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Abstract: Aging is closely associated with collagen degradation, impacting the structure and strength
of the muscles, joints, bones, and skin. The continuous aging of the skin is a natural process that is
influenced by extrinsic factors such as UV exposure, dietary patterns, smoking habits, and cosmetic
supplements. Supplements that contain collagen can act as remedies that help restore vitality and
youth to the skin, helping combat aging. Notably, collagen supplements enriched with essential
amino acids such as proline and glycine, along with marine fish collagen, have become popular for
their safety and effectiveness in mitigating the aging process. To compile the relevant literature on
the anti-aging applications of marine collagen, a search and analysis of peer-reviewed papers was
conducted using PubMed, Cochrane Library, Web of Science, and Embase, covering publications
from 1991 to 2024. From in vitro to in vivo experiments, the reviewed studies elucidate the anti-
aging benefits of marine collagen, emphasizing its role in combating skin aging by minimizing
oxidative stress, photodamage, and the appearance of wrinkles. Various bioactive marine peptides
exhibit diverse anti-aging properties, including free radical scavenging, apoptosis inhibition, lifespan
extension in various organisms, and protective effects in aging humans. Furthermore, the topical
application of hyaluronic acid is discussed as a mechanism to increase collagen production and
skin moisture, contributing to the anti-aging effects of collagen supplementation. The integration
of bio-tissue engineering in marine collagen applications is also explored, highlighting its proven
utility in skin healing and bone regeneration applications. However, limitations to the scope of its
application exist. Thus, by delving into these nuanced considerations, this review contributes to a
comprehensive understanding of the potential and challenges associated with marine collagen in the
realm of anti-aging applications.

Keywords: marine collagen; biopeptide; antioxidant; skin; anti-aging; prevention; bone regeneration;
extracellular matrix (ECM); fish collagen

1. Introduction

Collagen is a fibrous protein that provides support to various structures of the body,
such as the skin, cartilage, and bones [1–3]. Functioning as a crucial structural and con-
nective component of the extracellular matrix (ECM), collagen helps regulate cell growth,
adhesion, and migration [4,5]. As a naturally abundant protein found in all animals, there
are 28 different types of collagens, which account for approximately 30% of the total protein
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found in the body [2]. Type 1 collagen is the most abundant type and provides support
to most tissues of the body, such as the skin and muscles. Type II is responsible for the
maintenance and repair of cartilage [2]. Type III is the main element of tissue sealants
and reticular fibers commonly found in blood vessels and muscles [2]. Type IV is a key
element in the basement membrane, functioning as a barrier between tissues, and can act as
a diabetic neuropathy indicator [2]. Finally, Type V is the main collagen in corneal solutions
and is found in the placenta and hair [2].

Collagen is often used as a regenerative biomaterial due to its high biodegradability,
solubility, and tensile strength [4–9]. Its low immunogenicity and excellent biocompati-
bility have prompted extensive research into its application as a polymer across various
biomedical products, including cosmetics and pharmaceuticals [5]. Moreover, collagen
serves as a safe and efficient biomaterial in tissue engineering and clinical settings [9,10].
The food industry also exhibits a substantial demand for collagen due to its elevated pro-
tein content and beneficial functional attributes, including water absorption capacity and
emulsion-forming ability [5]. However, the natural degradation of collagen accelerates
with age, which can impact skin elasticity, wound healing, bone density, and even immune
and neural function [4,11–13]. Skin aging results from diminished collagen density and
dermal thickness, alongside reduced synthesis and replacement of crucial structural pro-
teins [5]. The effects of reduced collagen density especially impact the dermis layer of the
skin, resulting in notable signs of aging such as increased wrinkling, sagging, laxity, and a
textured appearance [14,15].

While the aging process of the skin is considered complex, the incorporation of marine
collagen in anti-aging supplements has been used to treat select skin concerns, includ-
ing visible signs of aging [1]. In particular, the application of marine collagen peptides
(MCPs) emerges as a promising therapeutic according to multiple animal and in vitro
studies [7,11,16–18]. MCPs are obtained by hydrolyzing collagen into small peptides of low
molecular weight to improve bioavailability and absorption [19]. MCPs can exert bioactive
properties, including anti-microbial and antioxidant functions [19]. Thus, MCPs are com-
monly utilized in cosmeceutical skin products for their anti-aging properties [19–22]. Over
the past decade, there has been a remarkable surge in market demand for marine-based
cosmetics [21].

While the previous literature has demonstrated the effectiveness of bioactive natural
peptides in mitigating the effects of aging across diverse models, including cell studies,
animal studies, and clinical trials [1,5,23–25], there is limited information regarding the
diversity of anti-aging collagen peptides found in marine organisms. Various bioactive
compounds can be sustainably extracted from marine waste and harnessed as potent
ingredients for the formulation of cosmetic products, reducing environmental pollution
and lowering production costs [25–29]. Examples include collagen derived from fish
waste and chitin obtained from crustacean waste, which can be incorporated into cosmetic
formulations targeting anti-wrinkle and skin barrier enhancements [28]. While fish are
widely used as food resources, there is limited utilization of marine proteins from other
species such as sea cucumbers, sea urchins, mussels, and various kinds of algae. Thus,
this review addresses this gap by presenting recent insights into the anti-aging potential
of bioactive collagen peptides sourced from under-utilized marine resources, examining
examples that can scavenge free radicals in vitro and showcase clinical benefits for the
skin and body [15,28]. Interestingly, the potential combination of CRISPR technology with
marine collagen offers a novel perspective for groundbreaking anti-aging treatments. This
synergy harnesses CRISPR’s precision in gene editing to specifically target aging-related
genes, complemented by the supportive properties of marine collagen. The result is an
innovative approach with enhanced therapeutic effects, particularly in skin elasticity and
hydration [30]. The findings lay the groundwork for the development of revolutionary
anti-aging collagen treatments derived from underexplored marine organisms.

Table 1 displays the five common types of collagens along with their functions. Marine
collagen is predominantly Type I collagen, which is the primary component of the calcium-
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depleted tissue of the teeth and bone [2]. It is found in the skin, in tendons, in the vasculature
of the lungs, and in the heart [2]. Table 1 significantly highlights the use of porcine
collagen (Type I and Type III collagen), which is essential in the prevention and treatment
of osteoporosis [2].

Table 1. The function of the 5 most common types of collagens [2].

Collagen Function or Application Tissue or Organ

Type I the organic part of the bone, membranes for
guided tissue regeneration

skin, bone, teeth, tendon,
ligament, vascular ligature

Type II the main constituent of cartilage, cartilage
repair, and arthritis treatment cartilage

Type III the main constituent of reticular fibers,
hemostats, and tissue sealants muscle, blood vessels

Type IV
the major component of the basement

membrane, attachment enhancer of cell
culture, and diabetic nephropathy indicator

basal lamina, the
epithelium-secreted layer of

the basement membrane

Type V feedstock for biomaterials in
corneal treatments

hair, cell surfaces,
and placenta.

Our literature review explores the anti-aging activities of collagen peptides from
marine organisms, focusing on their capacity to regulate oxidative stress in diverse models
including cells, fruit flies, nematodes, mice, and humans [1]. By analyzing the findings
of these papers, we aim to contribute valuable insights that help enhance the utilization
of marine sources for anti-aging applications. However, limitations regarding the lack of
long-term studies may hinder its potential use. Thus, this review highlights the applications
and limitations of anti-aging marine collagen research while outlining future directions for
this field.

2. Marine Collagen: Effects on Skin Aging

The anti-aging industry is growing rapidly with the release of new supplements and
nutraceuticals that promise youthful skin, better joint and bone health, and even stronger
immune systems [29,31,32]. Among the most popular products is marine-derived collagen
used for skin health and restoration. Several papers have cited the effects of collagen
supplementation on skin appearance [7,8,20–22,32].

A recent study by Lee et al. (2022) investigated the importance of collagen formulation
on anti-aging efficacy [32]. Only compounds with low molecular weights may penetrate
the skin barrier, limiting the efficacy of intact collagen application, and oral administration
of collagen peptides is limited by their poor stability and absorption in the gastrointestinal
tract [32]. Thus, to increase absorptive ability, the fish collagen was hydrolyzed into small,
bioactive collagen peptides and administered as an orally disintegrating film, allowing the
collagen to be directly absorbed into the bloodstream [32].

After applying the film for 12 weeks, the authors concluded that fish-derived collagen
administered as an orally disintegrating film was effective at significantly reducing skin
wrinkle depth and number, as well as increasing skin elasticity and density in women aged
20 to 60 years old [32]. As evident in Figure 1, at individual ages, a number of changes
occur in the density and structure of collagen fibers [33]. Figure 1 displays a decline in the
number of collagen fibrils and the size of the fibroblast cells as the skin ages, emphasizing
the importance of collagen fibrils in the maintenance of cell size and skin elasticity for
healthy skin [33].

Further on, the results of a 2018 randomized placebo-controlled trial revealed the
hydrating, anti-aging effects of a low molecular weight collagen hydrolysate obtained
from sutchi catfish skin [7]. After 6 weeks, skin hydration was 7.23-fold higher in the
treatment group compared to the placebo (p < 0.001). This hydrating benefit was observed
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after 12 weeks as well, although at only 2.9-fold higher than the placebo (p < 0.01) [7].
Moreover, wrinkle formation was also reduced, considering parameters such as skin
roughness, smoothness depth, and visual grading, demonstrating the anti-aging potential
of hydrolyzed marine collagen on the skin of older adults [14]. Longer-term studies should
be conducted to determine whether this beneficial effect holds true over time.
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Figure 1. Illustrates the structural differences between younger and aging skin. In young human
skin dermis, collagen fibrils are intact and normal in size (left) in contrast with reduced collagen
fibrils in aged human skin dermis which leads to a reduction in cell size (right). The aging skin on the
right shows a reduction and fragmentation of collagen fibers, broken elastic fibers, and diminished
Hyaluronic Acid (red dots), leading to thinner fat layers and an overall loss of structural integrity
and elasticity.

Another study used a mouse model of aging to demonstrate that marine collagen may
restore a youthful skin appearance [16]. In this study, mice were fed a collagen hydrolysate-
containing diet derived from fish scales for 12 weeks. Notably, the epidermal barrier and
dermal elasticity dysfunctions observed in the aging group were significantly attenuated
in the collagen hydrolysate treatment group after 2 weeks [16]. Further on, these positive
effects were maintained for the entirety of the study duration, demonstrating a prolonged
restoration of skin elasticity and water content following collagen supplementation [16].

3. Marine Bioactive Peptides: Antioxidant and Anti-Carcinogenic Roles

On top of providing valuable sources of nitrogen and amino acids, many bioactive
MCPs have demonstrated powerful antioxidant, anti-microbial, and immunomodulatory
effects. The active peptide products isolated from fish, sea cucumbers, sponges, urchins,
mussels, and other marine life have shown the potential to lower oxidative stress, inhibit
cellular senescence, and extend lifespans in multiple animal studies of aging [17,34,35].
For example, one study found that jellyfish collagen hydrolysate (JCH) improved the
exercise tolerance of mice in a dose-dependent manner after 6 weeks [17]. In the same
study, the authors used d-galactose to induce the aging process in mice, then investigated
the effect of JCH on oxidative stress by measuring malondialdehyde (MDA), superoxide
dismutase (SOD), and glutathione peroxidase (GSH-Px) activity [17]. MDA is a product
of lipid peroxidation, which increases with age, whereas SOD and GSH-Px are enzymatic
antioxidant systems that neutralize free radicals implicated in the aging process, wherein
activity declines with age [18]. Significantly, the 6-week administration of JHC inhibited the
decrease in GSH-Px/SOD activity and the increase in MDA seen in the ageing model [17].
These results are displayed in Figure 2 [17], showcasing the powerful in vivo antioxidant
capacity of marine peptides and demonstrating their benefit in anti-aging products.

Similarly, Liang et al (2010) discovered that rats fed chum salmon MCPs over the
course of their lifespan showed increased GSH-Px and SOD enzymatic activity compared
to control rats; however, this change was only significant in rats older than 12 months [18].
Further on, the observed age-related MDA increase was attenuated in MCP-treated rats,
suggesting that MCPs can interfere with the cellular and physiological effects of aging by ex-
erting antioxidant effects [18]. Significantly, this study also demonstrated that MCP-treated
rats on average had longer life spans and better survival outcomes after 28 months [18].
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MCP treatment also delayed tumor growth, decreased tumor size and number, and lowered
the incidence of deaths from tumors after 16 months when compared to the control [18].
Genetic mutations increase in frequency with age, predisposing the cells to various onco-
genic processes; thus, MCP may act in a protective, anti-carcinogenic capacity to slow the
progression of aging-related diseases such as cancer [18]. Taken together, these findings
suggest that marine collagen may exert antioxidant capabilities that interfere with the aging
process, leading to longer, healthier lives.
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4. Marine Collagen in Tissue Engineering for Anti-Aging

Marine collagen is recognized for its bioactive properties and is used in skin tissue
engineering due to its water solubility, metabolic compatibility, and accessibility. It has
shown effectiveness in healing skin injuries of varying severity and in delaying aging
processes, promoting keratinocyte and fibroblast migration, and vascularization of the
skin [36]. In animal model studies, marine collagen from different species has shown
promising results in skin tissue healing [37,38]. Treatments using marine collagen have
led to increased deposition of granulation tissue, enhanced re-epithelialization, stimulated
neoangiogenesis, and improved the morphological aspect of wounds [38]. These findings
underscore its potential in tissue engineering and wound healing applications [37,38].
The marine environment has been a significant source of biological macromolecules for
developing tissue-engineered substitutes with wound-healing properties. These molecules
play a key role in enhancing the wound-healing process and are crucial in advancing
wound-care management [34]. Moreover, studies on collagen-derived peptides from the
marine sponge Chondrosia reniformis reveal their antioxidant activity, ability to stimulate cell
growth, and protection against UV-induced cell death [34]. These peptides have shown no
toxicity in cell lines, and their significant ROS scavenging activity indicates their potential
in drug and cosmetic formulations, especially for damaged or photoaged skin repair [34].

Marine collagen’s role in bioprinting and scaffold development is pivotal for tissue
regeneration. Marine collagen, particularly Type I, is ideal for creating 3D bioprinted
structures due to its biocompatibility, biodegradability, and low immunogenicity [39,40].
These structures mimic the natural ECM of human tissues, which is essential for effective
tissue regeneration. In tissue engineering scaffolds, marine collagen offers a structure that



Mar. Drugs 2024, 22, 159 6 of 16

supports cell attachment, proliferation, and differentiation, key factors for tissue repair
and regeneration [40]. These properties of marine collagen are particularly significant in
anti-aging applications, as they support the growth and repair of various tissues, including
skin, bone, and cartilage. As aging is associated with the degradation of these tissues,
marine collagen scaffolds can be used to replace or support damaged tissues, thereby
counteracting some of the effects of aging. Ongoing research is optimizing marine collagen
properties for bioprinting and scaffold design, enhancing its mechanical strength, stability,
and compatibility with human tissues. The development of hybrid scaffolds, combining
marine collagen with other biomaterials, is also an area of interest to improve functionality
and efficacy in tissue regeneration [4,40–42].

5. The Integration of CRISPR Technology with Marine Collagen

The integration of CRISPR technology with marine collagen is an innovative area of
research, combining the genetic editing capabilities of CRISPR with the beneficial properties
of marine-derived collagen. Marine collagen has shown promise as a biomaterial in
various applications, including wound healing, skin anti-aging, and bone regeneration. Its
biocompatibility makes it an excellent candidate for tissue engineering and regenerative
medicine. On the other hand, CRISPR technology offers a groundbreaking approach to
gene editing, allowing for precise modifications at the DNA level. An overview of this
technology can be seen in Figure 3. CRISPR technology has been making strides in various
medical applications, including the development of more refined editing techniques such
as base and prime editing. These newer methods aim for uniform and predictable gene-
editing results while minimizing potential risks associated with traditional CRISPR-Cas9
techniques, such as the creation of double-strand DNA breaks [43–45].
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Figure 3. Illustration of the CRISPR-Cas9 Mechanism for Skin Regeneration. This graphic outlines
the use of CRISPR-Cas9 technology for targeted gene editing in eukaryotic cells, specifically for skin
regeneration. The process begins with the Cas9 protein forming a complex with a guide RNA that is
complementary to a specific gene sequence associated with skin aging. This complex then locates
and binds to the target DNA sequence, where Cas9 makes a precise cut. A new DNA sequence with
the desired genetic information can then be inserted at the cut site for potential therapeutic purposes,
such as reversing aging effects or repairing skin damage. This advanced molecular technique is also
being applied to edit the genetic code of various organisms, encompassing eukaryotic cells similar to
those in humans. Specifically, in the context of combating skin aging, this method allows for precise
alterations to DNA sequences, facilitating the repair or reversal of age-related genetic changes in the
skin. It might also offer a tool for curing genetically based diseases [46].
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Dermatological applications of CRISPR technology have been highly promising [30,47,48].
Despite there being no direct research on using CRISPR technology on marine collagen,
the integration of these two fields could potentially lead to effective anti-aging treatments.
For instance, CRISPR technology could be employed to target and modify specific genes
associated with aging and skin degeneration. The progressive alterations observed in
aging skin are now being comprehensively observed at both the molecular and cellular
levels, leading to enhanced insights into the structural and functional decline resulting
from these changes [33]. By precisely editing these genes, it might be possible to slow down
or reverse certain aging processes at a molecular level. Meanwhile, marine collagen could
play a supportive role in this integration. Its ability to enhance cell viability and support
tissue regeneration could be crucial in facilitating the effectiveness of CRISPR-mediated
gene edits. For example, in a scenario where CRISPR is used to edit genes related to skin
elasticity, marine collagen could provide the necessary ECM support, enhancing the overall
therapeutic effect.

Another potential approach to integrating CRISPR with marine collagen could focus
on enhancing skin hydration and barrier function. This would involve using CRISPR to
edit genes crucial for maintaining skin moisture, such as those involved in hyaluronic acid
synthesis. Concurrently, marine collagen could be developed as a topical delivery system
for CRISPR components, leveraging its skin absorption properties and biocompatibility.
This could involve encapsulating CRISPR components (such as Cas9 and guide RNA)
within marine collagen-based nano-carriers that can penetrate the skin layers.

While direct research on the integration of CRISPR technology with marine collagen in
anti-aging has yet to be performed, the combination of CRISPR’s precision in genetic editing
and marine collagen’s supportive properties presents a possibility. Future research in this
area could lead to innovative and effective anti-aging therapies, potentially revolutionizing
the way we approach aging and skin health.

6. Marine Collagen Use: The Pros and Cons

The ECM plays a fundamental role in ensuring cell integrity and aiding in various cell
functions, such as proliferation, differentiation, migration, and adhesion [41]. Marine organ-
isms, including fish, jellyfish, sponges, and other invertebrates, provide a valuable source
of collagen that is free from religious restrictions and animal pathogens (Figure 4). This
type of collagen is metabolically compatible and has advantages over other sources [41].
Fish skin is often used to extract Type I collagen because it is abundant and not suitable for
industrial use. Overall, marine sources of collagen are a safe, convenient, and promising
option. The combination of biomaterials and single gene delivery has shown promising
potential for tissue engineering. Studies have found that marine collagen from organisms
such as fish, jellyfish, and sponges can promote wound healing, enhance blood circulation,
and prevent infection [41]. Additionally, marine collagen has anti-aging properties that
have been demonstrated in mice with osteoporosis [41]. It can increase bone mineral
density, protect against bone loss and osteoarthritis, induce plastic differentiation, and
even improve skin elasticity while slowing the aging process [41,49]. Finally, drug delivery
and immobilization are two ways marine collagen is used within the human body [41].
Marine collagen offers several advantages compared to other popular sources of collagen,
notably bovine or porcine collagen. One significant benefit is its resource abundance, as
marine collagen is derived from the massive amounts of marine waste produced by the
fishing industry, helping reduce environmental contamination while providing high yields
at lower costs [50]. Marine collagen also presents with a higher biocompatibility and
no disease transmission risk; thus, considering mammalian collagen has been associated
with incidents of prion transmission leading to conditions such as bovine spongiform en-
cephalopathy (BSE), marine collagen is considered a safer alternative [51]. However, marine
collagen sources, such as fish and marine sponges, still carry the threat of allergens [52,53].
Allergenicity refers to the likelihood of a product causing an adverse immune response
in the body. Depending on the type of fish or fish product that the collagen is sourced
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from, the level of allergenicity will vary. For example, collagen from bony fish has been
shown to have higher allergenicity than collagen from cartilaginous fish [53]. To reduce
the likelihood of adverse effects, standardized methods for extraction and purification of
marine collagen need to be further investigated. Ultimately, the anti-aging effect of marine
collagen can be evident throughout the body both externally and internally. Externally,
through reversing the aging effects of the skin, and internally, through regulating bone
health, tissue regeneration, and dietary and metabolic processes [54,55]. Together, these
effects improve overall health, skin appearance, and well-being.
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6.1. Hydration

Hyaluronic acid plays an important role in skin moisture retention [56]. Previous liter-
ature on oral collagen supplements has shown evidence of targeting age-related concerns
and improving skin integrity [57,58]. Marine collagen and collagen peptides, especially
from fish, have demonstrated significant effects on skin hydration. When administered
orally, collagen hydrolysates can restore the production of hyaluronic acid to improve skin
hydration [57,58]. Other studies have reported that canary seed peptides (CSPs) show
promising results for skin aging treatments [59]. However, fish collagen is considered an
optimal source due to its diverse amino acid compositions and high bioavailability [60].
Limited research on chicken-derived collagen suggests potential benefits, but more studies
are needed for conclusive results [57].

6.2. Elasticity

Elastin and microfibrils in the elastic fabric network relay elasticity and resilience to
the skin. Consuming oral collagen has been expressed to improve skin elasticity, resulting
in increased levels of Type I collagen [56]. Numerous studies exhibit positive effects on
skin elasticity, including improvements in surface elasticity [56]. Collagen peptides have
been found to increase collagen content and improve skin laxity in a variety of animal
and human studies. However, there are limitations to this research, such as differences in
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the duration and dosage quantities, small sample sizes, and self-reported skin elasticity
measurements [61].

7. Collagen as a Biomaterial for Tissue Engineering

One of the most common and prominent biomaterials in tissue engineering and
regenerative medicine is collagen, such as collagen proteins in the ECM of marine in-
vertebrates [4] (Figure 5). Although fish collagen peptides (FCPs) have been used as a
dietary supplement, little is known about how they affect cellular function in the human
body [62]. ECM replacements can significantly affect cell proliferation and function based
on recent research [36,63]. These extracellular matrixes, however, are mainly used in a
general sense and are not yet tailored to certain cell types [63]. This paper focuses on
ECM-based coating substrates tailored to the individual needs of skin, skeletal muscle,
and liver cell cultures [63]. With ongoing advancements, neural tissue engineering (NTE)
indicates significant potential to treat a number of debilitating neurological illnesses [5].
For NET design strategies that facilitate axonal growth and neural and non-neural cell
differentiation, choosing the best scaffolding material is essential. As the nervous system is
naturally resistant to regeneration, collagen is often used in NTE applications [5]. It can
function with neurotrophic factors, neural growth inhibitors, and other compounds that
promote neural growth [5]. It can also be used for neural repair and thus mitigate neurode-
generative diseases that come with age [5]. The ECM is a powerful structure that influences
the cells in contact with it [64]. A poor prognosis has been linked to the composition and
collagen density of the tumor-specific ECM in a number of cancer forms [64]. The cause of
this correlation is still mainly a mystery [64]. Collagen can stimulate the development and
migration of cancer cells, although collagen has been found in recent research to influence
the activity and phenotype of T cells and tumor-associated macrophages (TAMs), two types
of immune cells that infiltrate tumors [64].
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play a fundamental role in organizing and maintaining tissue structure and function. Components of
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for tissue organization and homeostasis, and proteoglycans (i.e., fibromodulin), which can have
biologically active properties (i.e., growth factors) and mediate ECM assembly and organization [65].
Created in Biorender.com.
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8. Applications of Marine Collagen in the Cosmetic Market

The cosmeceutical industry is flooded with a variety of anti-aging products that claim
to address wrinkles, fine lines, and other signs of aging through various mechanisms
of action. Some of the most popular products on the market include retinoids such as
retinol, retinyl esters, and retinaldehyde–-vitamin A derivatives known for their ability to
stimulate collagen production and promote cell turnover, thereby increasing skin elasticity
and reducing the appearance of fine lines and wrinkles [52]. Alternatively, vitamin C- and
vitamin E-based serums provide anti-aging benefits through their powerful antioxidant
effects that protect the skin against UV-induced photodamage and oxidative stress [52]. Vi-
tamin C stimulates collagen synthesis, and both vitamins have anti-inflammatory functions
that aid in wound healing. Another widely used anti-aging ingredient is hyaluronic acid,
a hydrating glycosaminoglycan (GAG) that can act as a barrier against trans-epidermal
water loss to retain skin moisture and reduce the appearance of fine lines [52]. Other
popular products include alpha hydroxy acids (i.e., lactic acid, glycolic acid, citric acid)
and beta hydroxy acids (i.e., salicylic acid) that exfoliate the skin, promote cell turnover,
and facilitate GAG and collagen synthesis to improve skin texture and tone [50,52]. Finally,
numerous bioactive peptide formulations can help stimulate collagen production and
improve skin elasticity [52,54]. For example, extracts from brown algae have proven a
plentiful resource for anti-inflammatory and antioxidant compounds (Figure 6) [66]. Be-
cause of their photoprotective properties, these bioactive peptides can be used in cosmetic
preparations for anti-aging skincare and sunscreen [66]. In one study, the brown algae,
Ericaria amentacea, showed dose-dependent in vitro activity for reducing various markers
of oxidative stress, inflammation, and collagen and hyaluronic degradation. The results of
various antioxidant assays are displayed in Figure 7 [66], demonstrating the remarkable
potential of anti-aging cosmetics.

While these products demonstrate numerous anti-aging benefits, there are associated
drawbacks that may limit their efficacy and applicability. For one, prescription-strength
retinoid formulations and AHAs may induce adverse reactions such as skin irritation,
burning, and dermatitis [52]. In addition, the oxidation of retinol, vitamin C, and vitamin E
over time poses a problem for the stability of the product, which can affect the overall quality
and efficacy of the cosmetic preparation [41]. Further on, in rare cases, topical application
of vitamin E has been linked to cases of contact dermatitis, erythema multiforme, and
xanthomatous reaction [52]. As a result, recent trends in the anti-aging industry have
demonstrated rising consumer interest in the natural bioactive compounds found in marine
collagen rather than synthetic ingredients [66–68]. A recent study of the Portuguese anti-
aging cosmetic market revealed a 27% increase in marine collagen cosmetics from 2011 to
2018, with red algae being the most widely used marine ingredient [66].

A potential explanation for the increasing popularity of marine collagen products may
lie in the manufacturing, safety, and efficacy advantages that they provide. For one, marine
sources are biodiverse, abundant, and easy to cultivate and modulate during their life
cycles. Furthermore, marine collagen is easily absorbed by the body and efficiently utilized
for collagen synthesis. These characteristics make it possible to harness the production of
specific bioactive compounds involved in collagen synthesis and wound healing [50,67].
Further on, collagen-based cosmetics predominantly utilize Type I collagen, valued for
its moisturizing, anti-wrinkle, anti-aging, wound-healing, and UV radiation protection
properties [20]. Figure 8 further illustrates the various utilizations and applications of
marine collagen in the cosmetic market.

Although marine collagen has a wide range of benefits, the effectiveness of any
anti-aging product can vary depending on individual genetic and environmental factors,
including chronic autoimmune conditions, exposure to sun and air pollution, and lifestyle
choices [20].
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Figure 7. Marine seaweed displays anti-aging properties. In (A,C), * p < 0.05; Tukey of EtOH apex vs.
EtOH thallus’ respective concentrations, $ p < 0.05. In (B), * p < 0.05; Tukey of EtOH apex vs. EtOH
thallus’ respective concentrations, $ p < 0.005. (A) ROS scavenging activity. (B) Fe (III)-reducing
power assay compared to ascorbic acid (AA). (C) OH radical scavenging activity. (D) NO radical
scavenging activity. Taken from Mirata et al. (2023) [66].
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9. Concluding Remarks

This literature review highlights the diverse biomedical anti-aging applications of
marine collagen, establishing it as a versatile biomaterial in tissue engineering and regen-
erative medicine. Marine collagen’s unique properties, such as promoting osteogenesis,
collagen synthesis, and anti-inflammation, highlight its pivotal roles in accelerating the
healing process, promoting skin health, and maintaining free radical homeostasis. Com-
pared to land animal sources, advantages such as metabolic compatibility, safety, and
environmental sustainability further position marine collagen as a compelling choice for
anti-aging applications. Utilizing readily available marine waste from the fishing industry
ensures cost-effective production and addresses environmental concerns. Marine collagen
also proves valuable in vascular tissue engineering, demonstrating promise in crafting
advanced scaffolds for vascular grafts, enhancing mechanical strength, and fostering vas-
cular endothelial cell development. Ongoing research and innovation efforts focused on
marine collagen extraction, processing, and application, as well as synergy with anti-aging
CRISPR technology, underscore its continued importance in advancing the fields of tis-
sue engineering and biomedicine. To discover further anti-aging applications of various
marine collagen sources, further research efforts should continue exploring this protein’s
remarkable therapeutic efficacy and versatility.
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