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Abstract: The products of oleaginous microbes, primarily lipids, have gained tremendous atten-
tion for their health benefits in food-based applications as supplements. However, this emerging
biotechnology also offers a neuroprotective treatment/management potential for various diseases
that are seldom discussed. Essential fatty acids, such as DHA, are known to make up the majority
of brain phospholipid membranes and are integral to cognitive function, which forms an important
defense against Alzheimer’s disease. Omega-3 polyunsaturated fatty acids have also been shown
to reduce recurrent epilepsy seizures and have been used in brain cancer therapies. The ratio of
omega-3 to omega-6 PUFAs is essential in maintaining physiological function. Furthermore, lipids
have also been employed as an effective vehicle to deliver drugs for the treatment of diseases. Lipid
nanoparticle technology, used in pharmaceuticals and cosmeceuticals, has recently emerged as a
biocompatible, biodegradable, low-toxicity, and high-stability means for drug delivery to address the
drawbacks associated with traditional medicine delivery methods. This review aims to highlight the
dual benefit that lipids offer in maintaining good health for disease prevention and in the treatment
of neurological diseases.

Keywords: neuroprotection; neurological disorders; lipid nanoparticles; oleaginous microbes; omega-3
poly unsaturated fatty acids; lipid neuroprotection

1. Introduction

Neurological diseases such as Alzheimer’s disease, depression, and epilepsy affect
people of all ages. It is estimated that dementia-related expenditure by the Australian
government was USD 3 billion dollars in 2018–2019, with another USD 6.8 billion to provide
residential aged care services to people with dementia [1]. While the global societal costs
of dementia-related expenditures for treating 55.2 million people with dementia, were
estimated to be USD 1313.4 billion in 2019 [2]. Where USD 210.1 billion was related to direct
medical expenses, USD 656.7 billion and USD 446.5 billion were attributed to informal
and long-term care, respectively [2]. To keep individuals mentally healthy and prevent or
reduce the risks of some mortal disorders and neurodegenerative diseases, there has been
growing research in the development of therapeutics for their treatment and management.
Lipids are of interest due to the essential role of different types of lipids in neurological
pathways and the health of the human brain [3].

Lipids have a unique feature as they are able to cross the blood–brain barrier (BBB).
They are abundantly present in the brain and make up more than 50% of the dry weight
of the brain [4]. Docosahexaenoic acid (DHA), one of the more abundant long-chain
polyunsaturated fatty acids (LC-PUFA) in the brain, has been linked with the reduction of
cell death and improved cognitive function [5]. Eicosapentaenoic acid (EPA) deficiencies
are also thought to result in brain disorders [6], which highlights their importance in
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maintaining good brain function. Lipids’ ability to cross the BBB also offers a suitable
vehicle for delivering drugs to target sites for combating neurological disorders [7]. As
such, lipids have been explored as a means for treating/managing neurological disorders.

Today, the majority of LC-PUFAs are derived from fish sources, which are regarded as
unsustainable and non-renewable. Furthermore, fish-derived sources only sustain 30% of
the global demand for omega-3 supplementation [8] and are unsuitable for the growing
vegan and vegetarian population [9]. The use of LC-PUFAs as a treatment for neurological
diseases would further increase demand requirements, reducing the sustained portion. This
necessitates an alternative sustainable and renewable plant-based source that is capable of
providing the volumes required and one that caters to people’s dietary restrictions.

Oleaginous microbes, a term coined to refer to organisms with more than 20% of
their weight in lipids [10], are a rich source of omega-3 and omega-6 PUFAs, as well as
saturated fats. They are considered to be plant based with lipid composition capabilities
of up to 20–70% of their weight [11]. They are renewable and can be tweaked to attain a
desired lipid profile by altering the growth conditions, or through random mutagenesis
techniques, which are considered non-genetically modifying as the modes of exposure
accelerate the natural processes that would otherwise occur in the environment over time
(i.e., UV exposure resembling sun radiation) [11–14]. Oleaginous microbial lipids are a
rich source of long-chain fats, including saturated fatty acids (SFA) and PUFAs suitable for
both dietary supplementations to combat neurological diseases and as vehicles to transport
drugs across the BBB for treatment, as shown in Figure 1. Lipids play an essential role in
neuroprotection and can be used as a means for preventing neurological diseases in the first
instance, through dietary supplementation. Furthermore, these lipids can also be applied
as vehicles for the effective transport of drugs across the BBB, delivering remedies that
can treat neurological diseases. A comprehensive review of the cohort studies performed
that link the relationship of omega-3 fatty acids with dementia and cognitive decline
is presented elsewhere in the literature [5,15–18]. This write-up highlights the role of
oleaginous microbes as an alternative renewable and sustainable source for producing
plant-based lipids such as omega-3 PUFAs, as well as saturated fatty acids, and their
potential use in the treatment and management of neurological diseases, which is seldomly
discussed. The use of oleaginous microbial lipids would sustain current demands and
cater to the growing vegan and vegetarian population. A recent review performed by
Khan et al. [18] discusses the omega-3 PUFA metabolism in microalgae and their health
benefits. However, here, we focus on oleaginous lipids for neurological disease prevention
and treatment.
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Figure 1. Neuroprotective potential effect of Omega-3 fatty acids derived from oleaginous organ-
isms. ALA: α-Linolenic acid; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid (created with 
BioRender.com (accessed on 20 November 2023); Freevector [19,20]). 
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value, is used as an indicator of the BBB permeability [23]. Once the fatty acids are in the 
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ical diseases through increased dietary intake of essential fatty acids has been explored as 
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Figure 1. Neuroprotective potential effect of Omega-3 fatty acids derived from oleaginous organisms.
ALA: α-Linolenic acid; EPA: Eicosapentaenoic acid; DHA: Docosahexaenoic acid (created with
BioRender.com (accessed on 20 November 2023); Freevector [19,20]).

2. LC-PUFAs’ Role in the Treatment of Neurological Diseases

Lipids make up more than 50% of the brain’s dry weight, consisting of both structural
and functional lipids such as phospholipids [4]. DHA makes up a high proportion of
these lipids and 50–70% of retinal lipids [4,21]. EPA is also essential for the brain and
deficiencies may result in brain-related disorders [6]. Lipids are able to cross the blood–
brain barrier (BBB), and their levels in the brain have been linked to dietary intake, which
makes them bioavailable for cerebral tissue [16]. There are three ways in which lipids
can cross the BBB, the first of which is through the passive diffusion of fatty acids across
the membranes of the endothelial cells [22]. The second and third modes of transfer are
through the transcytosis pathway and the transmembrane proteins, which are discussed in
detail by Pifferi, Laurent [22]. The octanol/water partition coefficient, also referred to as
the LogP value, is used as an indicator of the BBB permeability [23]. Once the fatty acids
are in the endothelium of the BBB, they are shuttled through the cytosol by binding to
fatty-acid-binding proteins before being transported into the brain [22]. The prevention
of neurological diseases through increased dietary intake of essential fatty acids has been
explored as a means for treatment/risk reduction [16] of Alzheimer’s (AD), depression,
and epilepsy [5,16,24], as they possess an important role in cognitive function and brain
function, as shown in Table 1.
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Table 1. Fatty acid treatment/management of neurological disorders and potential oleaginous
microbial source.

FA (LogP) * Function
Disease

Treatment/
Prevention

Potential Oleaginous
Microbe Source of FA

Lipid Content
(%) PUFA (%) Reference

DHA
(6.78)

Brain
development,

cognitive
function

Alzheimer’s,
Dementia,
Epilepsy,

Parkinson’s

Thrustochytrium sp. T18 46.9–50 35–45 (DHA) [5,15,21,25,26]

Schizochytrium sp. 50–77 35–40 (DHA) [10,27,28]

Aurantiochytrium sp. 44–55 18–50 (DHA) [29,30]

EPA
(6.23)

Vision loss
prevention,
cognitive
function

Alzheimer’s,
Depression,

Epilepsy

Schizochytrium sp. 50–77 1.26–7.63 (EPA) [5,28,31]

Mortierella alpina 31.5 26.7 (EPA) [32]

Nannochloropsis oceania 13.5–35 20.5 (EPA) [33,34]

Yarrowia lipolytica 30 58%
(EPA) [35]

ALA
(6.50)

BBB
functional

improvement
Alzheimer’s

Mortierella sp. 28–41 5.6 (ALA) [9,36]

Mucor flavus 20 10–13
(ALA) [37]

FA: fatty acid; DHA: Docosahexaenoic acid; EPA: Eicosapentaenoic acid; ALA: alpha-linolenic acid; BBB: blood–
brain barrier; * LogP values, the octanol/water partition coefficient, used as an indicator of the BBB permeabil-
ity [23].

2.1. Alzheimer’s Disease

Over 55 million people were living with dementia globally in 2019 [2,38]. In the brain,
DHA is abundantly present, suggesting its importance in maintaining good brain health.
As we age, it is thought that the DHA levels decline, which is attributed to decreased
cognitive function [5]. DHA enters the blood through ingested food and enters the brain
by binding to the fatty-acid-binding protein 5 within the cerebral vascular endothelial
cells [5]. Here, lysophosphatidylcholine esterifies DHA, which is preferentially absorbed
into the brain rather than the free form. It accumulates in the nerve cell membrane and
aids in dementia prevention [5]. DHA and its metabolites have antioxidative and anti-
inflammatory properties that inhibit neuronal cell death by decreasing amyloid-beta (Aβ)
42 production, which is thought to improve cognitive function [5].

There is great potential for LC-PUFAs to prevent Alzheimer’s disease and aid in
its treatment. Factors that have been indicated to increase the risk of developing the
disease have also been identified to alter lipid metabolism. Hallmarks of AD pathology are
dysfunctional neural networks and paths that may result from abnormal lipid metabolism,
leading to disruption of the brain–blood barrier, abnormal processing, disturbance in
cytosis, signaling, energy balance, and increased oxidation and inflammation. Furthermore,
homeostatic control of lipids and transportation through apolipoprotein is important to
maintain normal cognition [39].

The effect of LC-PUFA supplementation as a means to prevent Alzheimer’s disease
and reduce its impact has been discussed in the literature. A recent review focused on the
various intervention studies performed to assess the impact of DHA and EPA on AD con-
cluded that the omega-3 PUFA-related improvements that were observed in experimental
studies may have promoted memory formation and prevention of age-related cognitive
decline [5]. It is thought that these beneficial effects may be related to a reduced risk of
developing depressive symptoms as well [5,40]. In another comprehensive review of cohort
studies performed, it was found that the long-term use of omega-3 fatty acid supplements
in individuals resulted in a 64% reduction in Alzheimer’s disease [15]. Furthermore, DHA
intake was found to reduce the risk of dementia and cognitive decline by approximately
20% [15]. However, clinical studies incorporating omega-3 PUFAs reviewed by Kerdiles
et al. [16] suggested that no significant effect was observed after an Alzheimer’s disease
diagnosis, but there was limited support for potential preventive effects noted. On the
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other hand, an observational study performed on 2612 elderly multiethnic participants,
comprised of women (67%) and men aged approximately 76.3 years with a follow-up
of 4.5 years, determined a lower risk of Alzheimer’s disease with increased intake of
DHA and EPA [41]. The benefits of LC-PUFAs on Alzheimer’s disease and dementia
were also well supported by studies exploring the effects of Mediterranean diets rich in
LC-PUFAs [17,42–44]. Additionally, fish products and marine-derived DHA have been
associated with a lower risk of AD and dementia in an earlier cohort study (including
21 studies and 181,580 participants) [45]. An observational study performed on 2612 el-
derly multiethnic participants, comprised of women (67%) and men aged approximately
76.3 years and with a follow-up of 4.5 years, noted a lower risk of Alzheimer’s disease
with increased intake of DHA and EPA [41]. Interestingly, alpha-linolenic acid (ALA)
has recently been suggested as a novel brain protector due to its role in BBB functional
improvements, as the fatty acid composition of the BBB has been strongly linked with AD
risk and progression [36].

These findings support the consumption of DHA-rich foods or supplementation as an
essential means for continued/improved cognitive function [18,36,46]. Cell membranes
with sufficient composition of LC-PUFAs have great flexibility in contrast to membranes
composed of mainly saturated fatty acids and cholesterol. Certain LC-PUFAs like DHA are
more abundant in the retina and brain. Their chemical reactivity and biological roles allow
them to ensure cell integrity, synaptic health, and plasticity, as well as contribute to myelin
synthesis and the prevention of hypoperfusion [24].

Short and medium-chain PUFAs have not shown any beneficial impacts against
dementia-related disorders. The reduction in risk of Alzheimer’s disease development
is mainly attributed to the role of DHA in human health, particularly in maintaining
effective cognition. DHA is responsible for the optimal membrane protein interaction in
signal transduction, controls gene expressions, reduces amyloid deposition, and affects
cholesterol metabolism [41]. When DHA levels are reduced, dendrites are vulnerable to
Aβ, and other lipids are used for membranes that affect their fluidity and functioning, and
induce inflammatory reactions, leading to cognitive impairments [41].

2.2. Depression

Nutritional psychiatry, a field focusing on diet and nutrition as a remedy for ther-
apeutic strategies that improve psychiatric disorders, is emerging [6]. Clinical studies
have supported omega-3 PUFA supplementation and probiotics as a treatment option for
major depressive disorder; however, further studies are needed to identify a personalized
medicine approach for treating psychiatric disorders [6].

An overall beneficial effect of omega-3 PUFA supplementation on depressive symp-
toms was observed [18,47,48]. Higher doses of EPA especially highlighted the improve-
ments [47,49], as well as in participants taking antidepressants alongside treatment [47].
However, in another study assessing the impact of omega-3 PUFAs as a monotherapy in
adults, omega-3 supplementation was not recommended as a sole treatment, but did prove
beneficial in specific populations [50]. The differences may be attributed to the different
assessment criteria and doses administered in the trials. The latter study was based on
8 clinical trials assessed, out of an initial search of 96; however, the former included 13 trials
from an initial search of 1955. These differences suggest that more studies are needed to
provide a conclusive indicator of the effects of omega-3 PUFAs on depressive disorder.
Trials need to be focused on providing more information regarding the sampling group
to increase the number and administer a wide range of doses to better capture the effect
spectrum. Similarly, the heterogeneity between studies was also discussed by Appleton,
Voyias [51], who suggested that differences may be due to the severity of depression. With
milder depressive symptoms, omega-3 PUFAs had no effect; however, more severe symp-
toms suggested a slight benefit [51]. The authors further assessed 35 studies and noted
that omega-3 PUFA supplementation may have a small to modest benefit for depressive
symptoms [51], but more complete studies were required to determine the precise effects.
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The study of Chang, Chang [52] also suggested that there is no beneficial effect of omega-3
supplementation on depressive symptoms; however, it did improve the core depression
symptoms [52]. Despite this, the International Society for Nutritional Psychiatry Research
has promoted the supplementation of omega-3 PUFAs in pregnant women, children, and
elderly people with major depression disorders [6,53].

2.3. Epilepsy

Nearly one percent of the general population suffers from epilepsy [54]. Omega-3
PUFAs’ role in synaptic plasticity of neural membranes, immunological control in the
nervous system, and protection of nerve fibres [55] has led to the thought that these fatty
acids could prove beneficial in reducing recurrent seizures in epilepsy patients. In earlier
research, the administration of Docosahexaenoic acid (DHA) in particular, a fatty acid that
is abundantly present in brain tissues, has suggested a potential way to control seizures
in both in vitro and in vivo animal models [56]. Additionally, α-linolenic acid (ALA)
and linolenic acid have demonstrated beneficial effects but are not as significant as the
anti-epileptic impacts of DHA [56–59], with one reason being that very low amounts of
these fatty acids enter brain tissues. ALA can be saturated and elongated to form longer
chains such as DHA, which could indirectly increase the seizure threshold. It can also
directly alter the neuropsychiatric condition or act as a displacement for DHA from the
liver and adipose tissue to suppress the seizures. It is thought that DHA may be effective
due to its anti-inflammatory characteristics, which reduce the level of proinflammatory
molecules like interleukin (IL)-1 β, IL-6, and tumour necrosis factor (TNF)-α that are
expressed by chemically induced seizures [56]. Furthermore, triheptanoin, a triglyceride
of C7 fatty acid, has displayed positive results as an anticonvulsant. Anaplerosis, which
allows replenishment of the energy of the TCA (tricarboxylic acid cycle), can reduce energy
failures and protect against seizure-induced cell death via the release of pyruvate through
the citric cycle. When induced by mice, triheptanoin increased levels of propionyl-CoA,
which is thought to produce succinyl-CoA and facilitate the refilling of the TCA cycle [60].
Hence, this suggests that several fatty acids may be of benefit to epilepsy patients. However,
in recent research investigating data from nine different trials over an average period of
22 weeks, the supplementation of omega-3 PUFAs did not show a significant impact on
epileptic seizures in the treated patients [61]. These varying results necessitate the need for
more studies to assist in gaining a conclusive understanding.

3. Lipids as Delivery Vehicles for Disease Treatment

Lipids not only function to aid in neurological disease prevention, but also serve as
an important tool in modern-day medicine for delivering drugs to target specific disease
sites. Lipids are able to cross the blood–brain barrier, and their levels in the brain have been
linked with dietary intake. Lipids consumed are bioavailable for cerebral tissue [16]. In
neuropharmacology, the bioavailability of drugs is one of the main obstacles identified that
needs to be overcome for new drug development [16,62].

Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) are one of
the emerging lipid-based drug delivery systems fabricated specifically to target and ad-
dress the issues with traditional drug delivery systems, such as poor water solubility and
bioavailability [63]. This form of delivery system can be modified to target various diseases
whilst preserving the active drugs’ specificity and potency, using surface modifications and
attachment of ligands [7].

3.1. Qualities of an Effective Drug Delivery System

The development of novel drug delivery systems is thought to have a tremendous
impact on the treatment of diseases. Conventional delivery systems, such as oral tablets,
capsules or ointments, have poor bioavailability and fluctuations in plasma and are not
capable of controlling the release of the treatment [64]. Novel delivery systems focus on
numerous modifications and features to improve their efficiency, including having high
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biocompatibility, biodegradability [65], low toxicity, high stability in blood and plasma,
high efficiency in targeting the destination, and having desired uptake and release rates to
specific cells [65,66]. Specifically, the ability of the drug to target specific diseased cells is an
important quality, as it mitigates the side effects that often accompany treatments, as the
drugs also impact healthy cells and tissue.

3.2. Lipids Used in Lipid Nanoparticle Formulation

A variety of lipid types have been used for lipid nanoparticle formulations, consisting
of both solid and liquid lipids, as shown in Table 2. A comprehensive review of the lipids
used in the formulation of lipid nanoparticles is discussed elsewhere [7]. There are a
number of different factors that govern the ratio of solid and liquid lipids to be used to
achieve an effective lipid matrix, such as the solubilization capacity of a drug, miscibility,
cost of production, melting points, and stability [7]. Crystallinity and polymorphism
are other important factors that affect lipid nanoparticles, whereby the crystal structure
impacts the loading capacity of the carrier. Given these parameters, a range of lipids can
be used in isolation or combination to achieve biologically stable nanocarriers of drugs,
with triglycerides as a predominant lipid due to their distinct ability to remain solid under
physiological conditions. They also have desirable solvent properties for drugs that are
poorly soluble, making them ideal delivery vehicles in various cosmetics. Furthermore,
many forms of triglycerides are digested into monoglycerides and free fatty acids (FFA) after
drug delivery through the oral route [7]. Solid lipid nanoparticles made from triglycerides
are also taste masking and non-toxic. Among triglycerides, other lipid forms have been
proven effective in lipid nanocarriers, such as steroids, waxes, butter, and fatty acids [7].
Nonetheless, plant-based oils such as those derived from oleaginous microbial organisms
suitable for sustaining large demands need to be exploited for designing novel formulations.

Table 2. Solid and liquid lipid types used in lipid nanoparticle formulations (adapted from [7]).

Category Type

Triglycerides Trimyristin (Dynasan 114), Tripalmitin (Dynasan 116), Tristearin (Dynasan 118)

Fatty Acids Lauric Acid (C12:0), Tetradecanoic Acid (C14:0), Palmitic Acid (C16:0), Stearic Acid (C18:0)

Fatty Alcohols Cetyl Alcohol, Stearyl Alcohol

Glycerides Glyceryl Behenate, Glyceryl Palitostearate, Glyceryl Stearate

Steroids Cholesterol

Waxes Bees Wax, Shellac Wax, Carnauba Wax

Butter/Fats Shea Butter, Cocoa Butter, Ucuuba fat, Goat fat, Guggul lipid

Liquid Lipids (Oils) Corn, Garlic, Argan, Sesame, Olive, Coconut, Almond, Linseed, Soybean, Watermelon, Black and
Grape Seed, Castor, Rambutan, Oleic, Squalene

3.3. Lipid Vehicles in Treating Brain-Related Disorders

Central nervous system therapies are limited by the drug’s ability to cross the blood–
brain barrier in order to reach the brain [67]. The use of lipid encapsulation as a means
for allowing drug molecules to cross the BBB is one of the most efficient techniques for
bypassing the BBB and improving bioavailability; however, this technique is limited to
small drug molecules with molecular weights of less than 500 Da [68]. Despite crossing the
BBB, molecules that are able to pass the BBB face expulsion back into the bloodstream by
the resistance protein P-glycoprotein [69].

In the chemotherapy treatment of glioblastomas, temozolomide-loaded NLC resulted
in tumour growth inhibition by 1.4 and 1.8 times that of temozolomide loaded in solid lipid
nanoparticles (SLN), as shown in Table 3, and polymeric nanoparticles, respectively [70].
Similarly, the study from Dana, Yostawonkul [71] also showed that treatment of glioblas-
toma with garlic oil encapsulated in kernel palm oil compared to garlic oil alone showed a
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reduction in tumour cell viability of 11.9%, as compared to 90.2% with garlic oil alone [71].
In the treatment of epilepsy, carbamazepine delivery using nanostructured lipid carriers
improved by 1.35–5 folds in comparison with dispersion and enhanced the accumulation in
the brain through delivery across the BBB via NLC [72]. The area under the concentration–
time curve in the brain was 520.4 and 244.9 µg h/mL when carbamazepine was delivered
using NLC and via dispersion, respectively [72]. The oils used for NLC and SLC are mainly
composed of saturated fatty acids or unsaturated fatty acids, with a minimal number of
double bonds.

Table 3. Lipids used as vehicles for the transport of drugs in brain-related disorders.

Disease Drug Lipid Type Findings Reference

Glioblastoma

Temozolomide

SLN-Stearic acid Tumour inhibition 1.8 times less
effective compared to SLN

[70]NLC-glyceryl behenate Greatest tumour inhibition

PNP-poly-(lactic-co-glycolic acid) Tumour inhibition 1.8 times less
effective compared to NLC

Garlic oil
NLC-Kernel palm oil 11.9% tumour viability

[71]
Garlic oil 90.2% tumour cell viability

Epilepsy Carbamazepine
NLC-Trilaurin and oleic acid 520.4 µg h/mL

[72]
Carbamazepine dispersion 244.9 4 µg h/mL

SLN: solid lipid nanoparticle; NLC: nanostructured lipid carries.

3.4. Brain Cancer Treatment Using Lipid Nanoparticle Vehicles

The various forms of chemotherapy and surgical resection remain the norm for treating
brain cancers [65]. These treatments are accompanied by a number of limitations, such
as non-specific distribution in serum, short time in blood circulation, and development
of drug resistance, thus igniting the push to develop nanotechnology to overcome such
challenges [73]. A potential solution that has gained recognition in recent years is tailoring
the size, shape, and surface of nanoparticles to be effective in the treatment of various
tumours.

Tumours have hallmark characteristics that make treating them difficult, such as leaky
vasculature and ineffective lymphatic drainage. While these characteristics facilitate the
passive accumulation of nanoparticles initially, the active accumulation is intended to be
most effective in improving the binding affinity of drugs and specificity for tumour cells.
To accomplish this, the surface of nanoparticles can be altered using ligands that bind the
receptors that are overexpressed in cancer cells [73].

Functionalising nanoparticles with ligands is an area of rapid research development
in which ligands (such as antibodies, peptides, and polysaccharides) are conjugated onto
tumour-targeting nanoparticles. Functionalisation is the process of altering the surface
of nanoparticles to enhance physiochemical properties and tumour-targeting accuracy.
Antibodies have gained the most recognition due to their distinct specificity and favourable
in vivo properties. When combining antibodies into nanoparticles, the size of the nanopar-
ticle increases by about 40 nm. Smaller-sized nanoparticles are favoured due to their deeper
penetration into tumours; thus, antibody fragments are used in place of whole antibodies
to offer a smaller and more effective alternative [73].

In cancer treatment, liposomes are the preferred carriers of antibody-conjugated drug-
loaded nanoparticles in cancer treatment. Cancer therapies using antibody-functionalised
liposomes can be subdivided into two major classes; angiogenesis-associated targeting and
uncontrolled cell- proliferation targeting [73].

Angiogenesis, which is the process of the development of new blood vessels, is one of
the key characteristics of tumours, where the tumour receives high levels of oxygen and
nutrients to proliferate. Here, the liposomes that contain cancer treatment drugs are conju-
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gated to antibodies, and this helps the liposomes bind to the receptors of overexpressed
receptor cells, aiding with both cytotoxicity and antiangiogenic effects that improve the
effectiveness of treatment. This technique was explored by Shein, Nukolova [74], who in-
vestigated the active targeting of liposomes in brain tumours using monoclonal antibodies
(mAb) against vascular endothelial growth factors (VEGF) [74]. The study concluded that
antibody-conjugated liposomes facilitated higher uptake in tumour cells, leading to higher
cytotoxicity when compared to non-specific and non-targeted nanoparticle treatments. On
the other hand, uncontrolled cell proliferation targeting involves antibody-functionalised
liposomes directed against receptors that facilitate cancer cell proliferation. This subclass of
treatment is especially useful in metastatic cancers or tumours that lack blood vessels.

Tripalmitin, a lipid consisting of 16 carbon atoms, has been used as a carrier for the
delivery of the chemotherapy drugs Paclitaxel and Etoposide, which are used to manage
and treat various types of cancers [7,65]. Tristearin is another C18 triglyceride that was
used to effectively deliver the chemotherapy treatment drugs 5-fluorouracil, doxorubicin,
tamoxifen, and mitomycin [75,76]. Omega-3 PUFA supplementation has also been linked
with an increased effectiveness in cancer chemotherapy drug treatment [75,77].

A recent review covering the lipid nanoparticle delivery systems that have been em-
ployed for cancer treatment, which covers brain cancer, their methods of formulation,
and the administration route, are presented by Graván, Aguilera-Garrido [65]. A compre-
hensive review of the lipids used in the formulation of lipid nanoparticles is presented
in [7]. However, the lipid sources used for the nanoparticle drug delivery formulation
are seldomly discussed. This requires further consideration as lipids have been noted to
prevent particular neurological diseases and have been incorporated into diets to improve
brain enzymes to combat these diseases, as noted above. LC-PUFAs play a key role in the
brain and are essential for good brain health. This is the first line of defense in which lipids
can be used, the second of which is its solubility in the blood–brain barrier, making it a
key utility in delivering drugs to combat brain diseases. The latter characteristic is one of
the main reasons lipids are used as a drug delivery vehicle. However, their potential dual
purpose in preventing and aiding in the treatment of diseases through effective transport
across the BBB is seldomly discussed.

3.5. Genetic Disease Lipid Nanoparticle Treatment

Drugs that use genetic materials such as small interfering RNA (siRNA), plasmid DNA
or mRNA provide potential therapies for genetic diseases, some forms of cancers, cystic
fibrosis, etc., by silencing the pathological genes or by expressing therapeutic proteins [78].
These drugs can only be used within a clinical setting if they are able to be delivered
effectively, due to their rapid degradation in serum, failure to accumulate in a target tissue,
inability to penetrate into the target cells, and uptake by the immune system, which can
easily detect and destroy vectors containing genetic information. Lipid nanoparticles are
the lead non-viral delivery systems used for genetic drugs, with four LNP-based siRNA
drugs in phase III trials that are on the trajectory of entering clinics [78].

4. Sources of LC-PUFA

At present, finite marine fish are the primary commercial source of omega-3 fatty acids,
which only cater to 30% of the global demand [8]. Despite this, fish-derived sources are
unsuitable for the growing vegan and vegetarian population [9]. The major omega-3 fatty
acid found in plant-derived diets is ALA [79], which does not provide the essential fatty
acids necessary for good brain health. These necessitate the need for not only alternative
sources, but also plant-based sustainable sources [77,80].

Microalgae and several families of microorganisms including fungi and bacteria have
been noted to store large amounts of lipids, with contents making up to 20–70% of their
biomass, as shown in Table 4 [81,82]. Yeast lipid sources consist mainly of triglycerides and
can be made up of more than 78% unsaturated fatty acids [83].
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Oleaginous organisms are a promising feedstock for lipid production [84] as they are
renewable, simple to culture, require little space for production, have short generation
times, have high lipid productivity [83,85], and are considered plant based. Lipids are
capable of preventing and aiding in the treatment of neurological diseases, as discussed
above. Oleaginous organisms are an excellent source of long-chain PUFAs, such as DHA,
EPA, and ALA, as shown in Tables 1, 4 and 5, which have been linked with improved
cognitive function, aiding in preventing Alzheimer’s disease and dementia, as they are
able to cross the BBB. Species such as Schizochytrium sp. have been reported to produce 36%
of their total lipids as DHA, amounting to 6 g/L [86], which are comparable with salmon
and trout DHA levels that range from 3.3–5.8 and 3.1 g/kg (wet weight), respectively [87].
Other main microbial producers of DHA include Aurantiochytrium sp. with contents of
18–50% [29,30], and Thraustochytrium sp. making up 45% of its total fatty acids [26,88].
DHA levels have also been reported to make up more than 20% of the total fatty acids in
other species, which include Amphidinium sp., Prorocentrum triestinum [89], Alexandrium
sanguineas, Heterocapsa tricuetra, Isochrysis galbana, Isochrysis galbana, and Scripsiella tro-
choidea [90]. The species Aurantiochytrium is also a great producer of saturated fatty acids
(SFA), with its contents reported to make up 75% of the total fatty acids [30]. SFAs have
been employed as nanostructured carriers to effectively deliver drugs for the treatment
of diseases [7]. Mortierella sp. is able to produce ALA, EPA, and DHA in the range of 3.9
to 5.6% of the total fatty acids, which would amount to 0.37–0.16 g/L [9], as compared to
salmon EPA and DHA levels, which range from 5–12 g/kg (wet weight) [87]. Although
this is a lower amount, Mortierella sp produces other fatty acids, which are beneficial for
human health and commercially produced for infant formula [91]. However, organisms
such as Yarrowia lipolytica and Nannochloropsis sp. are better sources for EPA production,
with contents making up 58% and 20.5%, respectively, of the total fatty acids [33,35,92].
Other notable organisms with lipid profiles consisting of more 20% EPA include Asterionella
sp. [89], Alexandrium sanguinea, Heterosigma akasiwo, Chlorella ellipsoidea, Pavlova gyrans,
Phaedacturum tricornutum, Skeletonema costatum [90], Nitschia ovalis [93], Porprhirudium cru-
entrum, and Tribonema sp. [94]. While ALA producers include Chlorella vulgaris with levels
of 8.2% of the total fatty acids [95], the fungi Mucor flavus consisting of up to 13% of its
total fatty acids [37], and Penicillium sp. with reported fatty acid composition values of up
to 7.6% [96]. Interestingly, Desmodesmus sp. was also reported to produce enhanced levels
of ALA that reached 44% of the total fatty acids, as a result of low temperature and UV
treatment [97].

Furthermore, these organisms also possess other types of lipids, Table 5, which can
be used to produce other products [84] such as ARA from Mortierella, a fatty acid essential
to infant brain development. As such, lipids derived from oleaginous microorganisms
could offer a dual role in both delivering drugs across the BBB for neurological disease
treatment and supplying the types of lipids needed to prevent these diseases and aid in
their treatment.
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Table 4. Lipid composition of oleaginous microorganisms.

Species Lipid (% of Dry Weight) References

Microalgae

[10,37,82,98–104]

Schizochytrium sp. 50–70

Botryococcus braunii 25–75

Nannochloropsis sp. 31–68

Scenedesmus sp. 34

Chlorella sp. 49–76

Bacteria

Arthrobacter sp. >40

Acinetobacter calcoaceticus 27–38

Rhodococcus opacus 14–70

Yeast

Cryptococcus albidus 65

Rhodotorula glutinis 72

Trichosporon fermentans 36

Fungi

Humicola lanuginose 75

Microsphaeropsis 22

M. alpina 31

Mortierella isabellina 86

Mucor flavus 20

Table 5. Oleaginous microbe lipid profile composition (% of total FA).

FA Schizochytrium
sp.

Aurantiochytrium
sp.

Mortierella
sp.

Ulkenia
sp.

Nannochloropsis
oceanica

Chlorella
vulgaris

Myristic acid (C14:0) 15.5 4.1 0.5 1.1 5.5 0.75

Palmitic acid (C16:0) 25.2 59.8 N 27.6 21.6 27.9

Palmitioleic acid (C16:1) 0.6 N 10.7 N 24.0 N

Stearic acid (C18:0) 0.3 1.8 5.1 4.4 0.4 4.5

Linoleic acid (C18:2) N 0.3 6.7 1.7 N 33.2

Oleic acid (C18:1) 0.7 0.87 6.2 10.5 1.8 19.7

Linolenic acid (C18:3) N N 5.6 8.8 0.9 8.2

Arachidonic acid (C20:4) N N 53.8 6.1 4.0 N

Eicosapentaenoic acid (C20:5) N N 4.9 5.0 20.5 N

Docosapentaenoic acid (C22:5) 8.7 4.69 N 12.4 N N

Docosahexaenoic acid (C22:6) 36.2 19 3.9 13.7 N 0.5

Other minor FAs 12.8 10.1 2.8 8.7 0.7 4.9

SFA 41.0 75.5 N 33.3 27.5 35.6

PUFA 44.9 24.5 N 46.0 37.9 41.9

Reference [86] [30] [9] [105] [33] [95]

FA: fatty acid; SFA: saturated fatty acids; PUFA: polyunsaturated fatty acid; N: not noted.
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4.1. Microalgae Growth

Microalgae are resilient and capable of growing in different conditions including
autotrophic, heterotrophic, and mixotrophic culture conditions [106,107]. They do not
require fertile land for their growth and can obtain their nutrients from water streams,
which are otherwise considered waste [108–111]. In this regard, they have been used as
a means of wastewater treatment [112–114]. Nutrient availability, temperature, pH, and
salinity all influence the growth and lipid yields, as well as the lipid fatty acid profile [115].
In fact, nutritional stress and altering the operational parameters during cultivation are used
as effective means to alter the lipid fatty acid profile [116,117] to suit industrial production.

4.2. Lipid Extraction

Lipid extractions can be performed using various physical and chemical techniques,
where the effectiveness of the recovery is dependent on the cell wall disruption [118–120].
The most commonly used extraction methods are the Bligh–Dyer and Folch solvent extrac-
tion techniques [118], which use a mixture of chloroform and methanol to solubilize the
lipids, separating them from the residual biomass. To further improve the lipid recoveries,
various cell wall disruption pre-treatment techniques have been employed which include
bead mill, ultrasound, high-pressure homogenization, microwave, and steam explosion,
where the effectiveness of the technique is dependent on the cell wall composition and
structure [118,119].

4.3. Commercial Producers

The commercial production of vegan EPA and DHA is derived from Thraustochytrids
belonging to the genera Schizochytriumm, Ulkenia, Aurantiochytrium, and Crypthecodinium, as
shown in Table 4 [121–124]. A major producer of DHA from Schizochytriumm and Cryptheco-
dinium is DSM enterprise, which supplies algae oil consisting of 50% EPA/DHA [125]. Sim-
ilarly, Solazyme Bunge Renewable Oils produces the whole of the biomass of Schizochytri-
umm, which is rich in DHA; however, it primarily caters to aquaculture feed [125]. Lonza is
another producer and retailer of DHA in oil and powder-based forms that is derived from
the heterotrophic organism Ulkenia sp. [125].

Although the DHA production from Schizochytrium was assessed to be greater in
cost compared to fish oil by Zhang, Li [21], the authors noted that a biorefinery approach
to producing various other by-products could improve the economics, which was also
noted by others [123,126]. LC-PUFAs may be used both to transport drugs using lipid
nanotechnology and to supply the essential lipid for disease prevention/management,
which would cater to both the supplementation and pharmaceutical markets. Oleaginous
microbes also possess other metabolites such as carotenoids, polyphenols, amino acids, and
polysaccharides, which have been discussed as a way to prevent neurodegenerative disor-
ders elsewhere [127]. Furthermore, fish oil sources do not cater to the growing vegan and
vegetarian population, which must be considered. The global omega-3 supplementation
market size in 2021 was valued at USD 6.03 billion and is expected to reach USD 10.8 billion
in 2028 [128], while the lipid nanoparticle market size was valued at USD 887.2 million
dollars in 2023 and is projected to reach USD 3.17 billion in the next 10 years [129]. In
addition, the lipids attained from oleaginous microbes are natural sources, unlike synthetic
molecules, which are less desirable.

5. Oleaginous Microbial Organisms as a Sustainable PUFA Source for Treatment and
Management of Diseases Future Directions

Although a consensus seems to exist that LC-PUFAs exert a positive impact in pre-
venting/aiding in the treatment of neurological diseases, such as Alzheimer’s, depression,
and epilepsy, further studies are needed to provide conclusive evidence into the impact
of these lipids not just on the above-mentioned disorders, but also in other neurological
diseases. The vital roles that LC-PUFAs have been linked to play in aiding in the treatment
of neurological disorders, as described above, are a key indicator of how essential these



Mar. Drugs 2024, 22, 80 13 of 19

PUFAs are for good brain health. Furthermore, our understanding of the structural and
biochemical roles of lipids in the BBB is limited [36], and further research in this area is
necessary to identify how lipids can aid in combating neurological diseases. Oleaginous
microbes, possessing the majority of their weight in lipids, are a promising renewable
feedstock for the production of LC-PUFAs needed for neurological disease treatment and
management, which are seldomly discussed [127]. The major advantage of oleaginous
microbial lipids, such as that from Schizochytrium, is that it is considered a plant source that
accommodates the growing vegan and vegetarian population and has gained the status
of being generally recognized as safe (GRAS) [27]. As such, more research needs to be
performed that investigates the impact of oleaginous microbial oil in the treatment and
management of neurological diseases through its incorporation as a dietary supplement
and use in drug delivery to combat these disorders. These studies are vital for assessing
the biorefinery potential of microbes, which is needed for understanding the economic
potential of this emerging biotechnology [130].

As highlighted above, lipids also offer an effective means for drug delivery across the
blood–brain barrier to treat and manage neurological diseases. However, studies inves-
tigating oleaginous microbe-derived lipids as vehicles for transport are very limited [7].
Oleaginous organisms offer a wide array of lipid types consisting of saturated, monoun-
saturated, and polyunsaturated fats that resemble those that have been explored for the
effective delivery of lipophilic drugs [7]. Thus, the lipid produced offers a dual potential as
a vehicle for delivering lipophilic drugs to treat neurological diseases and LC-PUFAs that
are capable of aiding in their prevention. Future studies are needed to instigate the use of
these oleaginous lipids as delivery vehicles for drugs to treat neurological diseases, as they
are renewable and sustainable with efficient means for lipid production compared to other
marine organisms.

Microbial lipids may also be tweaked to provide a profile rich in saturated fats or
long-chain PUFAs through alteration of the growth conditions or metabolic engineering ap-
proaches. Random mutagenesis and adaptive laboratory evolution are the more favourable
approaches, as they are not considered genetically modifying [14]. Studies identifying the
role of different fatty acids in the treatment of diseases would aid in focusing research
efforts on identifying suitable metabolic engineering approaches for oleaginous microbes
to enhance the production of particular fats.

Food fortification with omega-3 PUFAs has become a popular means for improv-
ing the health benefits of common everyday foods such as bread, beverages, and baked
goods [18,131]. The neuroprotective benefits of these functional foods need to be inves-
tigated through experimental trials to determine their impact and the daily quantities
required to gain the benefits [18]. The use of oleaginous microbial oil rich in omega-3
PUFAs would be a sustainable and renewable means for providing omega-3 lipids for food
fortification as well as other beneficial metabolites.
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