/12 0.686 0.171 

2009 2009/11/01 0.437 0.218 

2010 2010/12/27 0.494 0.221 

SD: standard deviation. 

2.3. Water Quality Data 

Seasonal time series of water-quality data monitored in the reservoir were obtained from Taiwanese 

EPA Web sites [20]. The water quality data observed at three stations were obtained from 2001 to 

2010 and data sampling frequency was three months. The sampling sites are shown in Figure 1. The 

water-quality variables, such as nitrate-nitrogen (NO3-N), suspended sediments (SS), chemical oxygen 

demand (COD), dissolved oxygen (DO), total phosphorus (TP), and turbidity, were derived for 

analysis. The variables are used as general indicators of water quality. For example, the COD is 

commonly used to measure the amount of organic compounds in water. As the DO in water drops 

below a threshold, aquatic life is under stress. The presence of high nitrates and TP concentrations in 

water indicates possible pollution of the water. Turbidity is the haziness of a fluid caused by the SS, 

which are solid particles usually transported by flowing water. 

2.4. Regression Model 

Reservoir water chemistry was sampled at the outlets and downstream of the reservoir every  

three months. We refer to the water samples after typhoons in the fourth season and acquire annual 

values each year. We ran a series of models to examine the correlations between land-cover and the 

water quality variables. 

Our basic statistical tool was stepwise multiple linear regression, with backward selection of 

variables and p = 0.1 to enter or remove variables. Cases with missing data were excluded. Statistical 

analyses were done using SPSS 10.0. The dependent (response) variables are NO3-N and SS 

concentrations that are selected from the high-NDVI correlated water quality factors. The variable 
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details are shown in Section 3.2. In addition, the independent variables are average NDVI at various 

spatial scales such as average NDVI in whole watershed, average NDVI in reservoir 1 km, 2 km and  

3 km buffer zones, can be represented as: 

     (1) 

where  represent NDVI value varies with space s and time t;  is average NDVI in 

whole watershed or reservoir buffer zone during time t; S is the domain set that defined as whole 

watershed or reservoir buffer zone; num is the number of the pixels in the set S. 

3. Results and Discussion 

3.1. Temporal Land Use and NDVI Changes 

Figure 2 shows that land use classification in 2001, 2004, 2007 and 2010. The forested land, 

grassland, bare land, build-up, and landslide accounted for 77.61%, 11.72%, 7.72%, 2.55% and 0.42% 

(excluding water) of the total watershed area in 2001, respectively. During 2001–2010, forest has 

decreased 4.81%, grassland has increased 2.35%, landslide has increased 2.12%, bare land has 

increased 0.55%, and built-up land has decreased 0.21% (Figure 3). The results matched previous 

studies [21,22] that many landslides in the Tseng-Wen reservoir watershed were caused by typhoons. 

Table 1 shows the statistics of NDVI images after typhoon events from 2001 to 2010. Results show 

that the lowest mean NDVI values (0.437) occurred on November 1, 2009, after Typhoon Morakot, 

and the second lowest NDVI values occurred on December 27, 2010 (0.494). The greatest impact on 

the landscape is from Typhoons Morakot and Fanapi. During the event (i.e., Typhoon Fanapi), the 

standard deviation of NDVI values was the largest. The analysis results of NDVI images (Figure 4) are 

sufficient to present land cover changes induced by disturbances, particularly by spatial structure, 

variability, and spatial correlation. The disturbances impacted the fragmentation and interspersion of 

the low NDVI patches and created heterogeneous patterns across the landscape within the affected  

area [16]. However, land cover change may be different in the spatial scales. The box plot shows that 

the range between the lower and upper quartiles in the NDVI decreases when the buffer zone increases 

(Figure 5). 

3.2. The Change of Water Quality 

Table 2 shows the correlation coefficients between the average NDVI in the watershed and average 

water quality factors during the whole year and after typhoon. The average value of the NDVI in the 

watershed is strongly correlated with NO3-N during the entire year and is strongly correlated with SS 

after typhoon from 2001 to 2010. These water quality factors such as SS and NO3-N concentrations are 

the indices for water quality assessment when considering land cover changes. The average SS 

concentrations after typhoons and the average annual NO3-N in the sites are used by later descriptive 

statistics and regression analysis. 
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Figure 2. Land use classification in (a) 2001, (b) 2004, (c) 2007 and (d) 2010. 

 

Figure 3. Land use change percentage from 2001 to 2010. 
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Figure 4. Images of NDVI patterns in the study area during (a) 2001, (b) 2003, (c) 2004, 

(d) 2005, (e) 2007, (f) 2008, (g) 2009 and (h) 2010. 

 

Figure 5. Boxplot of NDVI values for (a) 1, (b) 2, and (c) 3 km buffer zones. 
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Table 2. Correlation coefficients of average NDVI and water quality in whole year and after typhoon. 

 NO3-N SS COD DO TP Turbidity 

Whole year  0.687  −0.577  0.277  −0.498  0.313  0.086  

After typhoon 0.529  −0.621  0.604  −0.060  0.364  −0.384  

NO3-N: nitrate-nitrogen; SS: suspended sediments; COD: chemical oxygen demand; DO: dissolved 

oxygen; TP: total phosphorus. 

Table 3. Descriptive statistics of SS, and NO3-N data in three water quality-monitoring 

stations during 2001–2010. 

  Mean SD Q25 Q75 Min Max
SS 
(ppm) 

Site 1 4.51 2.47 2.90 5.70 0.80 13.50 

Site 2 4.85 2.61 3.10 6.05 1.10 12.60 

Site 3 4.52 2.14 2.90 5.78 1.00 9.80 
NO3-N 
(ppm) 

Site 1 0.44 0.31 0.25 0.58 0.01 1.62 

Site 2 0.47 0.30 0.26 0.60 0.01 1.45 

Site 3 0.45 0.28 0.28 0.58 0.01 1.20 

SD: standard deviation; Q25: the first quartile; Q75: the third quartile; Min: minimum; Max: maximum. 

Figure 6. Temporal variation of (a) SS and (b) NO3-N during 2001 and 2010 (unit: ppm). 

  
(a) 

 
(b) 

Table 3 lists quarterly measurements of SS, and NO3-N data at three water quality-monitoring stations 

from 2001 to 2010 (Figure 6). The average concentrations for SS for observation Sites 1, 2, and 3 are 

in the ranges of 0.8–13.5 (ppm), 1.1–12.6 (ppm), and 1.0–9.8 (ppm), respectively. Moreover, the average 

concentration of NO3-N for Sites 1, 2, and 3 are in the ranges of 0.01–1.62 (ppm), 0.01–1.45 (ppm), 

and 0.01–1.20 (ppm), respectively. The average SS values are 4.51, 4.85, and 4.52 (ppm), and the 

average NO3-N values are 0.44, 0.47, and 0.45 (ppm) in these 3 sites. Figure 6(a) shows that SS 
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concentrations are cyclical. Typhoons and heavy rainfalls trigger large sediment discharge into the 

rivers of Taiwan and cause high-suspended sediment concentrations during these events. Most nitrate 

concentrations in the water drains from agricultural land. However, Figure 6(b) shows NO3-N 

concentrations vary with a decreasing trend. 

3.3. Relationship between SS Concentration and Land Cover Change 

Table 4 shows the regression models for water quality and land cover changes at various spatial 

scales. The factors comprise the average NDVI in the watershed, and the average NDVI in 1 km, 2 km, 

and 3 km buffer zones. Results show that annual nitrate-nitrogen concentrations are positively 

correlated with the NDVI with a 1 km buffer area. However, SS is negatively impacted by the average 

NDVI in the watershed, suggesting that typhoons impact land cover change in the watershed. For 

example, typhoons cause landslides, and these are a major source of soil erosion and sediment yield in 

the watershed. The average NDVI in the watershed adversely impacts the water quality, and therefore, 

increases sediments associated with water quality. The average NDVI in the watershed becomes a key 

factor influencing the SS concentration. Typhoon events are major natural disturbances causing NDVI 

changes and also cause serious landslides [16,23,24]. Both important factors affecting soil erosion and 

sediment delivery to river channels are changes in land use and climate. Due to destruction of 

vegetation and increased soil exposure in the watershed after rainstorms and typhoons, the NDVI 

values decreased. The rainstorms and typhoons cause divergent destruction of vegetation, and led to an 

increase in the potential for soil erosion. 

Table 4. Regression model for the function of water quality and average NDVI in various scales. 

 SS NO3-N 
Const. 6.86 −0.73 
NDVI_Watershed −23.74 * - 
NDVI_Buffer1 - 2.10* 
NDVI_Buffer2 - - 
NDVI_Buffer3 20.23 - 

R2 0.65 0.75 

* represents p < 0.05; 

NDVI_Watershed: average NDVI in whole watershed; 

NDVI_Buffer1: average value of NDVI in 1 km buffer zone; 

NDVI_Buffer2: average value of NDVI in 2 km buffer zone; 

NDVI_Buffer3: average value of NDVI in 3 km buffer zone. 

3.4. Relationship Between NO3-N Concentration and Land Cover Change 

Results show that the dominant explanatory variables in NO3-N cases have an average NDVI with a 

1 km buffer zone. In some reservoirs and lakes, the primary indicator of agriculture is dependent on 

NO3-N concentration. The nitrate concentration is correlated with agricultural practices during the 

high-flow period. Human activity alters the patterns of nitrate concentrations during storm events in 

the agricultural catchment [25]. Since Taiwan joined the World Trade Organization (WTO) in 2002, 

imported agricultural products are cheaper than domestic ones, thus negating the need for extensive 
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agriculture areas. This corresponds to the data that tea farms in Chiayi County decreased from 2,292 to 

2,189 ha from 2005 to 2011 [26]. Forestry, agriculture, and anthropogenic activities impact the quality 

of water over short and long periods [27]. The SS and NO3-N are typically sensitive in landslide and 

agriculture land areas. The previous results match that percent agricultural coverage had a significant 

influence on both SS and nitrate-N loading [7]. NDVI variation results imply that as land cover 

changes; hence, the multi-scale NDVI, which is one of the indices in the watershed of land cover 

changes, is associated with water quality and is hard to directly link with agriculture. However, the 

land use classification of SPOT images is also hard to identify the agriculture land. Further study could 

consider the high-resolution satellite images in the land use classification. 

4. Conclusions 

This study examined the NDVI images from 2001 to 2010 based on SPOT imagery data. The 

imagery shows that the land cover changes in the study vary with the influences of typhoons and 

human activities. Satellite image data showed a general decline in the acreage of vegetation cover 

implying increased landslide and decreased forest pressure on the vegetation resources. 

Land cover change had a significant influence on both suspended solid and nitrate-nitrogen 

loadings. Simple regressions were performed that showed water quality is related to land cover in 

various spatial scales. Annual NO3-N concentration is positively correlated with an average NDVI 

with a reservoir 1 km buffer area, but SS are negatively correlated with an average NDVI in the 

watershed after typhoon events. Understanding the relationship between land cover change and water 

quality is useful for watershed management and pollution prevention plans. Further study should add 

additional spatial and independent variables to the models, such as percentage of land use type, 

anthropogenic activities and typhoon precipitation.  
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