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Abstract: Renieramycin M and jorunnamycin C, two isoquinolinequinone compounds 
differing only at the C-22 ester side chain, were evaluated for their cytotoxic effects on 
human colon (HCT116) and breast (MDA-MB-435) cancer cell lines. These two 
compounds displayed potent cancer cell growth inhibition, their IC50 values reaching 
nanomolar order. To examine their effects on transcription, we carried out oligonucleotide 
microarray analysis with focus on the similarities and differences between the two 
compounds in terms of transcriptional profiles. We found that the down-regulation of 
PTPRK (protein tyrosine phosphatase receptor type K) can be considered as a biomarker 
responsive to the cytotoxic effects of this class of antitumor marine natural products. 
 
Keywords: renieramycin M; jorunnamycin C; marine sponge; oligonucleotide microarray; 
antitumor agent 
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1. Introduction 
 
Tetrahydroisoquinolinequinones and their reduced forms have attracted considerable interest over 

the past 30 years due to their potent biological activities [1]. A great many such natural products have 
been isolated, predominantly from Actinomycetes and marine organisms. On the basis of their 
characteristic structures, antibiotics could be subdivided into three categories:  
(1) naphthyridinomycins, cyanocyclines, and bioxalomycins, (2) saframycins and safracins, and  
(3) quinocarcins, tetrazomine, and lemonomycin. Meanwhile, marine natural products can be 
subdivided into two categories: (1) renieramycin, cribrostatin, jorumycin, and jorunnamycin and  
(2) ecteinascidins (Figure 1). The most bioactive member of marine natural isoquinoline family, 
ecteinascidin 743 (Yondelis, trabectedin), has a unique mechanism of action in that its binds to the 
minor groove of DNA to interfere with cell division, activated transcription, and DNA repair [2–9]. 

Ecteinascidin 743 has been approved by the European Commission for use in advanced soft tissue 
sarcoma patients who do not respond to anthracyclines and ifosfamide, or who are unsuited to receive 
these agents. The remarkable results of preclinical and clinical trials of ecteinascidin 743 have 
stimulated further research of this class of antitumor agents, including PM00104 (Zalypsis) [10,11], 
phthalascidin (Pt 650) [12], and QAD [13] (Figure 2).  

 
Figure 1. Structures of renieramycins, jorunnamycins, and related marine natural products 
with significant antiproliferative activity. 
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Renieramycins E and F were isolated from Reniera sp. by Faulkner’s group in 1989 [14,15]. These 
two compounds, whose ring system and the relative stereochemistry are identical those of saframycin 
A, exhibit strong cytotoxicity toward cultured cells in vitro and antitumor activity against several 
experimental tumors in vivo. Jorumycin, which was discovered in very minute quantities from the 
mantle and mucus of the Pacific nudibranch Jorunna funebris, possesses growth inhibitory activity 
against various human cancer cell lines [16]. These three compounds have a relatively unstable 
carbinolamine group that may decomposed during isolation process, thus, they are available in only 
minute quantities from natural sources. 

In our search for new metabolites via the isolation and characterization of biologically active 
compounds from Thai marine animals, we succeeded in the isolation and structure elucidation of 
renieramycin M, which is a stable congener of renieramycin E with α-aminonitrile group instead of 
calbinolamine group, from the Thai sponge, Xestospongia sp., by pretreatment with potassium cyanide 
[17,18]. We realized the gram-scale supply of renieramycin-type compounds using our procedure, and 
recently reported significant results gained from the extension of our initial investigation and the 
results of cytotoxicity evaluation of C-22 ester analogues and a very promising compound, the  
2’-pyridinecarboxylic acid ester derivative [19] (Figure 2). We also reported the isolation of 
jorunnamycins A-C from the mantles, visceral organs, and egg ribbons of the Thai nudibranch Jorunna 
funebris, following the same procedure that used potassium cyanide [20].  
 

Figure 2. Structures of synthetic analogues maintaining significant high cytotoxicity. 
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Described herein is a significant extension of our initial investigation of renieramycin M and 
jorunnamycin C, cyano-group containing isoquinolinequinone ester analogues. We used 
oligonucleotide microarray analysis to clarify the effects of these two compounds on cellular 
transcription. We focused on transcriptional SAR (structure and activity relationship) studies to 
identify a potential gene expression marker(s) that is closely associated with the antitumor activity of 
these fascinating marine natural products. 

 
2. Results and Discussion 

 
Renieramycin M and jorunnamycin C were isolated from potassium cyanide pretreated sponge, 

Xestospongia sp., and nudibranch, Jorunna funebris, respectively. Human cancer cell lines HCT116 
(colon) and MDA-MB-435 (breast) were grown in RMPI 1640 (Sigma) containing supplements that 
included 10% (v/v) heat-inactivated fetal bovine serum (Equitech-BIO) and a solution of 100 U/mL 
penicillin and 100 μg/mL streptomycin (Invitrogen). Cell culture was performed at 37 ºC in a 
humidified atmosphere of 5% CO2 and 95% air. 

After continuous exposure of these compounds for three days, the concentration required for 50% 
growth inhibition (IC50) was determined by the MTT colorimetric assay [21]. The results are 
presented in Table 1. In this assay, renieramycin M was more potent than jorunnamycin C (by 
approximately twofold on IC50 basis) against human HCT116 colon and MDA-MB-435 breast cancer 
cell lines [22]. 
 

Table 1. Antiproliferative activity of renieramycin M and jorunnamycin C against 
HCT116 and MDA-MB-435 human cancer cell lines. 

 Human cancer cell line, IC50 ± SD (nM) 
Compound HCT116 (colon) MDA-MB-435 (breast) 
Renieramycin M 16.4 ± 0.3 6.3 ± 0.1 
Jorunnamycin C 27.3 ± 1.0 16.3 ± 1.3 

 
In order to compare renieramycin M and jorunnamycin C on the basis of their transcriptional 

signatures, we analyzed the expression changes of more than 8,500 transcripts in HCT116 and  
MDA-MB-435 cells using Affymetrix Human Genome Focus arrays. The investigated time points 
were 4 h and 12 h. All data were obtained in triplicate to verify statistical significance [23]. 

The hierarchical clustering data on the dendrogram format and the cosine coefficients between any 
two data points on the table format are shown in Figure 3. This analysis revealed that renieramycin M 
and jorunnamycin C have similar effects on the gene expression of each human cancer cell line and 
also at each time point (cosine coefficients: 0.66 in the 4-h treatment for HCT116; 0.57 in the 12-h 
treatment for HCT116; 0.74 in the 4-h treatment for MDA-MB-435; and 0.76 in the 12-h treatment for 
MDA-MB-435). The high correlation indicates that both compounds operate via essentially the same 
primary mechanism(s) of action, particularly in MDA-MB-435, a more sensitive cancer cell line to 
these antitumor agents. 
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Figure 3. Correlation between transcriptional signatures of renieramycin M and 
jorunnamycin C. With respect to two human cancer cell lines (HCT116 and  
MDA-MB-435) and two time points (4 h and 12 h), hierarchical clustering data on the 
dendrogram format and cosine coefficient data on the table format are presented. 
Abbreviations: RM, renieramycin M; JC, jorunnamycin C; HCT, HCT116; MDA,  
MDA-MB-435; CC, correlation coefficient. 

 
Venn diagrams in Figure 4 present the number of genes up- and down-regulated by at least twofold 

with statistical significance (p-value < 0.05) by treatment with renieramycin M and jorunnamycin C. 
The obtained results are summarized as follows: (i) transcriptional down-regulation was more 
predominant than up-regulation for both compounds irrespective of the cell lines and the time points in 
general; (ii) the numbers of genes significantly altered by treatment with renieramycin M and 
jorunnamycin C were larger in MDA-MB-435 than in HCT116, consistent with the order of cellular 
sensitivity to both compounds; (iii) significant overlap was observed between the genes altered by 
treatment with renieramycin M and jorunnamycin C in both cell lines; and (iv) the numbers of 
significantly altered genes in both cell lines were larger with renieramycin M treatment than with 
jorunnamycin C treatment, even though the drug concentrations for this analysis were corrected by 

4h_HCT_RM 4h_HCT_JC 4h_MDA_RM 4h_MDA_JC 12h_HCT_RM 12h_HCT_JC 12h_MDA_RM 12h_MDA_JC
4h_HCT_RM 1.00 0.66 0.21 0.32 0.41 0.44 0.18 0.24
4h_HCT_JC 0.66 1.00 0.12 0.19 0.29 0.30 0.12 0.15
4h_MDA_RM 0.21 0.12 1.00 0.74 0.34 0.00 0.65 0.44
4h_MDA_JC 0.32 0.19 0.74 1.00 0.41 0.20 0.50 0.46
12h_HCT_RM 0.41 0.29 0.34 0.41 1.00 0.57 0.50 0.59
12h_HCT_JC 0.44 0.30 0.00 0.20 0.57 1.00 0.00 0.18
12h_MDA_RM 0.18 0.12 0.65 0.50 0.50 0.00 1.00 0.76
12h_MDA_JC 0.24 0.15 0.44 0.46 0.59 0.18 0.76 1.00

CC ≤ 0 0 < CC ≤ 0.40 0.40 < CC ≤ 0.70 0.70 < CC
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using the 2 × IC50 values of both compounds. These observations indicate that the C-22 ester side 
chain structure has a profound influence on the transcriptional perturbation by the renieramycin and 
jorunnamycin class of antitumor marine products. 
 

Figure 4. Venn diagrams showing the numbers of altered genes at least two fold by 
treatment with renieramycin M and jorunnamycin C in HCT116 and MDA-MB-435. 
Abbreviations: RM, renieramycin M; JC, jorunnamycin C. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figures 5 and 6 highlight the genes altered by at least twofold coordinately in HCT116 and  
MDA-MB-435 by 12-h treatment with renieramycin M or jorunnamycin C. The commonly up- or 
down-regulated genes between these two cell lines could be considered as biomarker candidates 
responsive to the cytotoxic effects of these compounds. In case of 12-h treatment with renieramycin M, 
there were 8 and 37 genes were found to be up- and down-regulated, respectively. It is note worthy 
that GADD45A was found to be up-regulated in three reports describing expression profiles of 
ecteinascidin 743 treatment cell lines, human epithelioid cervix adenocarcinoma HeLa [6], human lung 
carcinoma A549 [9], and HCT116 & MDA-MB-435 [12]. It is known that the transcription levels of 
GADD45A are increased following growth arrest and DNA-damage. This result strongly suggested 
that renieramycin M and jorunnamycin C have the similar G2/M arrest activities of ecteinascidin 743. 
On the other hand, down-regulated 37 genes of renieramycin M treatment experiments were subjected 
to GO (Gene Ontology) analysis to examine compound-associated biological processes, cellular 
components, and molecular functions. As the result, the following GO terms were enriched with  
p-values < 0.05: cell division, chromosome segregation, mitosis, and microtubule cytoskeleton 
organization and biogenesis in biological processes; intercellular junction and tight junction in cellular 
components; and diacylglycerol binding, guanylate kinase activity, and lipid binding in molecular 
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functions (Figure 6). From this GO-biological processes analysis, it is suggested that renieramycin M 
may affect on mytotic phase of the cell cycle, which was also highlighted by the up-regulated 
GADD45A gene. GO analyses of the other set of expression level altered genes in common in both 
cell lines showed no significant enriched GO terms. 
 

Figure 5. Genes up-regulated at least two fold coordinately in HCT116 and MDA-MB-435 
by 12 h treatment with renieramycin M or jorunnamycin C. Abbreviations: HCT, HCT116; 
MDA, MDA-MB-435. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Genes down-regulated by at least two fold coordinately in HCT116 and  
MDA-MB-435 by 12 h treatment with renieramycin M or jorunnamycin C. Abbreviations: 
HCT, HCT116; MDA, MDA-MB-435; GO, gene ontology. 
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Figure 6. Cont. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To select a set of biomarker genes in responsive to renieramycin M and jorunnamycin C treatments, 
the genes whose expression levels commonly altered in both cell lines with these two compounds were 
examined (Figure 7).  

 
Figure 7. Identification of candidate biomarker genes down-regulated by at least two fold 
coordinately in HCT116 and MDA-MB-435 by 12 h treatments with renieramycin M and 
jorunnamycin C. 
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Within the list of down-regulated genes in 12-h treatments with both compounds, only one gene, 
PTPRK, was found to satisfy the selection criteria. The down-regulation of this gene seems to be 
involved in the primary mechanism(s) of action of both compounds, and is therefore considered to be a 
potential biomarker in response to the renieramycin and jorunnamycin class of antitumor marine 
products. PTPRK dephosphorylates EGFR and affects the downstream Erk activity. Xu et al. reported 
that overexpression of this gene in human keratinocytes decreased EGFR tyrosine phosphorylation, 
and resulted in near complete inhibition of growth [24]. This result is contrary to our expectation, 
however, the other PTPRs effects and kinase cascade cross-talks make the biological system to be 
complex, and the detailed PTPRK functions are still under the investigation. Martinez et al. reported 
that PTPRK is down-regulated in ecteinascidin 743 sensitive human sarcoma cells, on the contrary, it 
is up-regulated in resistant cells [25]. These findings support the idea that PTPRK gene is a potentially 
useful expression marker to monitor the antitumor effects of not only renieramycin M and 
jorunnamycin M but also a variety of naturally occurring isoquinolinequinones and their reduced 
forms with extremely potent antitumor activity. 
 
3. Conclusions 

 
We utilized oligonucleotide microarray analysis to profile the effects of renieramycin M and 

jorunnamycin C on cellular transcription, and found that the down-regulation of PTPRK gene can be a 
potentially useful biomarker in response to this class of unique antitumor marine products. The finding 
that renieramycin M is more potent against cancer cell growth than journnamycin C was also 
confirmed by the gene expression analysis, suggesting that the C-22 ester side chain structure should 
have a critical impact on not only the antiproliferative activity but also the transcriptional signatures of 
this class of unique antitumor natural products. This kind of microarray-based transcriptional SAR 
study represents a new and effective approach to drug discovery in the post-genomic era [26]. Effects 
to be examined of other types of cytotoxic molecules on the expression of PTPRK and compared with 
those of the ecteinascidin class of anticancer molecules are being made.  
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