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Abstract: Saxitoxin (STX) and its 57 analogs are a broad group of natural neurotoxic 

alkaloids, commonly known as the paralytic shellfish toxins (PSTs). PSTs are the causative 

agents of paralytic shellfish poisoning (PSP) and are mostly associated with marine 

dinoflagellates (eukaryotes) and freshwater cyanobacteria (prokaryotes), which form 

extensive blooms around the world. PST producing dinoflagellates belong to the genera 

Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in 

several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon 

Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several 

classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently 

discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation 

of the PSTs into other PST analogs has been identified within marine invertebrates, humans 

and bacteria. An improved understanding of PST transformation into less toxic analogs and 

degradation, both chemically or enzymatically, will be important for the development of 

methods for the detoxification of contaminated water supplies and of shellfish destined for 

consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term 

anesthetic in the treatment of anal fissures and for chronic  

tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in 

cyanobacteria and the identification of new PST analogs will present opportunities to 

further explore the pharmaceutical potential of these intriguing alkaloids. 
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1. Introduction  

The paralytic shellfish toxins (PSTs) are a group of naturally occurring neurotoxic alkaloids. 

Saxitoxin (STX) is the most researched PST to date, and since its discovery in 1957 [1], 57 analogs 

have been described. The PSTs are primarily produced in detrimental concentrations during harmful 

algal bloom (HAB) events [2–5] Over the last few decades, HABs have become more frequent, 

intense, and span a wider global distribution, the cause of which is still under debate [3,6]. The PSTs 

can be broadly characterized as hydrophilic or hydrophobic, and can be divided into subgroups based 

on substituent side chains such as carbamate, sulfate, hydroxyl, hydroxybenzoate, or acetate. Each 

moiety then imparts a varying level of toxicity [7].  

In marine environments, PSTs are primarily produced by the eukaryotic dinoflagellates, belonging 

to the genera Alexandrium, Gymnodinium and Pyrodinium [8–10]. The toxins are passed through the 

marine food web via vector organisms, which accumulate the toxins by feeding on PST producing 

dinoflagellates without apparent harm to themselves [11,12]. These include filter feeding invertebrates 

such as shellfish, crustaceans, molluscs and also other, non-traditional vectors such as gastropods and 

planktivorous fish [13]. In freshwater environments the PSTs are produced by prokaryotic 

cyanobacteria belonging to the genera Anabaena, Cylindrospermopsis, Aphanizomenon, Planktothrix 

and Lyngbya. Cyanobacterial PST producing blooms result in the contamination of drinking and 

recreational water resources. In the past, high levels of toxins have been detected in the freshwater 

resources of many countries such as Australia, Brazil, USA, Mexico, Germany and China [14–22]. 

Intoxication with PSTs may result in the severe and occasionally fatal illness known as paralytic 

shellfish poisoning (PSP) or saxitoxin pufferfish poisoning (SPFP) [23–27]. This illness is caused 

when PSTs reversibly bind voltage-gated Na
+
 channels in an equimolar ratio. This is mediated by the 

interaction between the positively charged guanidinium groups of STX with negatively charged 

carboxyl groups at site 1 of the Na
+
 channel, thereby blocking the pore (Figure 1) [28–30]. Currently, 

there is no antidote for PSP with artificial respiration and fluid therapy the only treatment available. A 

recent case of PSP involved the death of two fishermen after consumption of the filter feeder bi-valve 

Aulacomya ater in the Chilean Patagonian Fjords [26]. The threat of PSP is not only a major cause of 

concern for public health but is also detrimental to the economy. Outbreaks of PSTs often result in the 

death of marine life and livestock, the closure of contaminated fisheries, while the continual 

expenditure required for the maintenance and running of monitoring programs, all combine to present a 

major economic burden around the world [31,32]. 

This review will focus on the structural diversity of PSTs characterized to date and the biosynthetic 

and metabolic basis for this diversity. The saxitoxin biosynthetic gene cluster (sxt) was recently identified 

in cyanobacteria, which now provides insight into the biosynthesis of STX and its analogs [33,34]. A 

specific suite of analogs can be isolated from a single PST-producing organism, which is directly a 

result of the evolution of genes present within the organism’s genome [14,33–37]. Naturally occurring 
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PSTs can also be precursors for extracellular metabolic or chemical transformations into new analogs. 

Knowledge of these transformations may have important implications for the detection, toxicity and 

removal of PSTs from a contaminated source. Other medicinal uses for PSTs may become more 

established by screening the bioactivity of less toxic analogs, since their use as a potential local 

anesthetic has long been known [38,39]. The characterization of PST biosynthesis genes and their 

potential use in combinatorial biosynthesis, together with the constant discovery of novel analogs 

(either natural or transformed), is likely to expand the possibilities for the pharmaceutical use of 

PSTs [40,41].  

Figure 1. The proposed transmembrane arrangement of the α-subunit of Na
+
 channels. The 

pore is represented in red, the voltage sensors in yellow and the inactivation gate in blue. 

PSP is mediated by the interaction and blockage of Site 1 by STX. Figure adapted from [30]. 

 

2. Saxitoxin and Its Analogs, the Paralytic Shellfish Toxins 

STX is one of the most potent natural neurotoxins known. A dose of approximately 1 mg of the 

toxin from a single serving of contaminated shellfish is fatal to humans. STX was the first PST isolated 

in pure form from the Alaskan butter clam, Saxidomus gigangteus in 1957 [1]. Its highly polar 

characteristics represent poor conditions for crystallization and hampered structure elucidations for  

18 years, until the crystal structure was solved by two groups independently in 1975 [42,43]. STX is an 

alkaloid with the molecular formula C10H17N7O4 (Molecular Weight = 299) and is composed of a  

3,4-propinoperhydropurine tricyclic system. STX belongs to the large family of guanidinium-containing 

marine natural products, due to the presence of two guanidino groups which are responsible for its high 

polarity [44,45]. Since its initial discovery, 57 naturally occurring STX analogs have been identified in 

a number of organisms, collectively referred to as the PSTs (Table 1). 
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Table 1. The paralytic shellfish toxins.  

N

N
N

H
N

OH

R5

NH2
+

R4

+H2N

1

3
2

7
8

9

R1

R2 R3

11

12

 

Toxin R1 R2 R3 
Ω 

R4 R5 Origin Ref. 

STX H H H OCONH2 OH Alexandrium andersoni 

A. catenella 

A. fundyense 

A. tamarense 

A. circinalis 

Aphanizomenon flos-aquae 

Aph. gracile 

Aph. issatschenkoi  

Anabaena lemmermannii 

C. raciborskii 

Gymnodinium catenatum  

Pyrodinium bahamense 

Planktothrix sp. 

[46] 

[47–49] 

[50–52] 

[53–56] 

[35,57–59]  

[60–63]  

[20,64]  

[65]  

[66]  

[16,36,67–69]  

[70–72] 

[10] 

[73] 

neoSTX OH H H OCONH2 OH A. andersoni 

A. catenella 

A. fundyense 

A. tamarense 

Aph. flos-aquae 

Aph. gracile 

Aph. issatschenkoi 

Aph. sp. 

C. raciborskii 

G. catenatum 

P. bahamense 

[46] 

[47–49] 

[50–52] 

[53–56] 

[60–63] 

[20,64] 

[65] 

[74] 

[16,36,69] 

[70,71] 

[10] 

Mono-Sulfated   

GTX1 OH H OSO3
−
 OCONH2 OH A. catenella 

A. fundyense 

A. minutum 

A. tamarense 

Aph. flos-aquae 

G. catenatum 

[47–49,75,76] 

[50–52] 

[77–79] 

[53–56] 

[37] 

[9,70,72] 
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Table 1. Cont. 

Toxin R1 R2 R3 
Ω

R4 R5 Origin Ref. 

Mono-Sulfated   

GTX2 H H OSO3
−
 OCONH2 OH A. catenella 

A. fundyense 

A. minutum 

A. ostenfeldii 

A. tamarense 

A. circinalis  

C. raciborskii 

G. catenatum 

[48,49] 

[50–52] 

[77–79] 

[80] 

[53–56] 

[35,57–59] 

[36,67] 

[9,70,72] 

GTX3 H OSO3
−
 H OCONH2 OH A. catenella 

A. fundyense 

A. minutum 

A. ostenfeldii 

A. tamarense 

A. circinalis  

Aph. flos-aquae 

C. raciborskii  

G. catenatum 

[47–49] 

[50–52] 

[77–79] 

[80] 

[53–56] 

[35,57–59]  

[37]  

[36,67] 

[9,70,72] 

GTX4 OH OSO3
−
 H OCONH2 OH A. catenella 

A. fundyense 

A. minutum 

A. tamarense 

Aph. flos-aquae 

G. catenatum 

[47–49,75,76] 

[50–52] 

[77–79] 

[53–56] 

[37] 

[9,70,72] 

GTX5 

(B1) 

H H H OCONHSO3
−
 OH A. catenella 

A. fundyense 

A. tamarense 

A. circinalis 

Aph. flos-aquae  

Aph. gracile 

Aph. issatschenkoi 

G. catenatum 

P. bahamense 

[48,49,75,76] 

[50–52] 

[54,56] 

[35,57,59]  

[60,63] 

[20] 

[37,65] 

[9,71,81] 

[10] 

GTX6 

(B2) 

OH H H OCONHSO3
− 

OH A. catenella 

A. fundyense 

A. ostenfeldii 

A. tamarense 

Aph. flos-aquae 

C. raciborskii 

G. catenatum 

P. bahamense 

[47,49,75,76] 

[52] 

[80] 

[54] 

[63]  

[69] 

[9,71,72,81] 

[10] 
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Table 1. Cont. 

Toxin R1 R2 R3 
Ω

R4 R5 Origin Ref. 

Di-Sulfated   

C1 H H OSO3
−
 OCONHSO3

− 
OH A. catenella 

A. fundyense 

A. ostenfeldii 

A. tamarense 

A. circinalis  

C. raciborskii 

G. catenatum 

[48,49,75,76] 

[50–52] 

[80] 

[53–56] 

[35,57–59] 

[68] 

[9,71,72,81] 

C2 H OSO3
−
 H OCONHSO3

− 
OH A. catenella 

A. fundyense 

A. ostenfeldii 

A. tamarense 

A. circinalis  

C. raciborskii 

G. catenatum 

[48,49,75] 

[50–52] 

[80] 

[53–56] 

[35,57–59]  

[68] 

[9,71,72,81] 

C3 OH H OSO3
−
 OCONHSO3

− 
OH A. catenella 

G. catenatum 

[48,49,75,76] 

[9,72,81] 

C4 OH OSO3
−
 H OCONHSO3

− 
OH A. catenella 

G. catenatum 

[48,49,75,76] 

[9,72,81] 

Decarbamoylated   

dcSTX H H H OH OH A. catenella 

A. circinalis  

Aph. flos-aquae 

Aph. gracile 

Aph. issatschenkoi 

Aph. sp. 

C. raciborskii 

Lyngbya wollei 

G. catenatum 

P. bahamense 

[49] 

[35,59] 

[60,63] 

[20] 

[65]  

[74] 

[16,67,69]  

[82] 

[9,71,72] 

[10] 

dcneoSTX OH H H OH OH C. raciborskii [69] 

dcGTX1 OH H OSO3
−
 OH OH G. catenatum [83] 

dcGTX2 H H OSO3
−
 OH OH A. catenella 

A. fundyense 

A. circinalis 

G. catenatum 

L. wollei 

[49] 

[52] 

[35,57–59]  

[9,71] 

[14,82] 

dcGTX3 H OSO3
−
 H OH OH A. catenella 

A. fundyense 

A. circinalis 

Aphanizomenon sp. 

L. wollei 

G. catenatum 

[49] 

[50,52] 

[35,57–59] 

[74] 

[14,82] 

[9,71] 

dcGTX4 OH OSO3
−
 H OH OH G. catenatum [83] 
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Table 1. Cont. 

Toxin R1 R2 R3 
Ω

R4 R5 Origin Ref. 

Deoxy-Decarbomoylated   

doSTX H H H H OH G. catenatum [9,84] 

doGTX1 OH H OSO3
−
 H OH G. catenatum [9,84] 

doGTX2 H H OSO3
−
 H OH G. catenatum [9,84] 

L. wollei toxins   

LWTX1 H H OSO3
−
 OCOCH3 H L. wollei [82] 

LWTX2 H H OSO3
−
 OCOCH3 OH L. wollei [82] 

LWTX3 H OSO3
−
 H OCOCH3 OH L. wollei [82] 

LWTX4 H H H H H L. wollei [82] 

LWTX5 H H H OCOCH3 OH L. wollei [82] 

LWTX6 H H H OCOCH3 H L. wollei [82] 

Mono-Hydroxy-Benzoate Analogs   

GC1 H H OSO3
−
 OCOPhOH OH G. catenatum [83] 

GC2 H OSO3
−
 H OCOPhOH OH G. catenatum [83] 

GC3 H H H OCOPhOH OH G. catenatum [83] 

*GC4 OH H OSO3
−
 OCOPhOH OH G. catenatum [85] 

*GC5 OH OSO3
−
 H OCOPhOH OH G. catenatum [85] 

*GC6 OH H H OCOPhOH OH G. catenatum [85] 

Di-Hydroxy Benzoate Analogs   

ŧ
GC1a H H OSO3

−
 DHB OH G. catenatum [85] 

ŧ
GC2a H OSO3

−
 H DHB OH G. catenatum [85] 

ŧ
GC3a H H H DHB OH G. catenatum [85] 

ŧ
GC4a OH H OSO3

−
 DHB OH G. catenatum [85] 

ŧ
GC5a OH OSO3

−
 H DHB OH G. catenatum [85] 

ŧ
GC6a OH H H DHB OH G. catenatum [85] 

Sulfated Benzoate Analogs   

ŧ
GC1b H H OSO3

−
 SB OH G. catenatum [85] 

ŧ
GC2b H OSO3

−
 H SB OH G. catenatum [85] 

ŧ
GC3b H H H SB OH G. catenatum [85] 

ŧ
GC4b OH H OSO3

−
 SB OH G. catenatum [85] 

ŧ
GC5b OH OSO3

−
 H SB OH G. catenatum [85] 

ŧ
GC6b OH H H SB OH G. catenatum [85] 

Other PST Analogs   

M1 H OH H OCONHSO3
−
 OH Metabolic 

transformation 

[56,81] 

M2 H OH H OCONH2 OH Metabolic 

transformation 

[56] 

M3 H OH OH OCONHSO3
−
 OH Metabolic 

transformation 

[56] 

M4 H OH OH OCONH2 OH Metabolic 

transformation 

[56] 

*M5  Metabolic 

transformation 

[56] 
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Table 1. Cont. 

Toxin R1 R2 R3 
Ω

R4 R5 Origin Ref. 

Other PST Analogs   

*A      Unknown [86] 

*B      Unknown [86] 

*C      Unknown [86] 

*D      Unknown [86] 

SEA H CCOO
−
 H OCONH2 OH Atergatis floridus [87] 

STX-uk H H H OCONHCH3 OH Tetraodon cutcutia [88] 

Zetekitoxin AB 

HN

N
N
H

N

OH

OH

NH

HN

1

3
2

7
8

9

O

N
O

OH

O
O H

N
OH

OSO3H  

Atelopus zeteki [89] 

* Not structurally characterized  
ŧ 
R4 group putatively assigned based on major ions obtained via MS [85] 

Ω
OCONH2 O

H2N

O

 
      

Ω
OCONHSO3

−
 

O
HN

O

-O3S  

      

Ω
OCOCH3 O

H3C

O

 

      

Ω
OCOPhOH 

O

HO

O

 

      

Ω
OCONHCH3 

O
N
H

O

H3C
 

      

Ω
DHB: Di-hydroxyl-benzoate   

Ω
SB: Sulfated-benzoate   

Usually a PST- producing organism synthesizes a characteristic suite of toxins made up of several 

PST analogs. These analogs differ in side group moieties and thus are commonly grouped according to 

these variable residues. The most commonly occurring PSTs are hydrophilic and have been studied in 

depth [7]. They may be non-sulfated, such as STX and neosaxitoxin (neoSTX), mono-sulfated, such as 

the gonyautoxins (GTXs 1–6), or di-sulfated (C1-4 toxins) [7,90]. In addition, decarbamoyl variants of 

these analogs also exist, including decarbamoyl-saxitoxins (dcSTX, dcneoSTX), decarbamoyl-gonyautoxins 

(dcGTXs 1–4), and the 13-deoxy-decarbamoyl derivatives (doSTX, doGTX 2,3). Three structural 

families of SXT are classified by the identity of the R4 side chain as either N-sulfocarbamoyl, 

decarbamoyl, or carbamoyl, each with increasing toxicity in mammalian bioassays (Table 2) [7,9,90]. 

Recently, an increase in screening efforts, coupled with improved methods for detection and structure 

elucidation, has seen an increase in the number of new PSTs reported in the literature.  
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Table 2. Relative toxicity of the paralytic shellfish toxins. Toxicity of the PSTs due to 

change in moiety is listed in descending order. Data obtained from [95]. 

Structure 
Ω

 Toxin Relative toxicity 
Φ

 

HN

N
N
H

N

OH

OH

NH

HN

O

N
O

OH

O
O H

N
OH

OSO
3
H  

Zetekitoxin AB 63, 160, 580
ω
 

N

N N

H
N

OH

OH

NH2
+

+
H2N

R1

H H

O
H2N

O

 

Non-Sulfated  

STX 

NeoSTX 

1 

05–1.1 

N

N N

H
N

OH

OH

NH2
+

+H2N

R1

R2 R3

O
H2N

O

 

Mono-sulfated  

GTX1/4
¥
 

GTX2/3
¥
 

0.39/1.09–0.48/0.76 

0.8/0.33–0.9/0.9 

N

N N

H
N

OH

OH

NH2
+

+H2N

H

H H

HO

 

Decarbamoylated  

dcSTX 

dcNeoSTX 

dcGTX1-4 

0.43 

0.43 

0.18–0.45 

N

N N

H
N

OH

OH

NH
2
+

+
H 2N

R1

R2 R3

O
N
H

O

-O3S

 

Di-sulfated  

C1-4 <0.01–0.14 

Ω
 Refer to Table 1 for assigned R groups. Moieties highlighted in red differentiate from the 

structure of STX;  
¥
 α/β epimeric mixture;  

Φ
 Relative toxicity based on the mouse bioassay results obtained from [95–98];  

ω
 Based on binding affinity to human brain, heart and muscle Na

+
 channels assessed in Xenopus 

oocytes, respectively [89]. 

A novel group of PSTs with a hydrophobic side chain were identified within the cyanobacterium 

Lyngbya wollei and are characterized by the presence of an acetate at C13 (LWTX 1–3,5,6) and a 

carbinol at C12 (LWTX 2,3,5) in place of a hydrated ketone [82]. This was the first report of STX 
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derivatives with a hydrophobic substituent and these toxins have only been found exclusively in the 

freshwater environment [14,82]. The presence of an acetate side chain in the LWTXs correlated with a 

decrease in mouse toxicity, while the reduction at C12 resulted in a complete loss of mouse toxicity [82]. 

Interestingly, Negri et al. reported a novel subclass of analogs containing a hydrophobic R4 side 

chain designated GC1-3. These were first isolated and structurally characterized from Australian 

isolates of the dinoflagellate Gymnodinium catenatum and since have also been identified within 

Alexandrium catenatum globally [72]. High-resolution mass-spectrometry (MS) and nuclear magnetic 

resonance spectroscopy (NMR) revealed that GC3 is a 4-hydroxybenzoate ester derivative of dcSTX, 

while GC1 and GC2 are epimeric 11-hydroxysulfate derivatives of GC3 [83,91]. Negri et al. 

emphasized that the lipophilic nature of these toxins may lead to an increased potential to 

bioaccumulate in marine organisms [72]. These novel analogs have also been shown to bind strongly to 

the voltage gated Na
+
 channel. The binding affinity of GC3 resembles the affinity of the GTXs, 

whereas the epimer pair GC1 and GC2 bind with a similar affinity compared to the C-toxins [72,92]. 

More recently, other GC PST analogs have been identified, such as GC4-6, the di-hydroxylated 

benzoate GC analogs GC1-6a and the sulfated benzoate analogs GC1-6b for which only putative 

structures have been determined via mass spectrometry (MS) [85]. Due to their hydrophobic nature, 

these toxins easily escape conventional chromatography methods. The frequently used C18 solid-phase 

separation is based on polarity and thus hydrophobic compounds are retained on the column and cannot 

be detected. This is significant from a shellfish monitoring and public safety viewpoint, and presents a 

major challenge to water authorities [72,93,94]. 

Recently, Vale et al. reported the isolation of four unusual compounds (denoted A–D) and 

categorized them as novel STX analogs based on fluorescence emission, ultraviolet absorption maxima 

and cross-reactivity to a commercial antibody towards STX [86]. These extracts originated from 

shellfish samples (Semele proficua and Senilia senilis) collected from Luanda and Mussulo Bay, 

Angola. Compounds A and D were classified as non-N1-hydroxyl PST analogs and compound B as a 

N1-hydroxyl analog. Even though the presence of G. catenatum and Pyrodinium bahamense has been 

reported from the coast of Angola, none of the 18 PSTs commonly found in dinoflagellates were 

identified in these extracts. The authors therefore suggested a possible cyanobacterial source, though 

neither a definitive chemical structure, nor a PST-producing organism were conclusively identified 

[86]. Further analysis of the compounds by MS and NMR is required to elucidate these structures and 

confirm them as STX analogs.  

The most exotic STX isolate identified to date was isolated from the Panamanian golden frog 

Atelopus zeteki and designated zetekitoxin AB (Tables 1 and 2). Zetekitoxin AB was confirmed to be a 

PST containing a unique 1,2-oxazolidine ring-fused lactam. The binding affinity of zetekitoxin AB for 

brain, heart, and muscle Na
+
 channels was extremely potent, displaying a toxicity of approximately 

580-, 160- and 63-fold greater than STX against each channel, respectively [89]. 

The constant discovery of novel and diverse STX analogs is a challenge to PST identification and 

monitoring. Improvement of detection methods will no doubt uncover new natural forms of STX, 

however, we are still only beginning to understand the mechanisms by which these complex molecules 

are produced in nature. 
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3. Biotransformation of the Paralytic Shellfish Toxins 

Naturally occurring PSTs may be structurally modified by various biological factors. In some cases, 

these biotransformations can result in new PSTs that cannot be biosynthesized by cyanobacteria or 

dinoflagellates alone (Figure 2). In addition, less toxic PSTs may be converted into analogs with 

greater toxicity (e.g., C-toxins→GTXs) or vice versa. Therefore, a clearer understanding of PST 

biotransformation is needed for predicting more accurate levels of toxicity. This knowledge may also 

allow for a mechanism of detoxification to be established and utilized in the water supply and shellfish 

farming industries.  

Cell extracts of PST-producing dinoflagellates are capable of enzymatically modifying PSTs. 

Oshima et al. demonstrated that GTX2 + 3 can be converted into GTX1 + 4 by incubation with 

Alexandrium tamarense homogenate [92]. Introduction of a sulfate moiety on the carbamoyl group, 

resultingin the formation of C1 and C2 toxins, has been shown following incubation with G. catenatum 

homogenate [44,99]. In these organisms, biotransformation is likely to occur via inherent STX tailoring 

enzymes which are a part of the SXT biosynthetic pathway encoded within the organism. 

Due to differences in the toxin profiles of filter-feeding invertebrate PST vectors and causative 

producing organisms, various studies have been conducted to monitor toxin biotransformation 

[84,100–105]. Enzymatic transformation of carbamoyl and carbamoyl-N sulfated toxins into the 

decarbamoyl compounds was detected within the little neck clam, Prothotheca staminea [106]. In 

addition, the conversion of the GTXs and neoSTX to STX by reduction of the O22-sulfate and  

N1-hydroxyl groups, respectively, has been observed within the homogenate of the scallop 

Placopecten magellanicus [107].  

GC1-3 can be converted into dcSTX, as has been confirmed in vitro through incubation of semi-purified 

GC toxins with bivalve digestive glands [93]. Similarly, the recently identified M-toxins (M1-5) are 

reportedly bivalve metabolites of the PSTs and are not present in PST- producing microalgae [56]. The 

M-toxins constitute an important toxin fraction in mussels contaminated by A. tamarense and 

G. catenatum and have been detected in shellfish, including mussels, cockles and clams [56,86]. These 

findings are similar to previous reports on the isolation of 11-saxitoxinethanoic acid (SEA), a novel 

PST from the xanthid crab Atergatis floridus, inhabiting the pacific coast of Shikoku Island [87]. Other 

examples include a novel carbamoyl-N-methylsaxitoxin (STX-uk) isolated from the Bangladeshi 

freshwater puffer Tetraodon cutcutia [88]. These exotic STX analogs are likely products of toxin 

transforming enzymes within the vector organism or its associated microorganisms. However, the 

mechanism of enzymatic transformation in these organisms is yet to be elucidated [56,86–88,106–109]. 

Biotransformation of the PSTs by bacteria was first suggested many years ago by Kotaki et al., who 

proposed that marine bacteria, such as Vibrio and Pseudomonas spp., are capable of metabolizing PSTs 

[110]. In addition, isolates from the viscera of marine crabs, snails and the marine red algae Jania sp., 

were studied and demonstrated transformation GTX derivatives into STX through reductive 

eliminations [110,111]. Bacterial conversion of GTX1-4 to STX and neoSTX is reportedly due to the 

bacterial thiol compounds glutathione and 2-mercaptoethanol [112]. The ability of bacteria to degrade 

PSTs has been further described by Smith et al., who screened marine bacterial isolates from various 

shellfish species for their ability to metabolize a
 
range of PSTs, such as GTX1-5, STX and neoSTX, 

suggesting that bacteria might play an important role in the clearance of PSTs from bivalve  
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molluscs [113]. Novel strains of Pseudoalteromonas haloplanktis, isolated from the digestive tracts of 

blue mussels (Mytilus edulis) have been reported to possess the ability to reduce the overall toxicity of 

a PST mixture of algal extracts by 90% within three days [114,115]. Catabolism of the PSTs most 

likely occurred via oxidation reactions catalyzed by oxidases and peroxidases into aliphatic products 

for subsequent use in purine and arginine metabolism, although this is speculated, as no catabolized 

PST products could be identified [115]. Degradation has also been observed during the passage 

through a bioactive treatment plant, leading to a decrease in predominant C-toxins and an increase of 

GTX2 + 3 which display relatively higher toxicity [116]. 

Figure 2. Biotransformation of the paralytic shellfish toxins. Refer to Table 1 for assigned 

R groups. Moieties highlighted in red indicate a differentiation from the structure of STX. 

Unbroken line refers to experimental data of toxin conversion. Broken line refers to 

putative biotransformation based on structural analysis. 
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Detoxification of the paralytic shellfish toxins within mammals 

Metabolism of PSTs by humans has not been studied in depth. Nevertheless, Garcia et al. suggested 

biotransformation of STX to neoSTX and the oxidation of the GTX2 + 3 epimers into GTX1 + 4 

within samples of pancreas, bile, urine, brain and heart obtained post-mortem from PSP victims [26]. 

Further investigations confirmed their findings of biotransformation in humans. N1-oxidation of 

GTX2 + 3 into the corresponding hydroxylamine analogs GTX1 + 4 has been demonstrated in vitro 

when incubated with a microsomal fraction isolated from healthy human livers. Moreover, in vitro 

glucuronidation of GTX2 + 3 into the hydrophilic compounds GTX3-Gluc and GTX2-Gluc, through 

conjugation at the hydroxyl-C12 group has also been reported (Figure 2) [117]. The oxidation and 

glucuronidation of STX and GTX2 + 3 epimers into neoSTX or GTX1 + 4 epimers, respectively, has 

been suggested to be significant detoxification pathways of GTX2 + 3 and other PSTs in humans and 

other mammals [117]. Similar studies were conducted with cat liver, however, enzymatic 

transformation was not detected, with 100% recovery of the STX used in the incubation being 

recovered [118]. This was explained by the fact that with the exception of cats, the liver of mammals 

produces glucuronides as a major metabolic product, thus supporting the specificity of human tissue 

transformation [119]. However, biotransformation of STX was not detected when STX was passaged 

through rat’s urine, indicating further mammalian variability in models [120,121]. Gessner et al. 

investigated serum and urine in human PSP victims and detected a significant increase of the PST C1 

in comparison to GTX2, which is distinguished by an additional sulfate on the carbamoyl side group 

[122]. A new assay for STX and neoSTX quantification in human urine samples has been developed 

recently [123]. It is proposed that methodological improvements should also contribute to a better 

understanding of PST profile and its change while passaging through the human body [123].  

The research described above highlights the need to characterize the diversity of biological 

transformations of PSTs. Detoxification pathways could be manipulated to improve biological removal 

strategies, while further characterization of detoxification of PSTs within the human body could lead to 

improved treatment of PSP. 

4. A Genetic Basis for the Paralytic Shellfish Toxins 

4.1. The saxitoxin biosynthetic gene cluster 

Recently the saxitoxin biosynthesis pathway was proposed [124], and the sxt gene cluster was 

identified in three cyanobacterial species of the family Nostocaceae [33,34] and one from the family 

Oscillatoriaceae [125]. The sxt gene clusters within each organism all contain a core set of genes 

putatively responsible for the biosynthesis of STX. However, the gene profile between each cluster 

differs, resulting in the production of a different suite of STX analogs by each organism. It is 

foreseeable that identification of the cyanobacterial PST biosynthesis genes will eventually lead to the 

identification of the homologs within dinoflagellates. However, the dinoflagellate PST biosynthesis 

genes remain elusive. There is also some debate on whether the enzymes for PST biosynthesis are 

encoded by the dinoflagellate genome, including plastids or other sources such as symbiotic bacteria or 

viruses [126–128]. 
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In cyanobacteria, biosynthesis of STX is catalyzed by several enzymes otherwise rare in microbial 

metabolism. The core PST biosynthetic gene, sxtA, is thought to have a chimeric origin and is 

putatively responsible for the initiation of STX biosynthesis, catalysing the incorporation of acetate to 

the enzyme complex and its subsequent methylation and Claisen condensation with arginine 

[33,34,129]. SxtA consists of four catalytic domains (SxtA1-SxtA4) with the N-terminal region 

showing similarities to a polyketide synthase (PKS) complex [130] consisting of a GCN5-related  

N-acetyltransferase [131], acyl-carrier protein (ACP) and a S-adenosylmethionine-dependant (SAM) 

methyltransferase [132] domains, while the C-terminal region contains a domain homologous to 

previously characterized aminotransferases [133].  

Specific PST analog profiles are proposed to be the result of tailoring enzymes encoded by the sxt 

gene cluster. The function of tailoring enzymes within each of the characterized sxt clusters has been 

inferred by analysis of the specific toxin profile produced by each cyanobacterium. For example, 

neoSTX differs from STX by hydroxylation at the N1 position (Table 1). NeoSTX is produced by 

C. raciborskii T3, Aphanizomenon sp. NH-5 and L. wollei, but has not been detected in A. circinalis 

[14,35,36,57,62]. Sequence analysis of the four sxt gene clusters revealed SxtX as a protein putatively 

responsible for the N1-hydroxylation of STX, since sxtX was identified in all neoSTX producing 

strains and absent from the A. circinalis AWQC131C gene cluster [33,34]. This protein displayed high 

structural similarities to cephalosporin hydroxylase [134], further affirming its role in the  

N1-hydroxylation of STX.  

The GTXs are produced by mono-sulfation at N21 or O22 of STX which can then be di-sulfated to 

produce the C-toxins. Previous studies of the dinoflagellate G. catenatum, revealed two  

3′-phosphate 5′-phosphosulfate (PAPS)-dependant sulfotransferases responsible for the N21 sulfation 

of STX, GTX2 and GTX3, and the O22 sulfation of 11-hydroxy STX [135,136]. Two genes, sxtO, a 

PAPS forming enzyme and sxtN, a sulfotransferase, within cyanobacterial sxt clusters are proposed to 

encode proteins that play a similar sulfation role in the synthesis of GTXs and C-toxins. 

The requirement of SAM for STX biosynthesis has long been hypothesized and thus has been 

targeted during attempts to identify the PST genes [137,138]. Harlow et al. were able to use degenerate 

primers to screen several dinoflagellate genomes in an attempt to identify genes encoding SAM as a 

candidate involved in PST biosynthesis [138]. Although several SAM genes were successfully 

identified within dinoflagellates, these were not correlated to PST biosynthesis. The study was 

hampered by a limited knowledge of dinoflagellate codon usage and a lack of related sequence 

information within the NCBI database [138,139]. Kellmann et al. used a similar degenerate PCR 

approach to identify a gene encoding a O-carbamoyltransferase (sxtI), which ultimately led to the 

identification of the entire sxt biosynthesis pathway in cyanobacteria [33,138,140]. There are now 

multiple genes that may be utilized to target homologs of the sxt cluster in dinoflagellates. However, a 

recent study identified the dinoflagellate sxt cluster may differ from cyanobacteria more than would be 

expected from a recent gene transfer event. Hence, mRNA present solely within toxic dinoflagellates 

may be more successful at identifying the candidate sxt pathway in these organisms [141]. 
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4.2. Pharmaceutical potential of the paralytic shellfish toxins 

Recent years has seen a renewed interest in marine alkaloids and their analogs, including the PSTs, 

with regards to their use as therapeutic agents or as a drug lead. Bioactivity studies and molecular 

modeling of a range of PSTs could also lead to the design of unnatural analogs with improved 

pharmaceutical characteristics. Recently, a group of toxins isolated from marine cone snails (genus 

Conus), known as conotoxins, have been shown to contain over 2,000 peptide analogs [142]. The 

conotoxins are able to specifically target a broad range of ion channels and membrane receptors with 

several currently under investigation for possible clinical trials [142]. In 2004, a synthetic version of a 

single conotoxin analog, ω-conotoxin MVIIA, also known as ziconotide (trade name Prialt
®
) was the 

first marine natural product to be approved for use by the US Food and Drug Administration since 

1976 [143,144]. Ziconotide acts by targeting N-type voltage sensitive Ca
2+

 channels and is used for the 

treatment of chronic pain in spinal cord injury [145,146].  

Like Prialt
®
, STX also has a huge pharmaceutical potential for its ability to induce anesthesia 

through interaction with site 1 of the voltage gated Na
+
 channel [38,39]. It has been suggested that site 

1 blockers prolong the duration of anaesthesia in a synergistic manner when combined with other local 

anaesthetics [39,147,148]. In spite of this, the push for STX to enter clinical trials has been hindered by 

its systematic toxicity [149]. The use of STX as a slow release, prolonged anesthetic was recently 

demonstrated using a novel controlled release system in male Sprague-Dawley rats [150]. Liposomal 

formulations of STX, either alone and in conjunction with dexamethasone and/or bupivacaine, were 

able to block the sciatic nerve within rats for long periods with no damaging myotoxic, cytotoxic or 

neurotoxic effects and little associated inflammation [150]. Liposome formulations of STX for slow 

and site-directed release for prolonged anaesthesia have since been postulated as a putative treatment 

of localized pain and severe joint pain [151]. 

PSTs such as GTX2 + 3 also have clinical potential and have been utilized for the treatment of anal 

fissures [152–154]. Since 1951, surgery has been the most common form of anal fissure treatment with 

several possible side effects [155–157], while other treatments include ointments [158], botulinium 

toxin [159] and topical application of nitroglycerine [160]. Treatment with GTX2 + 3 involves direct 

injection into both sides of the fissure. A success rate of 98% with remission after 15 and 28 days for 

acute and chronic conditions, respectively (n = 100) was observed [153]. A follow up study with an 

enhanced method has since been performed by Garrido et al. with an improved time of healing of 

seven to 14 days for chronic cases (n = 23) [154]. Both studies identified GTX2 + 3 as safe and 

effective when compared to other treatments [153,154]. GTX2 + 3 have also been used in the treatment 

of chronic tension type headache, with 70% of patients (n = 27) responding to treatment [161]. These 

studies recognize that PSTs other than STX also have potential as future pharmaceutical leads. Their 

use in the past has also been limited largely due to problems obtaining purified PST analogs. 

The genetic characterization of PST biosynthesis pathways from diverse producer organisms has 

increased our insight into sxt tailoring reactions and the molecular understanding of the mechanisms by 

which a particular suite of PSTs can be synthesized. This will ultimately advance research into the 

pharmaceutical potential of the PSTs as Na
+
 channel blockers, by generating new analogs or by 

increasing the availability of analogs otherwise biosynthesized in low concentrations. Bioengineering 

can also be utilized to further enhance the structural diversity of bioactive small molecules by using 

in vitro approaches that utilize enzymes in chemical synthesis, as well as in vivo approaches, such as 



Mar. Drugs 2010, 8  

 

 

2200 

combinatorial biosynthesis [40,41]. Combinatorial biosynthesis is the process of incorporating genes 

from multiple biosynthetic clusters into an expression plasmid, in a combinatorial fashion, to generate 

a library of ―unnatural‖ natural products expressed in vivo. However expression of large gene 

fragments in a heterologous host is required and analogs of interest may then be extracted, purified and 

assayed to determine their bioactivity.  

The bioactive nature of STX as an anaesthetic and GTX2 + 3 for the treatment of anal fissures and 

chronic tension type headaches demonstrates that these alkaloids have pharmaceutical potential 

deserving of further investigation. The recent elucidation of the sxt gene clusters in cyanobacteria and 

the identification of novel PSTs has provided more options for further PST bioactivity studies. Novel 

analogs could also be devised by redesigning PST biosynthesis genes in amenable host systems via 

combinatorial biosynthesis.  

5. Conclusions 

The structure of STX has been known for 53 years and the discovery of novel STX analogs has 

continued steadily ever since. Today, 57 PST analogs have been reported. With more sensitive 

detection methods, new STX analogs will most likely continue to be identified, with new functional 

moieties and possibly novel bioactivity. Despite extended research on the role of saxitoxin and its 

analogs as a sodium channel blocker, the effect of these toxins on the environment, and the genes that 

are responsible for their production, there is still a vast gap in knowledge in regards to their potential 

intracellular role within the producing organism. Nevertheless, it is possible that the different analogs 

display varying functions within the cells due to their partial differences in charges and chemical 

properties. More studies are needed to elucidate the localization of saxitoxin and its derivatives might 

provide clues to the potential role of the PST analogs within the producing organism. In the future, a 

better understanding of the intracellular and extracellular functions of STX might open more avenues 

for pharmaceutical applications. 

Since PSTs are produced by distantly related organisms, spanning two domains, including 

cyanobacteria, dinoflagellates and the Panamanian golden frog, it is possible that their occurrence in 

nature is more widespread than we know. Further investigations are needed to elucidate the extent of 

their distribution, diversity and their fundamental biology, such as their biosynthesis, metabolic and 

eco-physiological function. This is in addition to the role of chemical transformation of the different 

toxins in shellfish and the environment.  

Future research is also needed to understand the integration of PST biosynthesis within the overall 

cell metabolism and the possible recruitment of enzymes from other biosynthetic pathways for PST 

bioconversions. Proteomic and transcriptomic studies are likely to provide a link between STX 

biosynthesis, regulation and cellular metabolism. It is expected that data will allow us to acquire a 

better understanding of the conservation of the SXT biosynthesis pathway at the enzymatic level in 

comparison to the genetic level, may give further insight into the molecular function of these toxins 

and also lead to clues of their evolutionary history. In future, characterization of PST biosynthetic 

genes from dinoflagellates and comparison with cyanobacterial genes will also aid in our 

understanding of the evolutionary history of these genes with regard to their origin and transfer.  

PSP is a serious health problem and its incidence has continued to rise on a global scale. PSTs 

negatively impact the fisheries industry globally and the development of novel methods of 
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detoxification is essential from a human health and financial perspective [104,113,162]. The enzymatic 

basis for the structural diversity of PSTs is now beginning to be understood from the genetics of their 

biosynthesis in cyanobacteria and characterization of transformations catalyzed by bacteria, marine 

invertebrates and mammals. Biotransformation pathways could also be manipulated to efficiently 

remove toxins from water supplies. Specific enzymes or bacterial strains that degrade PSTs could be 

introduced into shellfish to assist detoxification. Currently, the PSTs represent extraordinary potential 

for pharmacy. This potential is likely to increase as we continue to gain a better molecular 

understanding of the PSTs, leading to future prospects of their use in combinatorial biosynthesis for the 

production of novel alkaloids with beneficial application. 
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