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Abstract: The 1,4-benzoquinone moiety is a common structural feature in a large number 

of compounds that have received considerable attention owing to their broad spectrum of 

biological activities. The cytotoxic and antiproliferative properties of many natural 

sesquiterpene quinones and hydroquinones from sponges of the order Dictyoceratida, such 

as avarol, avarone, illimaquinone, nakijiquinone and bolinaquinone, offer promising 

opportunities for the development of new antitumor agents. The present review 

summarizes the structure and cytotoxicity of natural terpenequinones/hydroquinones and 

their bioactive analogues and derivatives. 
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1. Introduction  

The few therapeutic novelties of synthetic origin that have appeared on the pharmaceutical market, 

of which more than 88% are based on preexisting structures, have flooded the pharmaceutical world 

with very similar products. This has led to a new and enthusiastic retrospective appraisal of the active 

principles of the molecules integrating medicinal plants and different natural sources. It is for these 

reasons that research on natural compounds has aroused considerable interest at the academic, 

commercial and governmental levels. 

Of the different natural sources, the sea has become an important basis for the collection of natural 

compounds of use to humans and it is clear that this will continue to be the case in the future [1–13]. 

Interest in marine organisms, both animals and plants, as sources of active substances was boosted at 

the beginning of the seventies by the work of several marine research teams: Universities of Hawaii 

and Oklahoma and The Scripps Institution of Oceanography in California, as well as other teams in 

Japan and Europe. This began with the isolation of prostaglandins from corals, followed by the 
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discovery of other derivatives. In recent years, it has been possible to isolate and characterize 

thousands of compounds, many of which exert important activities in several biological systems [14]. 

The discovery of drugs from marine natural products has enjoyed a renaissance in the past few 

years [15–19]. Ziconotide (Prialt
®

; Elan Pharmaceuticals), a peptide originally discovered in a tropical 

cone snail, was the first marine-derived compound to be approved in the United States in December 

2004 for the treatment of pain [20]. Then, in October 2007, trabectedin (Yondelis
®

; PharmaMar) 

became the first marine anticancer drug to be approved in the European Union [21]. In a recent 

congress held by the American Society of Oncology (Chicago, June 2010), attention was drawn to the 

antitumor properties of eribulin mesylate (E7389), designed by the Japanese laboratory Eisai (Eisai 

Research Institute, Andover, MA, USA) for the treatment of breast cancer. This is a synthetic analogue 

of the natural product halichondrin B, isolated from Halichondria okadai (Lissodendoryx sp.), a 

marine sponge commonly found in Japanese seas; its antitumor activity was discovered in 1986. 

Eribulin binds to the vinca domain of tubulin and inhibits the polymerization of tubulin and the 

assembly of microtubules, resulting in the inhibition of mitotic spindle assembly, the induction of cell 

cycle arrest at G2/M, and, potentially, tumor regression. Eribulin mesylate is now in phase II clinical 

trials and is active in metastatic or locally advanced breast cancer [22,23]. 

In particular, the cytotoxic and antiproliferative properties of many natural sesquiterpene quinones 

and hydroquinones from sponges of the order Dictyoceratida [24] such as avarol, avarone, 

illimaquinone, nakijiquinone and bolinaquinone offer promising opportunities for the development of 

new antitumor agents [25,26]. This has sparked interest in the chemical composition and cytotoxicity 

of a large number of marine species that contain metabolites with hybrid structures between terpenes 

and quinones/hydroquinones. Related to such terpenequinone structures, several studies have been 

published addressing the chemistry, activity and mechanisms of action of the compounds [27–33]. 

The present review addresses the terpenylquinones of marine origin with cytotoxic properties that 

are active against different tumor cell lines. It also deals with the cytotoxic hydroquinones and some 

semisynthetic analogues of bioactive terpenequinones. The compounds described herein are mainly 

natural sesquiterpenes and share a decalin structure, bound via a 1C carbon chain to a ring of 

differently functionalized p-benzoquinone or hydroquinone. Cytotoxic terpenequinone/hydroquinones 

are usually metabolites that incorporate a bicyclic sesquiterpene unit coupled to a quinone or quinol. 

Most of these possess a drimane or rearranged drimane skeleton. In the present work they have been 

grouped on the basis of the structural resemblance of the bicyclic moiety with some diterpene skeletons.  

2. Terpenylquinones with a Clerodane-Type Decalin Ring  

From extracts of sponges from the family Spongiidae, collected in Okinawa, it has been possible to 

isolate several compounds with an amino acid moiety on the benzoquinone ring: nakijiquinones A (1), 

B (2), C (3) and D (4) [34–36], or with a benzoxazol moiety: nakijinol (5) (Figure 1). It should be 

noted that the presence of aminoquinone compounds is not very common in natural products, these 

substances being the first examples of sesquiterpenequinones of natural origin with an amino acid or 

heterocyclic moiety. Nakijiquinones A (1), B (2), C (3) and D (4) showed in vitro cytotoxicity against 

L-1210 (IC50 values between 2.8 and 8.1 µg/mL) and KB (IC50 values between 1.2 and 7.6 µg/mL).  
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Figure 1. Nakijiquinones. 
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The new dimeric sesquiterpenoid quinones nakijiquinones E (6) and F (7) were isolated from an 

Okinawan marine sponge [37]. These nakijiquinones were the first dimeric sesquiterpenoid quinones 

possessing a 3-aminobenzoate moiety. Nakijiquinones G–I (8–10), containing a different amino group 
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derived from amino acids, were isolated from Okinawan marine sponges of the family Spongiidae, and 

showed modest cytotoxicity and inhibitory activity against HER2 kinase, while nakijiquinone H (9) 

exhibited antimicrobial activity [38]. 

Nakijiquinones J–R (17, 11, 12, 18, 13, 14, 19 and 16), at 1 mM were tested for inhibitory activities 

against EGFR and HER2 tyrosine kinases. Among them, nakijiquinones P (19) and R (16) exhibited 

inhibitory activities against EGFR (76 and >99% inhibition, respectively), while nakijiquinones 

N (13), O (14) and R (16) showed inhibitory activities against HER2 (66%, 59% and 52% inhibition, 

respectively) [39]. The HER2/Neu tyrosine kinase receptor is hugely overexpressed in about 30% of 

primary breast, ovary, and gastric carcinomas. Nakijiquinones are the only naturally occurring inhibitors 

of this important oncogene, and structural analogues of nakijiquinones may display inhibitory 

properties against other tyrosine kinase receptors involved in cell signaling and proliferation [40]. 

Another type of compound with bioactive properties includes those whose benzo(hydro)quinone 

ring is substituted by a methoxycarbonyl group, as is the case of polyfibrospongols and 

smenospondiol. Extracts of the marine sponge Polyfibrospongia australis, collected in Taiwan, were 

used to isolate polyfibrospongols A (20) and B (21) (Figure 2) [41], compounds showing cytotoxic 

activity against different tumor lines. From the South China sponge Dysidea arenaria, a new 

sesquiterpenoid hydroquinone, 19-hydroxy-polyfibrospongol B (22), was isolated, along with 

polyfibrospongol B (21) and other known terpenequinones [42]. 

Also showing cytotoxic, as well as antibacterial, activity is smenospondiol (23), isolated from 

dichloromethane extracts of several species of the genus Smenospongia and with a very similar 

structure [43,44]. This compound has also been called dictyoceratin A by other authors [45]. These 

compounds showed interesting levels of cytotoxicity when assayed against the P-388 (mouse 

lymphoma), KB-16 (human nasopharyngeal carcinoma) and A-549 (human lung carcinoma) cells, 

their CI50 values lying between 0.6 and 2.0 µg/mL. 

5-epi-Ilimaquinone (24) showed cytotoxic activity (IC50) against P-388 leukemia cells (2.2 µg/mL) 

and different solid tumors: A-549 (0.9 µg/mL), HT-29 (3.4 µg/mL) and B16/F10 (1.1 µg/mL) [46]. It 

has been suggested that ilimaquinone (25) induces a concentration-dependent antiproliferative effect in 

several types of cancer cell lines, including PC-3 and LNCaP prostate cancer, A549 non-small cell 

lung cancer and Hep3B hepatocellular carcinoma cells. The anticancer mechanism of ilimaquinone in 

the representative PC-3 cells was identified. Ilimaquinone (25) induced a time-dependent increase in 

G1 phase arrest and a subsequent increase in the hypodiploid sub-G1 phase (apoptosis) of the cell 

cycle. The cell cycle arrest was associated with a sustained high level of nuclear cyclin E but the 

absence of DNA synthesis, according to flow cytometric analysis, indicated an incomplete S phase. 

Although ilimaquinone-induced Golgi vesiculation, the data showed that the inhibition of cancer cell 

growth did not occur through Golgi fragmentation. Ilimaquinone did not activate extracellular 

signal-regulated kinase and phosphatidylinositol 3-kinase but induced an up-regulation, nuclear 

translocation and gene 153-induced DNA damage (CHOP/GADD153). Furthermore, the 

ilimaquinone-mediated antiproliferative effect was significantly reduced in antisense 

CHOP/GADD153-overexpressing cells. Ilimaquinone (25) also inhibited the DNA binding of NF-κB; 

however, this inhibitory effect cannot explain the ilimaquinone-induced anticancer effect. In brief, it is 

suggested that ilimaquinone (25) induces its antiproliferative effect through the G1 arrest of the cell 

cycle and the up-regulation and nuclear translocation of CHOP/GADD153 [32]. Bioassay-guided 
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isolation from the marine sponge Hippospongia sp., collected at Palau, led to the isolation of three 

sesquiterpene quinone metabolites: ilimaquinone (25), 5-epi-ilimaquinone (24), and  

5-epi-isospongiaquinone (34) (Figure 2). The cytotoxicity against the NCI-H460, HepG2, SF-268, 

MCF-7, HeLa, and HL-60 human tumor cell lines, the inhibitory effects on the maturation of starfish 

oocytes, and cell cycle arrest in the HepG2 cell line were evaluated [47]. 

Figure 2. Polyfibrospongols, ilimaquinones, smenospongines and related compounds. 
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One compound closely linked to those above is glycinylilimaquinone (26), a metabolite isolated 

from a specimen from the genus Fasciosponia from the Phillipines, its structure having being 

determined by spectroscopic analysis and chemical synthesis [48,49]. This structure displayed 

cytotoxic activity, with IC50 = 7.8 µg/mL, against a human carcinoma tumor cell line (HT-29). 

However, when it was tested against P-388 mouse lymphoma in vivo, the maximum dose tolerated did 

not display cytotoxic activity. 

Other compounds with free hydroxyl and/or amino functions on the benzo(hydro)quinone ring have 

been isolated from the genus Smenospongia. Bioassays performed on the dichloromethane extract of 

different species of this genus revealed both cytotoxic and antibacterial activities. From this extract, 

smenosquinone (27), smenospongidine (28), smenospongiarine (30), smenospongorine (32) and 

smenorthoquinone (35) were isolated [50]. The cytotoxicity of some of these compounds was assessed 

against L.1210 leukemia cells. The results for smenoquinone, smenospongiarin and smenortoquinone 

were IC50: 2.5, 4.0 and 1.5 µg/mL, respectively. 

The methanol-chloroform extract of several species of the genus Smenospongia also afforded 

smenospongin (36), from the enantiomeric series with respect to the above described compounds. 

Smenospongin (36), which has also been isolated from Dactylospongia elegans, showed promising 

biological activities: cytotoxicity against L-1210 leukemia cells with a LD50 of 1 µg/mL. 

Smenospongine (36) induced erythroid differentiation and G1 phase arrest of K562 chronic 

myelogenous leukemia cells. In that study, the effect of smenospongine (36) on the cell cycles of other 

leukemia cells, including HL60 human acute promyelocytic leukemia cells and U937 human 

histiocytic lymphoma cells, was investigated by flow cytometric analysis. Smenospongine (36) 

induced dose-dependent apoptosis in HL60 and U937 cells. Smenospongine (36) treatment increased 

the expression of p21 and inhibited the phosphorylation of Rb in K562 cells, suggesting the p21-Rb 

pathway plays an important role in G1 arrest in K562 cells. However, based on a luciferase assay using 

transfected K562 cells, the p21 promoter was not activated by smenospongine (36) treatment. 

Smenospongine might induce p21 expression via a mechanism other than the transactivation of the p21 

promoter [51]. 

D. elegans, from Papua Nueva Guinea and Thailand, contains a total of 17 merosesquiterpenoids, 

among which are (+)-epi-smenospongiarin (31) and (+)-epi-smenospongidin (29) [46]. These 

compounds were assayed in vitro against solid tumor models (A-549, HT-29 and B16/F10) and 

leukemia cells (P-388), (+)-epi-smenospongiarin (31), with IC50 values between 0.6 and 0.9 µg/mL 

being of particular interest. 

A new sesquiterpene aminoquinone, 5-epi-smenospongorine (33), together with nine known 

sesquiterpene quinone/phenols, were isolated from the marine sponge Dactylospongia elegans. The 

structure-activity relationship study of these compounds revealed that the quinone skeleton is 

indispensable and the amino group plays an important role for their differentiation-inducing activity to 

K562 cells into erythroblast [52]. The new sesquiterpenoid aminoquinone, cyclosmenospongine (37), 

containing a dihydropyran ring, was isolated from an Australian marine sponge Spongia sp., along 

with the known metabolites, smenospongiarine (30), ilimaquinone (25) and smenospongine (36) [53]. 

A unified synthesis of several quinone sesquiterpenes is described by Ling et al. [54]. 

Avarol (38), a sesquiterpene hydroquinone, and its quinone derivative avarone (49) (Figure 3) are 

secondary metabolites isolated from the marine sponge Dysidea avara. Both compounds were first 
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discovered as anti-leukemia agents in vitro and in vivo, and later it was found that they had an in vitro 

inhibitory capacity against HIV-1 [55–60]. Controlled clinical studies revealed, however, that it was 

not efficient in the clinical treatment of patients with AIDS. Additionally, the potent T-lymphotropic 

cytostatic activity shown by avarol (38), and its low toxicity in mice, its ability to cross the blood-brain 

barrier and its ability to stimulate the synthesis of interferon make both these compounds optimum 

candidates for transformations aimed at improving their cytostatic and antiviral activity [12–17,55–60].  

Figure 3. Avarols and avarones. 
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The first avarone analogues were obtained by semisynthesis. Among the main substitutions are 

those performed on the quinone ring, including hydroxyl, methylamino, ethylamino, and glucosamine 

groups and different essential amino acids at positions 3’ or 4’ [56,61]. Cytostatic activity was assayed 

by analyzing the capacity of these compounds to inhibit the growth of fibroblasts, lymphocytic 

leukemia and lymphoblastic B and T cells. Avarol (38) and avarone (49) showed very similar 

inhibitory activity against the cell lines assayed (IC50 = 13.9–15.6 µM), as did the methyl, ethyl and 

glucosylaminated analogues and the alaninyl, phenylalaninyl and leucinyl derivatives. By contrast, the 

serinyl and cysteinyl derivatives were significantly less active. Antiviral activity was evaluated against 

the following viral types: HIV-1, ASFV, HSV-1, HSV-2, polio and VSV. Because of its activity 

(IC50 = 0.04 µM HSV-1 and 0.2 µM HSV-2), acyclovir is used like control compound against herpes 

simplex. Avarone (49) showed a more potent activity against HIV-1 (IC50 = 1.5 µM) than avarol (38) 

(IC50 = 2.9 µM) in vitro. Among the derivatives of avarone, modification in the quinone ring always 

afforded a loss of anti-HIV-1 potential, with the exception of leucinyl- and cysteicyl-avarone, which 

were as potent as avarone (49), the latter derivative being even more selective. 

All the derivatives selectively inhibited polio virus, but were almost completely inactive against the 

other viruses assayed. Against polio virus, avarol (38), avarone (49) and the 3’-methyl and 3’-ethyl 

aminoderivatives were more potent and selective inhibitors. The 3’-substituted analogues maintained 

potency and selectivity, while the 4’-substituted analogues showed a significantly lower potency and in 

some cases selectivity, the only exceptions being the 4’serinyl and 4’-cysteinyl derivatives of avarone. 

Different derivatives of avarol and avarone have been isolated from other species of the genus 

Dysidea. These included, neoavarol (39), neoavarone (50), 4’-methoxyavarone (51) and 

4’-methoxyneoavarone (52) isolated from a specimen in Okinawa [62], while from the extract of 

Dysidae cinera (collected in the Red Sea), 6’-hydroxyavarol (40), 6’-acetoxyavarol (41), 

3’-hydroxyavarone (53), 6’-acetoxyavarone (55), 3’,6’-dihydroxyavarone (56) and  

6’-hydroxy-4’-methoxyavarone (57) were isolated [63]. Some of these compounds showed cytotoxic, 

antimicrobial and anti-HIV properties. The results of cytotoxicity assays against P-388 mouse 

lymphoma indicated high potency for 3’-hydroxyavarone (53), 6’-acetoxyavarol (41) and 

3,6’-dihydroxyavarone (56), with IC50 values of 0.6, <0.6 and 1.2 µg/mL, respectively. 

Additionally, and related to the above, from different extracts of Dysidea avara collected from 

different places (Japan, the Solomon Islands, and others), minor metabolites, analogues of avarol and 

avarone, were isolated: monoacetylavarol (42), diacetylavarol (44), 6’-hydroxy-5’-acetylavarol (43), 

4’-methylaminoavarone (58), melemeleone A (61) and melemeleone B (62). These substances were 

subjected to different biological activity assays both with regard to their cytotoxicity and their capacity 

for enzyme inhibition [54,64–66]. The cytotoxicity assays performed for diacetylalvarol (44) revealed 

levels comparable with those of avarol (38), both in tests with Artemia salina (avarol LD50 = 0.18 ppm; 

diacetylavarol, LD50 = 0.15 ppm) and potato disk assays (avarol, 64% inhibition; diacetylavarol, 55% 

inhibition). Regarding the values for enzyme inhibition, only melemeleone B (62) proved to have a 

certain activity against PTK pp60
v-sarc

 (dose: 20 g/mL) with an IC50 = 28 M.  

Nine alkyl(aryl)thio derivatives of avarone were synthesized by nucleophilic addition of thiols or 

thiophenol to avarone, and their cytotoxicity was compared that of aminoavarones. Most derivatives 

showed cytotoxic activity against tumor cell lines (human cervical carcinoma, HeLa cells, human 

melanoma Fem-X and human leukemia K-562), with IC50 values lower than 10 µM for some of these, 
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in particular those with electron-donating substituents. Most compounds showed activity against all 

three cell lines, but leukemia cells were generally the most susceptible, with IC50 values similar to 

cisplatin for some methylamino and methoxyavarone derivatives. The exceptions were 

4’-(methylamino)avarone (58) and 3’,4’-(ethylenedithio)avarone (60), which were more active against 

melanoma cells, although overall the latter compound showed low activity. The most active compound 

was 4’-(methylamino)avarone (58), with an IC50 value of 2.4 µM against melanoma Fem-X cells, and 

no cytotoxicity against normal lymphocytes [31]. A highly efficient total synthesis of (+)-avarone,  

(+)-avarol, (−)-neoavarone, (−)-neoavarol and (+)-aureol has been achieved [67]. An in vitro 

cytotoxicity assay against U937 human histiocytic lymphoma cells determined the order of cytotoxic 

potency ((−)-neoavarone > (+)-avarone > (+)-aureol > (+)-avarol > (−)-neoavarol) and some aspects of 

their structure-activity relationships [67]. 

Upon acylation, avarol (38) afforded several compounds, two of them— 

2’,5’-O-(4-bromobenzoyl)avarol (45) and diacetylavarol (44)—showed cytotoxicity against Hepa 

(human hepatoma) and KB cell lines, respectively [68]. The semisynthesis of 13 new thioavarol 

derivatives and an in vitro evaluation of the photodamage response induced by UVB irradiation were 

described. The ability of the thioavarol derivatives prepared to inhibit NF-κB activation and TNF- 

generation in HaCaT cells, as well as their antioxidant capacity in human neutrophils, was also studied. 

The two monophenyl thioavarol derivatives 46 and 47 lacked cytotoxicity and were considered 

promising UVB photoprotective agents owing to their potent inhibition of NF-κB activation, with a 

mild antioxidant pharmacological profile [69]. A thiosalicylic derivative 64 of avarol was found to be a 

potent inhibitor of superoxide generation in human neutrophils, and it also potently inhibited PGE2 

generation in the HaCaT human keratinocyte cell line [70]. 3’-methylaminoavarone (59) had the best 

antiproliferative profile, owing to its inhibition of 3H-thymidine incorporation into HaCaT cells, with a 

potency similar to the reference compound anthralin [70]. Avinosol (65), a new merotepenoid isolated 

from the marine sponge Dysidea sp. collected in Papua New Guinea, appeared to be the first example 

of a naturally occurring meroterpenoid-nucleoside conjugate, and showed anti-invasion activity in 

cell-based assays [71]. 

Two sesquiterpenoids with a quinone and hydroquinone moiety, respectively, were isolated from 

the marine sponge Dysidea arenaria: arenarol (48) and arenarone (63). These compounds showed 

cytotoxic activity when assayed against P-388 leukemia cells, with ED50 = 17.5 g/mL for arenarol (48) 

and ED50 = 1.7 g/mL for arenarone (63) [72]. Arenarol (48) showed DPPH radical scavenging 

activity with an IC50 value of 19 M [73]. 

3. Terpenylquinones with a Labdane-Type Decalin Ring 

Two new bioactive derivatives, wiedendiol A (66) and wiedendiol B (67) (Figure 4), were isolated 

from the marine sponge Xestospongia wiedenmayeri, collected in the Bahamas [74]. The absolute 

configuration of these compounds was determined by chemical synthesis of wiedendiol A (66), 

performed from (+)-sclareolide [75]. The CETP-SPA inhibition assays carried out with these 

compounds revealed an IC50 = 5 M in both cases. Later, the inhibition of CETP was verified using a 

precipitation method to separate lipoproteins after incubation of HDL radiolabeled with LDL and 

CETP. In this assay, wiedendiol A (66) and B (67) had an IC50 of 1.0 and 0.6 M, respectively. 
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Wiedendiol B is a ten-fold stronger inhibitor of cyclooxigenase-2 than the reference compound 

indomethacine [76]. 

There are some compounds with a labdane-type decalin that also have a fourth ring, through an 

oxygen (most times) or carbon bridge between the decalin and the benzo(hydro)quinone ring. For 

example, structures with a fourth five-membered oxygen ring, in this case spiranic, are the 

corallidyctals A (68), B (69), C (70) and D (71) isolated from the marine sponge Aka (Siphonodyctio) 

corallifagum [77,78]. Both corallidytal A (68) and B (69) inhibit PKC with an IC50 = 28 M, while 

assays addressing another cAMP-dependent kinase did not afford inhibition at concentrations of 

300 M, indicating its selectivity. Further, the assays revealed selectivity against the  isoform of  

PKC [77]. Corallidyctals C (70) and D (71) were tested in antiproliferative assays using cultures of 

mouse fibroblasts and activity was linked to the presence of the ortho-hydroquinone moiety [78]. 

Figure 4. Wiedendiols, corallidictyals, chromazonarols and puupehenols. 
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Of the compounds with a fourth six-membered oxygen ring, the first is ent-chromazonarol (73), 

isolated from Dysidea pallescens [79], whose structure was confirmed by chemical synthesis 

performed from (−)-sclareol [80]. Its epimer, 8-epichromazonarol (74), was isolated from 

Smenospongia aurea [81]. Assays on cytotoxic activity were performed against P-388, A-549. HT-29 
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and MEL-28 cells, and in all cases an IC50 = 15.9 M was obtained for ent-chromazonarol (73). 

Chromazonarol (72), isolated from the brown alga, was inactive (IC50 > 10 µg/mL) against the KB, 

Bel-7402, PC-3M, Ketr 3 and MCF-7 human tumor cell lines [82]. An enantioselective cyclisation of 

2-(polyprenyl)phenol derivatives to afford polycyclic terpenoids bearing a chroman skeleton such as 

(−)-chromazonarol by a new artificial cyclase has been described [83]. 

Two metabolites were obtained from one species of the genus Verongida: 15-cyanopuupehenol (76) 

and 15-cyanopuupehenone, whose structure is intimately related to that of puupehenol (75) and 

puupehenone (80), the latter isolated from Stronylophora hartmani, collected in deep waters off the 

Bahamas [80,84–87]. Activity assays performed on puupehenone (79) revealed cytotoxic activity 

against different neoplastic lines, with an interesting IC50 = 0.5 M against A-549 and HT-29, and 

even better inhibition values against the synthesis of DNA and RNA (0.3 and 0.4 g/mL, respectively). 

Also, antimicrobial assays provided positive results, especially against Penicilliium notatum and 

Aspergillus oryzae. However, in the case of cyanopuupehenone (78), only its cytotoxicity against  

HT-29 human colon carcinoma, with an IC50 = 1–2.5 g/mL, is of interest. 

Puuppehenol analogues have been found by studying different species of the genus Hyrtios, 

collected in Hawaii [84] (from which 15-methoxypuupehenol (77), the product of methanol 

manipulation, was isolated) and New Caledonia (from which 15-oxopuupehenol (78) was isolated) [86]. 

15-methoxypuupehenol showed cytotoxic activity (IC50 = 6 g/mL) against KB neoplastic cells. 

Puupehenone (80) was isolated from a sponge of the genus Verongida, collected in Hawaii, together 

with other derivatives of this, among which puupehenione (81) [85] is of interest because it is one of 

the few orthoquinones included in this review. Bioactivity assays carried out on this compound 

afforded minimum inhibitory concentration values between 1 and 2 g/mL for all the neoplastic cell 

lines analyzed. The antimicrobial tests afforded inhibition halos between 10 and 17 mm. 

Several routes towards puupehenone-related metabolites have been achieved [88–90].  

Puupehenone (79) and related compounds were selected in the course of a blind screening for new 

potential inhibitors of angiogenesis; some of them completely inhibited in vivo angiogenesis in the 

CAM assay at doses equal or lower than 30 nM/egg. They also inhibited the endothelial cell 

production of urokinase and invasion. The simplicity of their structures and the feasibility of their 

synthesis make them attractive compounds for further evaluation in the treatment of 

angiogenesis-related pathologies [91]. Puupenehone analogues from an Indo-Pacific Hyrtios sponge 

showed bioactivity in a soft-agar cytotoxicity test [92]. 

The only case of compounds with a further six-membered ring is cyclosiphonodictyol bis-sulfate A 

(82), a compound isolated from the marine sponge Siphonodictyon coralliphagum. This compound 

showed inhibitory activity against the binding of [
3
H]-LTB4 to human neutrophils, with  

IC50 = 44.5 µM [93]. 

4. Terpenylquinones with a Halimane-Type Decalin Ring  

Within this group, the first is mamanuthaquinone (83) (Figure 5), a cytotoxic metabolite of 

Fasciospongia sp. collected in the Fiji islands [94]. Activity assays revealed a certain toxicity, 

especially against HCT-116 human colon carcinoma (IC50 = 2 g/mL). However, in vitro anti-HIV 

activity assays proved to be negative. As indicated above, nakijiquinones J (17), M (18) and P (19) at 
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1 mM were tested for inhibitory activity against EGFR and HER2 tyrosine kinases. Among them, 

nakijiquinones P (19) exhibited inhibitory activity against EGFR (76% inhibition) [39]. 

Other compounds with this type of skeleton are the adociasulfates 84 and 85, isolated from a sponge 

from the genus Haliclona. These two compounds were originally of interest because they were positive 

in tests studying the inhibition of the ATPase of kinesins, with an IC50 = 10 M for the former and 

15 M for the latter [95]. Smenoqualone (86) was isolated from different species of the genus 

Smenospongia, collected from the Gulf of Aden. This compound appears to be related to a product of 

acid rearrangement of 5-epi-isospongiaquinone (34), and its structure was determined via its 

spectroscopic data [96]. The activity assays performed with smenoqualone revealed its inactivity as an 

antimicrobial, antifungal and cytotoxic agent, suggesting that the presence of a free hydroxyl group on 

the quinone ring is important for biological activity in this group of compounds. Strongyline A (87), a 

metabolite isolated from the marine sponge Strongylophora hartmani, showed cytotoxic activity 

against P-388 leukemia cells (IC50 = 13 µg/mL) and antiviral activity against Influenza PR-8  

(IC50 = 6.5 µg/mL, IT = 9) [97]. 

Figure 5. Mamanuthaquinone, smecualone, stronglylin and adociasulfates. 
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5. Other Related Compounds 

Bolinaquinone (88) (Figure 6) is a cytotoxic sesquiterpene from the genus Dysidea, whose quinone 

moiety is located on an unusual carbon of the decalin [98]. This compound showed cytotoxic activity 

against HCT-116 human colon carcinoma (IC50 = 1.9 µg/mL). The cytotoxicity studies carried out 

suggest that this compound acts by interfering with or damaging DNA. Dehydroxybolinaquinone (89), 

isolated from the Hainan sponge Dysidea villosa, showed moderate PTP1B inhibitory activity and 

cytotoxicity, with IC50 values of 39.5 and 19.5 mM, respectively [99]. The sequiterpene aminoquinone 

dysidine (90) [100], isolated from Dysidea sp., had the strongest hPTP1B inhibitory activity, with an 

IC50 value of 6.7 mM [99]. Methoxyhalenaquinone (91) from Xestopolospongia carbonara is a 

tyrosine kinase inhibitor [101]. 
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Figure 6. Bolinaquinones, renierins, paniceins, popolohuanones and other compounds. 
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An important number of metabolites with very diverse structures have been isolated from the genus 

Reniera, such as carotenes, alkaloids, diacetylenes and terpenequinones. In particular, four metabolites 

with a sesquiterpene structure were isolated from the species Reniera fulva, with the novelty that they 
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did not have the B ring of the decalin, the most significant compound being fulvanin-2 (92) [102]. 

Additionally, apart from fulvanins, the fractionation of the acetone extract of Reniera mucosa afforded 

another five compounds with analogous structures: paniceins A2 (93) and F1 (94), renierins A (95) and 

B (96), and p-hydroquinone [103]. All the compounds obtained from Reniera mucosa were assayed 

against the P-388, A-549, HT-29 and MEL-28 cell lines with a view to determining their in vitro 

cytotoxicity. Among them, of interest were panicein A2 (93) (ED50 = 5 µg/mL against all the lines 

assayed) and panicein F1 (94) (ED50 = 5 µg/mL against all cell lines except HT-29), the latter showing 

medium potency in additional DHFR inhibition tests (ED50 = 3 µg/mL). 

New terpenylquinones were isolated from different species of the genus Dysidea; their structures 

are formed by two subunits, called popolohuanones. Thus, from a specimen of that genus, collected in 

Papua New Guinea, popolohuanones A (97) and B (98) were isolated [104], whereas popolohuanones 

C (99) and D (100) were isolated from Dysidea avara, collected in the Solomon Islands [64]. 

Cytotoxicity assays for popolohuanone A (97), performed against KB cells at concentrations of 10, 5 

and 1 µg/mL, proved to be negative. Identical results were obtained in antimycotic activity assays 

against Candida albicans. Other related compounds were isolated from species of the genus Hyrtios 

(New Caledonia), such as dipuupehenone (101) and bispuupehenone (102), the latter also found in the 

species Hyrtios eubamma (Tahiti). Bioactivity assays of these compounds unveiled the cytotoxic 

activity of dipuupehedione (101) against KB cells (ED50 = 3 µg/mL). Popolohuanone E (103), a potent 

topoisomerase II inhibitor with selective cytotoxicity against the A549 non-small cell human lung 

cancer cell line, was isolated from Dysidea sp. Pohnpei sponges [105], and the biomimetic route to this 

family of heterocyclic ring systems has been proposed [106]. Popolohuanone A (96) and the new 

dimeric popolohuanone F (104) showed DPPH radical scavenging activity, with an IC50 value of 

35 µM [73]. 

A biosynthetic pathway leading to several sesquiterpene quinones is suggested [107]. 

6. SAR Studies and Mechanism of Action 

Sesquiterpenoid quinones from marine sponges and their semisynthetic derivatives were compared 

for cytotoxicity on developing eggs of the sea urchin Strongylocentrotus nudus and Ehrlich carcinoma 

cells, and for hemolytic activities on mouse red blood cells. Structure-cytotoxicity studies of several 

marine sesquiterpenoid quinones and their semisynthetic derivativess on developing eggs of the sea 

urchin Strongylocentrotus nudus and Ehrlich carcinoma cells revealed that the activities of these 

compounds, with a hydroxyl group at C-20, were higher than their methoxyl and amino groups at this 

position. Sesquiterpenoid quinones containing a dihydropyran ring had lower activity than non-cyclic 

compounds. The structure of the terpenoid moieties of the compounds had no significant influence on 

biological activity. There was a direct correlation between the cytotoxic and hemolytic activities, and 

the mechanisms of action employed by these compounds against cell membranes have been 

discussed [108]. Other results from SAR studies appear in the description of the different types 

of compound. 

Regarding the mechanism of action of terpenylquinones, the accumulated data about the biological 

activity of quinone moieties suggest redox processes and/or Michael-type addition-elimination 

reactions [31]. Their cytotoxicity has been explained in terms of their ability to undergo redox cycling 
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and the generation of reactive oxygen species, which would damage tumor cells [109–111]. 

NADH/NADH dehydrogenase reduction of the several terpenylnaphthoquinones increases the rate of 

oxygen consumption, such rates being higher for quinones with more positive redox potentials. In this 

process, reactive oxygen species are formed in small amounts, which also correlate with the quinone 

redox potential. Semiquinone derivatives of these quinones are generated under anaerobic conditions 

and in the presence of NADH/NADH dehydrogenase. Since this enzymatic system is found in 

mitochondria, a possible pathway in the cytotoxic activity of these terpenylnaphthoquinones could be 

interference with or the inhibition of mitochondrial respiration, as reported for other naphthoquinone 

derivatives, in addition to free radical degradation [29,30]. The results obtained with avarone and 

avarol supported the mechanism of antitumor action via the reactive oxygen radicals [112,113], but 

there were also indications of the relevance of arylation of biomolecules, such as proteins [31,114,115]. 

7. Summary  

The compounds that appear in this review are meroterpenes, compounds of mixed biogenesis 

isolated from marine sources and mainly from the following genera: Dactylospongia, Dysidea, 

Euryspongia, Fasciospongia, Fenestraspongia, Haliclona, Polifibospongia, Siphonodictyon, 

Smenospongia, Stelospongia, Strongylophora, Reniera and Xestospongia. The cytotoxic properties of 

sesquiterpenequinones or quinols produced by these genera make them viable candidates for 

continuing the search for analogues with enhanced cytotoxicity, improved selectivity and able to 

eliminate adverse effects with a view to finding new drugs of marine origin [3,5,19,24–26]. 

Outstanding among the compounds investigated is 4’-(methylamino)avarone (58), with an IC50 of 

2 µM against melanoma Fem-X cells, and non-cytotoxic to normal lymphocytes [31]. 
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