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Abstract: The number of dengue cases has been increasing on a global level in recent 

years, and particularly so in Malaysia, yet little is known about the effects of weather for 

identifying the short-term risk of dengue for the population. The aim of this paper is to 

estimate the weather effects on dengue disease accounting for non-linear temporal effects 

in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the 

weather parameters with a Poisson generalized additive model, and then assessed the 

effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on 

dengue cases using a distributed non-linear lag model while adjusting for trend,  

day-of-week and week of the year. We found that the relative risk of dengue cases is 

positively associated with increased minimum temperature at a cumulative percentage 

change of 11.92% (95% CI: 4.41–32.19), from 25.4 °C to 26.5 °C, with the highest effect 

delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong 

effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 

51.37), from 215 mm to 302 mm, with the highest effect delayed by 26–28 days. The wind 

speed is negatively associated with dengue cases. The estimated lagged effects can be 

adapted in the dengue early warning system to assist in vector control and prevention plan. 
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1. Introduction 

The risk of mosquito-borne dengue infection has increased dramatically in tropical and sub-tropical 

regions around the World in recent decades [1]. Each year there are between 50 and 100 million 

dengue infections, and more than 500,000 cases are hospitalized [2]. The pattern of dengue 

transmission is influenced by complex factors including the environment, climate and weather,  

human behavior and dengue virus serotype-specific herd immunity among the human population [3–5]. 

Here, we focus on weather, one of the fundamental driving forces behind dengue epidemics [6,7] that 

may allow us to narrow down the timeframe of high risk dengue infection.  

Dengue disease transmission is sensitive to weather for several reasons: a warm ambient 

temperature is critical to adult dengue vectors’ feeding behavior and gonotrophic cycle, as well as the 

rate of larval development and speed of virus replication; and rainfall-induced standing water are 

necessary for dengue vectors to breed [8–10]. The entire immature or aquatic cycle from egg to adult is 

approximately 7–9 days [11,12]. Dengue vectors become infected by biting infected humans or  

non-human primates (viremic stage), and they can then transmit the infection to other uninfected 

people after an extrinsic incubation period (EIP) of 8–12 days [13]. The EIP is the time when dengue 

vectors take a viremic blood meal to the time of the first successful transmission of the DENV [14]. 

After the intrinsic incubation period (IIP) of 4–10 days, the dengue symptoms begins unexpectedly 

sudden on the host [15]. The dengue vectors fit to transmit DENV survives for 30 days [16].  

Hence, the estimated lagged time for the development of dengue vectors to the onset of dengue 

symptoms in human could be as short as 19 days if the dengue vectors bite a susceptive host on the 

first day after EIP.  

Many studies have reported varying associations and lagged effects between climate and weather on 

dengue cases. Strong positive correlations were found between El Niño-Southern Oscillation (ENSO) 

and dengue epidemics in 10 island nations of the South Pacific [17], across the Indonesian archipelago 

and northern South America [18], and in Thailand [19]. For temperature, a varying lagged effect was 

reported in countries situated within 13 and 25 degrees latitude, both North and South. An increasing 

dengue risk was associated with increasing minimum and maximum temperature by a 1–2 month lag in 

Mexico [20], Brazil [21] and French West Indies [22], but with a longer lag time up to 3–4 months in 

Barbados [23] and Australia [24]. For countries closer to the equator, that is, within 1–6 degrees North 

and South, a shorter 2-week lag of temperature on dengue cases was reported in Singapore [25], and a 

1-month lag of temperature was reported in Indonesia [26]. Furthermore, rainfall interactions exhibited 

a mixture of influences, from a 2-week lag, a 4-week lag, a 7-week lag, to a 10-week lag on the 

increase of dengue cases in Mexico [27], Thailand [28], Barbados [23], and Taiwan [29], respectively. 

Wind speed also exhibited a disparate association with dengue cases, from the common negative 

association in Barbados [23], Sri Lanka [30] and Guangzhou, China [31], to no association in  
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Thailand [32] and Taiwan [33]. This study contributes to the overall estimation of the weather 

influence on dengue transmission in the area close to the equator. 

Earlier studies have shown that Malaysia is dengue hyperendemic, with all four serotypes 

circulating concurrently [34], and with an abundance of both Aedes aegypti and Aedes albopictus [35,36]. 

The potential contribution of the results in this work may help health workers and stakeholders to plan 

vector control activities. Few studies in Malaysia focus on the weather interaction with dengue vectors 

abundance [37–40] and dengue cases in a local study site [41,42]. To date, there is no study on the 

short-term weather interaction with dengue cases in Selangor, Kuala Lumpur and Putrajaya, Malaysia.  

We aimed to estimate the weather effects on dengue disease accounting for non-linear temporal effects.  

2. Materials and Methods 

2.1. Study Area  

The study area included the State of Selangor, the federal territory of Kuala Lumpur and the federal 

administrative capital of Putrajaya, and covered an area of 8,222 km2; the geographical location is 

between 2°35'N and 3°60'N, and  100°43'E and 102°5'E (Figure 1). 

Figure 1. Study area: State of Selangor, including the federal territory of Kuala Lumpur 

and the federal administrative capital of Putrajaya.  

 

The tropical climate is characterized by fairly high but uniform average daily temperatures ranging 

from 21 °C to 32 °C, a mean annual temperature of 26 °C, average daily humidity levels exceeding 
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80%, and mean annual rainfall of about 2,500 mm. The climate of Selangor, Kuala Lumpur and 

Putrajaya is governed by two monsoonal winds, which originate from the northeast between October 

and February, and the southwest from May to September [43]. 

2.2. Data  

In Malaysia, dengue is a nationally notifiable disease and physicians must report every suspected 

case of dengue to the local health authority within 24 h [44]. We obtained dengue data from the 

Disease Control Division, Ministry of Health Malaysia. We used only dengue cases that were 

confirmed by the serological tests IgM capture enzyme-linked immunosorbent assay (ELISA) with 

single positive IgM as also applied by other studies [45,46]. For Selangor, Kuala Lumpur and 

Putrajaya, 32,181 cases of dengue were found from 2008 to 2010. The number of dengue cases shows 

a mean of 29.4 per day, with a standard deviation of 13.7 (Table 1).  

Table 1. Distribution of dengue cases and selected weather parameters in Selangor,  

Kuala Lumpur and Putrajaya, 2008–2010. 

Variables (unit) Mean
Standard 
deviation 

 Minimum 
Percentiles  

25th 50th  75th  100th 

Daily total dengue cases 29.4 13.7 1.0 20.0 28.0 38.0 117.0 
Daily minimum temperature (°C) 24.2 1.0 20.4 23.5 24.0 24.9 27.0 
Daily maximum temperature (°C) 32.9 1.6 25.4 32.0 33.0 34.0 36.4 
Daily mean temperature (°C) 27.8 1.3 23.3 26.9 27.8 28.8 31.3 
Daily relative humidity (%) 78.0 6.0 59.9 73.6 78.5 82.6 93.5 
Cumulative bi-weekly rainfall (mm) 117.4 72.9 1.3 55.6 108.2 170.4 329.2 
Daily mean wind speed (knots) 2.9 0.9 1.0 2.3 2.7 3.4 6.2 

We compiled the daily data for maximum, minimum and mean temperature (in degrees Celsius), 

cumulative bi-weekly rainfall (mm), relative humidity (percentage) and mean wind speed (knots) from 

the local weather station in Kuala Lumpur, Subang (WMO# 486470; North Latitude 3°07'01'';  

East Longitude 101°32'60''; 220 masl) from 2007–2010. The data distribution of dengue cases and 

weather parameters are shown in Table 1. We used cumulative bi-weekly rainfall to include the 

immature cycle of dengue vectors that takes at least seven days, which is consistent with previous 

studies [47]. One station data was used due to the availability of the data, the high number of dengue 

cases concentrated near the station, and the weather conditions would not vary significantly across 

space [48]. Weather data were obtained from the National Climatic Data Center (NCDC) website [49].  

2.3. Statistical Analysis 

Initially, we included daily minimum temperature, daily maximum temperature, daily mean 

temperature, daily relative humidity, daily mean wind speed and bi-weekly rainfall in our analysis.  

We assessed the correlation analyses between all weather parameters and dengue cases.  

Mean temperature was reported with a high positive correlation with maximum temperature, and was 

then excluded (Table S1).  
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We assessed the relationship between the weather parameters and the number of daily dengue cases 

using Poisson generalized additive models (GAM) [50] in the “mgcv” R [51] package, version 1.7–23 [52] 

with natural cubic splines. The GAM are useful for identifying non-linear relationships and do not 

require an a priori knowledge of the shape of the response curves [50,53], which is determined by the 

data itself [54]. We excluded outliers of 4 standard deviations from the mean for all weather 

parameters, as GAM modeling is outlier-sensitive [55]. Model construction was based on a stepwise 

forward and backward variable selection using the Akaike’s Information Criteria (AIC)  

score [56]. The significance of the spline term(s) was assessed and fitted with linear interactions when 

non-significance was detected. The best parsimonious model was selected based on the Delta AICs 

(AIC—minimum AIC) [56], and its accuracy was assessed by a 10-fold cross-validation. We assessed 

the autocorrelation and partial autocorrelation of the model residuals to adjust the need to account for 

seasonal trends.  

To capture the delayed effects of weather parameters on the number of dengue cases, we used 

distributed lag non-linear models (DLNM) in the “dlnm” R [51] package version 1.6.8 [57,58] to 

simultaneously describe non-linear and delayed dependencies in the association between weather 

parameters and dengue cases based on a “cross-basis” function. Recent studies have shown promising 

modeling performances in the weather effects on inpatient mortality and outpatient visit with GAM 

and DLNM [59–62]. We used lags up to 90 days to account for any potential lag period (i.e., the extrinsic 

incubation period of the dengue vector and intrinsic incubation period of dengue virus).  

The median value of weather parameters (Table 1) was defined as the baseline centering value for 

calculating relative risk. The relative risk was based on the Poisson regression models adjusting for 

various confounders following the work of Gasparrini et al. [63]. We compared the relative risk at 

specific lags to account for the effect of the current day’s weather parameters on the current day’s dengue 

cases (lag 0), weather parameters one month before (lag 30), two months before (lag 60), and three 

months before (lag 90) on the current day’s dengue cases. To quantify the nonlinear exposure-response 

curves, we calculated the percentage change with the 95% confidence intervals (CIs) in the number of 

dengue cases for minimum temperature, cumulated rainfall and wind speed with the 99th percentile 

relative to the 90th percentile for high weather effect, and the 1st percentile relative to the 10th 

percentile, respectively, for low weather effect. The percentage change was calculated by the following 

formula (Equation 1) [64]: 

Percentage Change = (Relative Risk − 1) × 100% (1)

Sensitivity analyses were performed by varying the degrees of freedom (df), using 3–7 df for trend 

adjustment. Moreover, we conducted the analysis for maximum lags of 60 and 90 days for the DLNM. 

3. Results 

3.1. Best Model Selection and Validation 

By comparing the AIC and the Delta AIC values, we identified the best Poisson GAM model with 

minimum temperature, bi-weekly accumulated rainfall, and wind speed (AIC: 7367.23;  

deviance explained: 75.5%) (Tables S2 and S3). The relative humidity and maximum temperature 

were not statistically significant and were thus not included in the model (Table S2). The model was 
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adjusted with a natural cubic spline of the time per year using 4 df, a factor for day of week and a 

natural cubic spline of week of the year to control for seasonal and long-term trends. We found that the 

selected GAM model correctly described 66% of the withheld deviance in a 10-fold cross-validation 

without a lag effect. The deviance not described by the model may account for temporal fluctuations in 

the immunity status of host populations [65], socio-economical factors [66], and other factors related 

to the population of dengue virus vectors [5]. The autocorrelation and partial autocorrelations of 

residuals from our main models were free from systematic patterns and summed close to zero (Figure S1). 

This suggested our original choice of smoothing had adequately adjusted for seasonal trends. 

In the sensitivity analyses for DLNM, the estimates for the results with varying df and lag changed 

little. Hence, we eventually used the natural cubic B-spline with 3 df for minimum temperature,  

3 df for accumulated rainfall, and 3 df for wind speed to describe the association of weather parameters 

and dengue cases. For the lag stratification, we selected 3 df for minimum temperature, 3 df for 

accumulated rainfall, and 3 df for wind speed.  

3.2. Association of Temperature and Dengue 

The estimated effects of minimum temperature were nonlinear for dengue cases, with increasing 

relative risk at a higher minimum temperature (Figure 2a).  

Figure 2. Relative Risk of dengue cases by (a) minimum temperature (°C); (b) rainfall (mm) 

and (c) wind speed (knots) for a lag of 90 days, using a “natural cubic B-spline-natural cubic 

spline” DLNM with a 3 degrees of freedom natural cubic B-spline for minimum 

temperature, a 3 degrees of freedom natural cubic B-spline for accumulated rainfall, and a 

3 degrees of freedom natural cubic B-spline for wind speed. The reference values were 

median of minimum temperature (24 °C), rainfall (108.20 mm), and wind speed  

(2.7 knots). (see also Supplemental Movie S1, Movie S2 and Movie S3). 

 

The minimum temperature effect on dengue cases on the current day showed a different shape from 

the other specific lags of 30, 60 and 90 (Figure 3). The current day effect was basically not statistically 

significant, but the other lagged effect showed an increasing risk with an increase of minimum 

temperature. The increase of minimum temperature from 25.4 °C (90th percentile) to 26.5 °C  



Int. J. Environ. Res. Public Health 2013, 10 6325 

 

 

(99th percentile) increased dengue cases by the highest amount, that is, 5.04% (95% CI: 3.58, 6.51) at 

a lag of 51 days (Table S4). The cumulative effect of the overall percentage change in the daily dengue 

cases exhibited a higher percentage value, of 11.92% (95% CI: 4.41–32.19) in warm temperature  

(an increase from 25.4 °C to 26.5 °C), than did the cold temperature (a decrease from 23 °C to 22 °C),  

at 0.10% (95% CI: 0.05–0.23) (Table S4).  

Figure 3. Relative Risk of dengue cases by minimum temperature (°C), rainfall (mm) and 

wind speed (knots) at specific lags of 0, 30, 60 and 90 days, using a “natural cubic  

B-spline-natural cubic spline” DLNM with a 3 degrees of freedom natural cubic B-spline 

for minimum temperature, a 3 degrees of freedom natural cubic B-spline for accumulated 

rainfall, and a 3 degrees of freedom natural cubic B-spline for wind speed. The reference 

values were median of minimum temperature (24 °C), rainfall (108.2 mm), and wind speed 

(2.7 knots).  

 

3.3. Association between Rainfall and Dengue  

The estimated effect of rainfall on dengue cases obviously differed for low and high cumulated 

rainfall for a lag period of 90 days in the three-dimensional plot (Figure 2b). There was a strong effect 

at high rainfall, but a rather small effect at low rainfall (Figure 2b). Further, Figure 3 exhibited the 

strongest effect of rainfall at a lag of 30 days with a rapid increase of risk above bi-weekly cumulated 

rainfall of 200 mm. The increase of cumulated rainfall from 215 mm (90th percentile) to 302 mm  
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(99th percentile) increased dengue cases by the highest, 4.75% (95% CI: 3.50, 6.01) at a lag of 26 to 

28 days (Table S4). Overall, high rainfall exhibited a higher cumulative percentage value of 21.45% 

(95% CI: 8.96, 51.37) than the low rainfall level of 1.08% (95% CI: 0.94, 1.25) (Table S4).  

3.4. Association of Wind Speed and Dengue  

The three-dimensional plot shows that the relative risk of dengue cases are inversely associated with 

the wind speed for longer lag periods (Figure 2c). The effect of low wind speed lasted for a longer 

period, while the effect of a high wind speed lasted for a shorter period (Figure 2c). For the high wind 

speed, the high effects were the largest at a lag of 0, and then declined gradually. Figure 3 exhibits the 

wind speed effect on dengue cases during the current day differed from the lagged effect. The relative 

risk of dengue cases increased with the increasing wind speed on the current day. At the lag of 1, 2 and 

3 months, wind speed was negatively associated with dengue cases up to 3 knots, positively associated 

from 3–5 knots, followed by a negative association again at 5 knots and above. Table S4 shows the 

percentage change of wind speed on dengue cases. The drop of wind speed from 2.7 knots  

(10th percentile) to 1.7 knots (1st percentile) increased dengue cases by the highest amount, 4.02% 

(95% CI: 2.99, 5.06) at a lag of 59 days (Table S4). However, the increase of wind speed from 4.1 

knots (90th percentile) to 5.7 knots (99th percentile) showed the highest effect at the lag of 0,  

2.80% (95% CI: 0.12, 5.56), and then decreasing with the lagged period (Table S4). Overall, low wind 

speed exhibited a higher cumulative percentage value of 13.63% (95% CI: 5.42, 34.25) than the high 

wind speed of 1.30% (95% CI: 0.20, 8.39) (Table S4).  

4. Discussion 

The aim of this study was to estimate the effects of weather parameters on dengue cases,  

with particular focus placed on lag times. Although the relationships between climate change effects 

on local weather and ecological systems is complex [67], it is encouraging that we found a short-term 

association of weather parameters, including minimum temperature, rainfall and wind speed with 

dengue cases at different lag periods. 

We found the highest significant positive association between dengue cases and the minimum 

temperature with the lag time of 51 days, that is, close to two months. The significant association of 

dengue cases with minimum temperature was reported in numerous studies [21,23,68].  

Similar observations were also reported in Taiwan [69] and Mexico [20], where minimum temperature 

at a lag of two months had the highest positive effect on dengue cases. The two-month lagged period 

may include time for dengue vectors to develop from eggs, become infected with the virus, EIP and 

biting activities in the gonotrophic cycle, and then IIP. Increasing temperatures shorten the gonotrophic  

cycle [5,70] and reduce the EIP [14,71,72]. At higher but not extreme temperatures, adult infected 

vectors require more blood meal to complete the gonotrophic cycle, and more than one gonotrophic 

cycle throughout the survival life cycle may lead to an increasing risk of dengue transmission [10,73]. 

Furthermore, a recent incubation period review stated that EIP decreases with increases in  

temperature [14]. In addition, a different pattern of risk observed for the current day and the lagged 

days might be due to the flying behavior of adult dengue vectors (Figure 3). A higher risk of dengue 
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cases in colder temperatures exists, as dengue vectors tend to fly farther at 15 °C than at 27 °C,  

which leads to greater dispersal and a higher biting rate of humans [74].  

Rainfall season is positively associated with DENV adult abundance and higher dengue 

transmission [5,75,76]. We found a higher risk of dengue cases reported during the lag of 26–28 days, 

or close to one month for bi-weekly cumulated rainfall (Table S4). This is in line with the studies that 

reported the highest risk of dengue cases related to rainfall 3 weeks prior in Veracruz, Mexico [77],  

and one month prior in Rio de Janeiro, Brazil [21], respectively. Rainfall influences the abundance of 

dengue vectors in the winged (adult) and aquatic populations (eggs, larvae, pupae) [7]. Increased near-

surface humidity associated with rainfall enhances adult dengue vectors flight activity and host-seeking 

behavior [7], whereas increased rainfall supports more suitable breeding sites for the immature 

development of the aquatic population [78]. Furthermore, prolonged rainfall that leads to flooding may 

increase the dengue risk [79,80]. Aside from the indoor breeding habitats, probable rain filled breeding 

sites ranged from discarded car tires, animal watering dishes, tree holes, and discarded and neglected 

bottles and other containers are often found in parks, vacant land, blocked cement drains and septic 

tanks [78,81,82]. Moreover, the short lag period of one month indicated that the presence of a critical 

hyperendemic DENV environment in the study area may be due to the vertical dengue virus 

transmitting directly from adult to offspring [83], and multiple DENV serotypes co-circulating [34]. 

We found that wind speed is inversely associated with the dengue cases (Figure 2c, Figure 3), 

which is in line with the study in Barbados [23], Guangzhou, China [31] and Sri Lanka [30]. This was 

further supported by the higher cumulative percentage change in low wind speed compared to high 

wind speed (Table S4). Wind suppresses dengue vectors host-seeking flying activity, which affects 

oviposition and contact with humans [84–86]. However, a slight increase of dengue risk was observed 

with an increase in wind speed from 3 knots to 5 knots, as this is still within the maximum  

threshold where dengue vectors can fly freely, which was reported to have a threshold of 4.4 knots in 

Wisconsin [87]. The suitable wind condition below the maximum threshold favors the dispersion of 

dengue vectors and their oviposition [88]. Furthermore, there was a steep decrease of wind speed’s 

effect on dengue cases for a short period of 10–15 lag days at high wind speeds (Figure 2c). This pattern 

suggests some harvesting phenomenon, as also reported by other studies [57,89]. Therefore, short lags 

cannot adequately be used to assess risk effects [90]. A maximum percentage increase from 1.7 knots 

to 2.7 knots was found at the lag of 59 days. This lag period of 59 days was reasonable if we include the 

period for immature development, EIP, DENV infection and transmission, and IIP.  

Findings from our study can be adapted together with the other factors including population density, 

dengue virus circulating, efforts of vector control and vector density to assist in establishing a dengue 

early warning system. Current dengue disease control and prevention in Malaysia mainly based on the 

reported dengue cases in the passive surveillance system without predictive capabilities. For every 

notified dengue cases, adulticiding with space spraying is conducted. Other vector control strategies 

including larviciding with direct application of Temephos and misting of Bti [91], community-based 

larval control (COMBI) [92] and biological control [82] are applied for the selected outbreak areas or 

in areas where the outbreak cannot be controlled after long time period. In order to better control the 

dengue outbreak, an early warning system helps to alert on the increasing predicted risk of dengue 

based on the weather forecast and the other parameters to effectively target limited resources to the 
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hotspot area [93]. This requires serious concern from local authorities, health professionals and the 

community to combine efforts for vector control and prevention.  

However, our study also has some limitations. Firstly, there was under-reporting of dengue cases to 

an unknown degree [94]. Even if there were unreported dengue cases, our study still provides insights, 

the pattern of dengue occurrences were consistent over time when we compared with the clinically 

suspected dengue cases (results not shown) and this is the only national surveillance data  

that is available. Secondly, due to data limitations we could not include unmeasured confounders  

such as variation in virus serotype and variation in dengue vectors population density.  

Nevertheless, in hyperendemic areas, analytical models based on syndromic case surveillance can be 

more informative than the vector densities, as the dengue virus transmission can occur even when 

dengue vectors population densities are low because of the repeating feeding behavior [72,95]. 

Thirdly, we used the aggregated number of dengue cases and weather parameters from one principal 

weather station. Using weather parameters as close to the highly clustered dengue cases area could 

reduce the spatial discrepancies between the hotspot area and the location of weather station.  

5. Conclusions  

Temperature, rainfall and wind speed all influence dengue transmission in high population density 

areas. The estimated lagged effects and patterns, in accordance with the time necessary for the 

development of the dengue vectors, the EIP, and the incubation period in human body, as well as the 

onset of dengue symptoms, can be adapted in the vector control and prevention plan. The relationship 

found in this study helps to shed light on the link between weather and dengue for the development of 

future dengue prediction models while vaccines are not available.  
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