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Abstract: Sargassaceae, the most abundant family in Fucales, was recently formed through the
merging of the two former families Sargassaceae and Cystoseiraceae. It is widely distributed in the
world’s oceans, notably in tropical coastal regions, with the exception of the coasts of Antarctica
and South America. Numerous bioactivities have been discovered through investigations of the
chemical diversity of the Sargassaceae family. The secondary metabolites with unique structures
found in this family have been classified as terpenoids, phlorotannins, and steroids, among others.
These compounds have exhibited potent pharmacological activities. This review describes the
new discovered compounds from Sargassaceae species and their associated bioactivities, citing
136 references covering from March 1975 to August 2023.
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1. Introduction

Seaweeds, a rich renewable resource, are known to produce numerous complex
and diverse secondary metabolites with potent bioactivities [1–13]. Based on their
thallus pigmentation, seaweeds are typically classified into three groups: brown algae
(Phaeophyta), green algae (Chlorophyta), and red algae (Rhodophyta). Sargassaceae,
a polyphyletic family of brown seaweed, is comprised of the two former families
Sargassaceae and Cystoseiraceae [14,15]. This family encompasses a variety of genera,
including Acrocarpia, Acystis, Anthophycus, Axillariella, Bifurcaria, Carpophyllum, Carpoglossum,
Caulocystis, Cladophyllum, Coccophora, Cystoseira, Cystophora, Cystophyllum, Ericaria, Gongolaria,
Halidrys, Hormophysa, Landsburǵia, Myagropsis, Myriodesma, Nizamuddinia, Oerstedtia, Platythalia,
Sargassum, Stolonophorra, Scaberia, and Turbinaria, as listed in the algae database [16]. Among
these, the genera with the most species are Sargassum (977 species) and Cystoseira (288 species),
followed by Turbinaria (53 species) and Cystophora (39 species) [16]. Notably, the former two
are the most representative genera of this family and have received significant attention,
which has resulted in a wealth of publications [4,17–19].

Since 1973, studies on Sargassaceae species have experienced rapid growth, leading
to the discovery of a multitude of novel compounds with potent bioactivities. Valls and
Piovetti summarized 134 new diterpenoids isolated from the former Cystoseiraceae family
between 1973 and January 1995 [20], and de Sousa et al. [18] and Gouveira et al. [21]
compiled the secondary metabolites isolated from various Cystoseira species from 1995
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to 2016. Chen and Liu [22] and Rushdi et al. [23] reviewed the chemical constituents of
Sargassum species and their biological activities from 1974 to 2020. Rushdi et al. [24] also
provided an overview of secondary metabolites isolated from Turbinaria species between
1972 and 2019. Muñoz et al. [4] summarized the linear diterpenes from Bifurcaria bifurcata,
emphasizing biosynthetic pathways, biological activities, chemotaxonomy, and ecology.
This review attempts to summarize the literature data on the new compounds from the
Sargassaceae family and their biological activities.

2. Chemistry and Biological Activities of the Compounds from the Sargassaceae Family

Sargassaceae is a family of marine macroalgae comprising over 20 genera and more
than 1000 species, and some species are shown in Figure 1. While many genera of this family
show a limited distribution, the genera Bifurcaria, Cystophora, and Halidrys display a disjunct
distribution [14]. When examining the chemical constituents from Sargassacean species,
numerous new structures were obtained, which mainly include terpenoids (encompassing
meroterpenoids), phloroglucinol derivatives, steroids, and other types.
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2.1. Terpenoids

Terpenoids, a class of predominantly secondary metabolites, have been discovered
in the Sargassaceae family [25,26]. Specifically, 223 novel terpenoids have been obtained



Mar. Drugs 2024, 22, 59 3 of 30

from five different Sargassacean genera, namely Cystoseira, Sargassum, Cystophora, Bifurcaria,
and Turbinaria. Based on the number of isoprene units and the biosynthesis pathway,
these isolated compounds can be categorized into monoterpenoids, sesquiterpenoids,
diterpenoids, triterpenes, and meroterpenes.

2.1.1. Monoterpenoids

Two new loliolide-type monoterpenoids, schiffnerilolide (1) and sargassumone (2)
(Figure 2), were isolated from the brown algae C. schiffneri and S. naozhouense, respectively [27,28].
From the biosynthesis aspect, 1 could be derived from isololiolide through oxidation at carbon-
carbon double bond [27,29], while 2 may have been formed from loliolide via various reactions,
including selective oxidation, specific reduction, and isomerization [28,30].
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2.1.2. Sesquiterpenoids

A new sesquiterpenoid, oxocrinol (3) (Figure 3), was isolated from the Mediterranean
alga C. crinita [31]. Interestingly, compound 3 was a novel linear terpenoid alcohol, which
could potentially originate from farnesol or other possible precursors, such as monoter-
penoid and geranylgeraniol [31].
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2.1.3. Diterpenoids

Sixty-four new diterpenoids, 4–67 (Figures 4–9), were isolated from various Sargassacean
species. According to the carbon skeletons, these newly isolated compounds were classified
into norditerpenoids, acyclic diterpenes, hydroazulene diterpenes, and xenicane diterpenoids.

Norditerpenoids

Sixteen new norditerpenoid compounds (Figure 4), including three bisnorditerpenes
and 13 farnesylacetone derivatives, were obtained from the Sargassaceae family. Among
them, 13 were from Sargassum sp., while one was from Cystophora sp.

Compounds 4–6, three novel bisnorditerpene isomers featuring an unusual α, β-
unsaturated ketone skeleton, were isolated from S. hemiphyllum, collected from the Heda
coast of the Izu Peninsula, Japan. They appeared to originate from the geranyl geraniol
precursor and showed low cytotoxicity against P388 cells [32].

Compounds 7–16, novel farnesylacetone derivatives categorized as norditerpenes [33],
were isolated from the brown alga S. micracanthum, harvested at Kominato, Chiba, Japan [33,34].
From a biosynthetic aspect, these compounds could be formed from geranylgeranylquinones
and chromenols through selective oxidation.

Compounds 17–19, also classified as farnesylacetone derivatives belonging to norditer-
penoid analogs, were obtained from the brown alga C. moniliformis, which was harvested
from Port Philip Bay, Australia [35]. Particularly, compounds 18 and 19 were two epimers
that were indirectly formed from geranyl acetone [35].
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Acyclic Diterpenoids

Though acyclic diterpenoids are seldom found in nature, they are abundantly found
in the brown alga B. bifurcata [4]. Notably, 43 new linear diterpenoids (20–62) (Figures 5–7)
were obtained from the brown algae B. bifurcata and C. crinita. Based on their biosynthetic
origins, these isolates were categorized into three groups: C-12 oxidized congeners, C-13
oxidized congeners, and non-C-12/C-13 oxidized analogs.

• C-12 Oxidized Congeners

Eight new linear diterpenoids, 20–27 (Figure 5), featuring a hydroxyl group at C-12,
were isolated from B. bifurcata collected from the Atlantic coasts of Morocco between 1984
and 2002 [36–40]. These compounds exhibited close chemical relationships. Interestingly,
compound 20 could undergo epoxidation at the C-6/C-7 double bond, followed by de-
hydration to produce allylic alcohols 21 and 23, which could be further converted to 22
via a selective reduction at the C-5/C-6 double bond [4,37,38]. In particular, compound
24 was unstable and could slowly transform into its stable isomer 25 at room tempera-
ture [39]. Furthermore, 25 could convert into 27, which could undergo methylation to
produce 26 [4,39,40]. Compounds 21 and 22 were tested in vitro for cytotoxicity against the
NSCLC-N6 cell line and proved to be active [38].

• C-13 Oxidized Congeners

Fourteen new linear diterpenoids, 28–41 (Figure 6), featuring a hydroxyl group at
C-13, were isolated from the brown alga B. bifurcata, sourced from various geographical
origins [41–45]. These compounds could be formed from 13-hydroxygeranylgeraniol,
namely eleganediol [4]. Notably, compound 28, which possesses a furan-3-yl ring formed
from eleganediol via terminal cyclization and oxidation, was isolated from the French
brown seaweed B. bifurcata, along with compound 29 [41]. Compounds 30–39 were isolated
from the brown seaweed B. bifurcata, collected from an intertidal rock pool in County
Clare, Ireland [42–44]. Compounds 40 and 41, possibly produced from eleganediol by
epoxidation of the C-6/C-7 double bond followed by isomerization to form allylic alcohols,
were also obtained from the French brown alga B. bifurcata [45]. Compounds 28, 30, 31, and
35 showed cytotoxic, antiprotozoal, and anticancer activity, respectively [41–44].

Sixteen new acyclic diterpenes, 42–57 (Figure 6), featuring a ketone function at C-13,
were isolated from the brown algae C. crinita [46] and B. bifurcata [44,45,47–50]. They
could originate from eleganolone. Interestingly, some of these isolates appear to have
a close chemical relationship. Specifically, compound 44 could undergo selective reduction
of its C-6 ketone group, followed by formation of the corresponding allylic alcohol 42,
which could then convert into 46 [46]. Compounds 46 and 47 are two isomers obtained
from the France brown alga B. bifurcata, together with compound 48 [45]. Compound 52
could transform into 53 via hydroxylation of C-20 and lactonization, or into 54 following
reduction of its C-14/C15 double bond [49]. Compounds 56 and 57 are two eleganolone-
type stereoisomers featuring a novel dihydroxy-γ-butyrolactone system [50].
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• Non C-12/C-13 Oxidized Analogs

Five new linear diterpenoids, 58–62 (Figure 7), were isolated the brown alga C. crinita [31]
and B. bifurcata [38–40,51]. They are non-C-12/C-13 oxidized congeners, directly or indi-
rectly derived from geranylgeraniol. Among them, compound 58 was isolated from the
brown alga C. crinita, harvested near Catania, Sicily, Italy [31]. Compound 59, character-
ized by a secondary alcohol group at C-10, was isolated from the brown alga B. bifurcata,
harvested near Oualidia, Morocco [38]. Compound 60, possessing two conjugated dou-
ble bonds at C-9 and C-11, was also obtained from the brown alga B. bifurcata, collected
near Oualidia [39]. Compounds 61 and 62 were isolated from the brown alga B. bifur-
cata, harvested off the Atlantic coast of Morocco [40,51]. Notably, 62 demonstrated potent
cytotoxicity to fertilized sea urchin eggs [51].
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Hydroazulene Diterpenoids

Four new diterpenoids, 63–66 (Figure 8), featuring a hydroazulene skeleton, were
isolated from the brown alga C. myrica, collected at El-Zafrana, Gulf of Suez, Egypt. Their
structures were determined by spectroscopic and chemical techniques. The cytotoxicities of
these four compounds were tested in vitro against three different mouse cell lines (NIH3T3,
SSVNIH3T3, and KA3IT). The results showed moderate cytotoxicity of all isolates against
the cancer cell line KA3IT [52].
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Xenicane Diterpenoids

A new xenicane-type diterpenoid, 67 (Figure 9), was isolated from the organic extract
of the intertidal brown alga S. ilicifolium, which was harvested from the Gulf of Manner
coast, India. This new metabolite, deduced as sargilicixenicane, showed potential anti-
inflammatory and antioxidant activities [53].

Mar. Drugs 2024, 22, x FOR PEER REVIEW 6 of 33 
 

 

 
Figure 7. Non C-12/C-13 oxidized linear diterpenoids isolated from Sargassacean species. 

Hydroazulene Diterpenoids  
Four new diterpenoids, 63–66 (Figure 8), featuring a hydroazulene skeleton, were 

isolated from the brown alga C. myrica, collected at El-Zafrana, Gulf of Suez, Egypt. Their 
structures were determined by spectroscopic and chemical techniques. The cytotoxicities 
of these four compounds were tested in vitro against three different mouse cell lines 
(NIH3T3, SSVNIH3T3, and KA3IT). The results showed moderate cytotoxicity of all iso-
lates against the cancer cell line KA3IT [52].  

 
Figure 8. Hydroazulene diterpenes isolated from Sargassacean species. 

Xenicane Diterpenoids 
A new xenicane-type diterpenoid, 67 (Figure 9), was isolated from the organic extract 

of the intertidal brown alga S. ilicifolium, which was harvested from the Gulf of Manner 
coast, India. This new metabolite, deduced as sargilicixenicane, showed potential anti-
inflammatory and antioxidant activities [53]. 

 
Figure 9. Xenicane diterpenes isolated from Sargassacean species. 

2.1.4. Nor-Dammarane Triterpenoids 
Two new nor-dammarane triterpenes, decurrencylics A-B (68 and 69) (Figure 10), 

were isolated from the brown alga T. decurrens, which was harvested from the Mandapam 
region in the Gulf of Mannar, Peninsular India, India. Their structures were determined 
by extensive spectra analysis. The two compounds showed potent anti-inflammatory ac-
tivities [54]. 

 
Figure 10. Nor-dammarane triterpenoids isolated from Sargassacean species. 

Figure 9. Xenicane diterpenes isolated from Sargassacean species.

2.1.4. Nor-Dammarane Triterpenoids

Two new nor-dammarane triterpenes, decurrencylics A-B (68 and 69) (Figure 10),
were isolated from the brown alga T. decurrens, which was harvested from the Mandapam
region in the Gulf of Mannar, Peninsular India, India. Their structures were determined
by extensive spectra analysis. The two compounds showed potent anti-inflammatory
activities [54].
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2.1.5. Meroterpenoids

Meroterpenoids represent another major group of terpene metabolites originating
from the Sargassaceae family [6,7,18,55–86]. Notably, 154 new meroterpenoids (70–223)
(Figures 11–13), consisting of an aromatic or substituted aromatic nucleus connected to
a terpenoid chain with different degrees of oxidation, were isolated from Sargassaceae
species [57–86]. According to the structural characteristics, meroterpenoids can be classified
into terpenyl-quinones/hydroquinone analogs, chromenes, and nahocols/isonahocols.
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Terpenyl-Quinones/Hydroquinone Analogs

Ninety-six novel terpenyl-quinones/hydroquinones (70–165) (Figure 11), which con-
sist of a quinone or hydroquinone nucleus connected to a terpenyl moiety, were isolated
from three Sargassacean genera, namely Cystoseira, Sargassum, and Cystophora.

Three novel tetraprenyl-toluquinone derivatives (70–72), seven new tetraprenyltolu-
quinols congeners (73–79), two new triprenyltoluquinol derivatives (80 and 81), and one
new O-methyltoluquinol diterpenoid (82) were isolated from two distinct samples of
C. crinita, one collected from the south coast of Sardinia [57] and another from the French
Riviera coasts [58]. Compounds 70/71, 73/74, 75/76, 77/78, and 80/81 belong to five pairs of
∆6 stereoisomers and showed antioxidant activities [57]. Particularly, 77 could be formed
from 75 via dihydroxylation at C-13′ [57]. Compound 82 could be further converted into 72
and 79 [58].

Four new meronorsesquiterpenoids (83–86) and two new meroditerpenoids (87 and
88) were isolated from the brown alga C. abies-marina [59,60]. Of them, 83/84 and 85/86
represent two pairs of ∆6 diastereomers characterized by a C14 terpenoid side chain, which
were possibly formed from the diterpenoid side chain through oxidative degradation [61].
Compounds 87 and 88 contain two methoxyl groups in the aromatic nucleus, which were
formed from geranylgeranyltoluquinol via various reaction cascades, such as methylation
and/or oxidation [59]. Compounds 83, 84, 87, and 88 were evaluated for their cytotoxic and
antioxidant activities in vitro. The results revealed that 83, 84, and 87 showed inhibitory
activities against Hela cells, while 88 exhibited moderate antioxidant activity against DPPH
radicals [59].

A new meroditerpene, 4′-methoxy-2(E)-bifurcarenone (89), was isolated from the
brown alga C. amentacea var. stricta, harvested at Le Brusc, France. This new isolate showed
cytotoxic effects against the development of the fertilized eggs of sea urchin Paracentrotus
lividus [62].

Two novel meroditerpenoids (90 and 91) were obtained from the brown alga C. baccata
collected on the Moroccan Atlantic coast. They share the same trans-fusion bicyclic [4.3.0]
nonane ring system, making the first instance of such a system reported from marine
Sargassaceae algae [63].

Two new meroditerpenoids, preamentol triacetate (92) and 14-epi-amentol triacetate
(93), were isolated from the acetone extract of an unidentified Cystoseira specimen har-
vested at the Spanish Canary Islands [64]. The two compounds could be formed from
geranylgeranyltoluquinol via oxidation and cyclization [65].

A novel tetraprenylhydroquinol, balearone (94), was isolated from the chloroform
extract of the brown alga C. balearica, collected at Portopalo, Sicily, Italy. Its chemical
structure was deduced by single-crystal X-ray diffraction analysis [66].

Fifteen new tetraprenyl-toluquinol derivatives (95–109) were isolated from the Mediter-
ranean seaweed C. stricta, harvested from three different locations on the Sicilian coasts [67–72].
They exhibit structural similarities. Especially, selective methylation of phenolic hydroxyl
in 95 could produce the methyl ether 96 [67]. Compounds 99 and 100 are the Z-2-isomers
of 103 and 94, respectively [68,70]. The oxidation of 101 with silver oxide could lead to
p-benzoquinone 102, which could also undergo reduction to produce 101 [69]. Compound
104, derived from 107 via the removal of its acidic proton at C-11 and subsequent for-
mation of the C-11 to C-7 bond, could be converted into 105 by selective methylation,
or into 106 via isomerization [71]. Compounds 108 and 109 present two new irregular
tetraprenyltoluquinol epimers [72].

Four unique phloroglucinol-meroterpenoid hybrids, named cystophloroketals A–D
(110–113), were isolated from the Mediterranean alga C. tamariscifolia, harvested in the
Mediterranean Sea near Tipaza, Algeria. They represent the first example of meroterpenoids
with a 2,7-dioxabicyclo [3.2.1] octane unit fused to a phloroglucinol. Their antifouling
activities were assessed against several marine species involved in the biofouling process,
and the results showed that they were active [73].
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Twenty-two new meroterpenoids, namely cystodiones A–M (114–125), cystones A–F
(126–131), usneoidones E and Z (132 and 133), and usneoidoles Z and E (134 and 135),
were isolated from the brown alga C. usneoides collected from the Moroccan, Spanish, and
Portuguese coasts [74–77]. Of which, 114, 115, and 118–135 consist of a toluquinol core and
a diterpenoid chain with various oxygenated functionalities and unsaturation, while 116
and 117 consist of a C14-side chain attached to an O-methyltoluquinol ring [74–77]. Interest-
ingly, compounds 114/115, 116/117, 118/119, 123/124, 128/129, 130/131, 132/133, and 134/135
form eight pairs of ∆6 stereoisomers. Compounds 114–117 displayed antioxidant activities
in the ABTS radical-scavenging assay, along with 120–131 [74–77]. Compounds 120, 125,
and 128 also showed significant inhibitory activities on production of the proinflamma-
tory cytokine TNF-α in LPS-stimulated THP-1 human macrophages [75]. Furthermore,
compounds 132–135 exhibited antitumor and antiviral activities [76,77].

A pair of novel tetraprenyltoluquinol isomers, 136 and 137, were isolated from the
brown alga C. sauvageuana, collected at Aci Castello, Sicily, Italy. It was determined that 136
could be converted into 137 after photoisomerization [78].

A novel, linearly fused 6,6,5-tricyclic geranyltoluquinone, pycnanthuquinone C (138),
was isolated from the acetone extract of the Western Australian marine brown alga Cystophora
harveyi. This marks the second report of prenylated quinone with a linear 6,6,5-cyclic
skeleton from marine organisms [79].

Two new meroditerpenoids, fallahydroquinone (139) and fallaquinone (140), were
isolated from the brown alga S. fallax, collected from Port Philip Bay, Victoria, Australia [80].
Compound 140 is likely to be an artifact compound, as it could be produced from 139 by
oxidation upon exposure to air. The absolute stereochemistry for 139 and 140 could not be
established, owing to their instability and rapid decomposition. The two isolates displayed
weak antitumor activities in a P388 assay [80].

Three new meroterpenoids, macrocarquinoids A–C (141–143), were isolated from
the EtOH extract of the brown alga S. macrocarpum, harvested on the coast of Tsukumo
Bay, Japan. Compound 142 possesses a γ-lactone ring at C-9′ to C-11′ and C-18′ of the
terpenyl chain, while 143 has a δ-lactone ring at C-11′ to C-14′ and C-18′ [81]. All of these
compounds showed inhibitory activity against AGE that were either comparable to, or
more potent than, activity of aminoguanidine, which was used as a positive control [81].

Four new plastoquinones 144–147 were isolated from the brown alga S. micracanthum,
collected from the Toyama Bay coast of Japan. Their structures were determined by spectro-
scopic analysis and chemical conversions. Compounds 144–146 showed both antioxidant
and cytotoxic activities [82].

Four new meroditerpenoids—sargahydroquinal (148), paradoxhydroquinone (149),
paradoxquinol (150), and paradoxquinone (151)—were isolated from the brown alga S. para-
doxum, collected from Governor Reef near Indented Head, Port Philip Bay, Australia. They
consisted of a diterpenoid chain attached to hydroquinone or p-benzoquinone rings. Their
structures were determined by spectroscopic techniques. Particularly, 148 was identified
by HPLC-NMR and HPLC-MS, coupled with comparison with the known compound
due to its instability. Compounds 149–151 showed weak antibacterial activities against
Streptococcus pyogenes [83].

Three new sargaquinoic acid derivatives, 15′-hydroxysargaquinolide (152), (2′E,5′E)-2-
methyl-6-(7′-oxo-3′-methylocta-2′,5′-dienyl)-1,4-benzoquinone (153), and 15′-methylenesar-
gaquinolide (154), and two new plastoquinone analogs, sargahydroquinoic acid (155)
and yezoquinolide (156), were isolated from the brown algae S. sagamianum [84] and
S. sagamianum var. yezoense [85]. Noticeably, 153 and 154 are a selectively oxidized analog
and a dehydration derivative of 152, respectively [83]. Compound 155 is a hydroquinone
derivative of sargaquinoic acid [53], while 156 features an α, β-unsaturated γ-lactone moiety,
marking the first example of a plastoquinone with a butenolide unit [85]. Compounds 152
and 153 showed antibacterial activities and cytotoxicities against Hela S3 cells [84].

Two new meroditerpenoids (157 and 158) were isolated from the brown alga S. sili-
quastrum, collected from Jeju Island, Korea [86]. Compound 157, a derivative of sargahydro-
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quinoic acid, exhibited significant radical-scavenging activity as well as slight inhibitory
activity against isocitrate lyase from Candida albicans. The stereochemistry at C-13′ of 157
remained uncertain due to the limited quantity. Compound 158, representing the first
reported meroditerpenoid with a modified dihydroquinone unit from marine brown algae,
exhibited weak activity against transpeptidase sortase A from Staphylococcus aureus [86].
Interestingly, 158 was presumed to be a biosynthetic precursor of nahocols and isonahocols,
based on a 1,3-migration of its methyl acetate group.

Seven new geranylgeranylbenzoquinone derivatives (159–165) were separated from
the Japanese marine alga S. tortile harvested at Awa-Kominato, Chiba, Japan. These isolates
consist of a hydroquinone or benzoquinone core linked to a diterpenoid moiety. Among
them, compounds 159/160 and 162/163 constitute two pair of isomers. Compound 161
could be converted into quinone 164 by selective oxidation [87].
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Chromenes

Forty-nine new chromene meroterpenods (Figure 12) were isolated from certain species
of Sargassaceae. Their structures are similar to that of vitamin E.

A new chromene meroditerpene (166) was isolated from the brown alga C. amentacea
var. stricta mentioned above. It is a derivative of 4′-methoxy-2(E)-bifurcarenone originated
from the same species [62].

Two novel chromene meroditerpenoid isomers (167 and 168) and their derivatives
(169–171), together with two new chromane meroditerpenoid epimers (172 and 173), were
isolated from the brown alga C. baccata and S. muticum [63,87–89]. Among them, com-
pounds 167–171 share the same trans-fused carbon skeleton, marking the first report of
such a structure in the Sargassaceae family [63]. Compounds 172 and 173 also possess
the same trans-fused bicyclic system and were found to exhibit photodamage attenuation
effects [89,90]. Compounds 168, 169, and 171 showed antifouling activities against the set-
tlement of certain macroalgae, the growth of microalgae, and the activities of mussels [63].

Three new chromane meroditerpenes (174–176) were isolated from the previously
mentioned unidentified Cystoseira specimen. Due to their inherent instability, 175 and 176
were only obtained in the acetate form. In particular, 175 represented the first example of
meroditerpene containing a newly rearranged structure, featuring a novel ether linkage in
the diterpene chain. The structure is likely formed from 176 via an oxidation process of the
enol-ether system, followed by rearrangement [64].

A new phloroglucinol-meroditerpenoid hybrid (177), consisting of a chromane meroditer-
penoid linked to a phloroglucinol through a 2,7-dioxabicylo [3.2.1] octane unit, was isolated
from the brown alga C. tamariscifolia mentioned above. This isolate showed moderate to
weak antifouling activities against several marine colonizing species such as bacteria, fungi,
micro- and macroalgae [73].

A new chromene meroditerpenoid, fallachromenoic acid (178), featuring a carboxylic
group and a chlorine atom, was isolated from the brown alga S. fallax described above. Its
absolute configuration could not be assigned due to its instability [80]. Compound 178
showed weak antitumor activity against P388 murine leukemia cells [80].

Two new chromane meroterpenoids (179 and 180) were obtained from the brown
alga S. micracanthum, harvested on the Toyama Bay coast, Japan. Their structures were
determined by extensive spectroscopic analysis and chemical conversion [91].

Two new chromene meroditerpenoids (181 and 182), characterized by a lactone ring,
were isolated from the Japanese alga S. sagamianum mentioned above [84]. Their structures
were determined by extensive spectrometric analysis and comparison with published data.
Particularly, 181 exhibited antibacterial and weak cytotoxic activities [84].
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Twenty-four chromene meroterpenoids (183–206) were isolated from two distinct samples
of S. siliquastrum, one collected from the seashore of Pusan [92], and another from Jeju Island
(Korea) [93–96]. Among them, 186–188 and 206 contain a linear triprenyl moiety, while the
rest possess a tetraprenyl moiety [93,94]. Notably, 198–201 contained a rearranged tetraprenyl
carbon skeleton, while 202 had a cyclized tetraprenyl chain, reported for the first time [94].
Compounds 183–202, 205, and 206 showed antioxidant activities [92–94,96], while 193 and
201 were found to display inhibitory activities toward butylcholine esterase [94]. Additionally,
203 and 204 exhibited cytotoxic activities against AGS, HT-29, and HT-1080 cell lines [95].

A novel furanyl-substituted isochromanyl derivative, turbinochromanone (207), was
isolated from the ethyl acetate-methanolic extract of the brown seaweed Turbinaria conoides,
collected from the coasts of Peninsular India. Compound 207 exhibited potential attenu-
ation properties against 5-lipoxygenase and cyclooxygenase-2-enzyme. Furthermore, its
antioxidant properties supported its potential use as an anti-inflammatory agent [97].

Two new tetraprenyltoluquinol isomers, thunbergol A (208) and B (209), were obtained
from the brown alga S. thunbergii collected along the Busan coast of Korea. The two compounds
showed antioxidant effects against DPPH radical and authentic/induced ONOO− [98].

Four new chromene compounds (210–213), along with a new isoprenoid chromenol (214),
were isolated from two distinct samples of S. tortile, one collected from the coast of Tanabe Bay,
Japan [99], and the other from Wakasa Bay, Fukui Prefecture, Japan [100,101]. Compounds
210–213 showed cytotoxic activities toward cultured P-388 lymphocytic leukemia cells [99].
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Nahocols/Isonahocols

Five new nahocols (215–219) and four novel isonahocols (220–223) were isolated from
the brown alga S. siliquastrum mentioned above [86,102]. Their structures are shown in
Figure 13. They share structural similarities to 158 [86]. Especially, 219 contains a cyclopen-
tenone moiety, the characteristic cyclization pattern of which has only been reported for
the second time in marine algae. All of them exhibited radical-scavenging activity against
DPPH free radicals. Furthermore, isonahocols 220–223 showed a 100-fold increase in
radical-scavenging activities compared with nahocols 215–219, indicating the crucial role
of the phenolic group in DPPH radical scavenging activity. In addition, 215–219 showed
still-weak activities against isocitrate lyase from Candida albicans, while 220–223 exhibited
inhibitory effects on transpeptidase sortase A derived from Staphylococcus aureus.
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2.2. Phloroglucinols

To date, numerous phloroglucinol derivatives have been identified in brown seaweed
species [103,104]. Notably, some new phloroglucinols were obtained from Sargassaceae
species [105–116]. Based on the number of phloroglucinol units, phloroglucinols may be
conveniently classified into monomeric phloroglucinols and phlorotannins.

2.2.1. Monomeric Phloroglucinols

Five new monomeric phloroglucinols, 224–228 (Figure 14), were isolated from the
brown algae S. nigrifoloides, S. micracanthum, and S. spinuligerum [105–107]. Among them,
compounds 224–226 are classified as acyphloroglycinols, and they were isolated from the
brown alga S. nigrifoloides collected at Nanji Island of Zhejiang, China [105]. These three
compounds exhibited inhibitory activities against CDK5 and GSK3β [105].

Compound 227, consisting of a hydroxyphloroglucinol unit and a sargassumketone
moiety, was obtained from the brown alga S. micracanthum, collected at Wando County,
Korea. It showed radical-scavenging activity against ABTS+ radicals [106].

Compound 228, containing a phloroglucinol unit and an ascorbic acid moiety, was iso-
lated from the ethanolic extract of the brown alga S. spinuligerum as a novel phloroglucinol
derivate. Its stereochemistry was determined through NOE experiments and molecular
modeling [107].
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2.2.2. Phlorotannins

Phlorotannins, a major class in the unique phloroglucinol-based polyphenols, were
predominantly found in the Sargassaceae family [103,104]. These compounds were mainly
isolated as their acetates due to their instability. Over recent decades, a great number of
phlorotannins have been isolated from various Sargassacean species [108–116]. According
to the types of linkages between the phloroglucinol units, phlorotannins have been system-
atically categorized into groups such as fucophlorethols, hydroxyphlorethols, carmalols,
phlorethofuhalols, and fuhalols, among others.

Fucophlorethols

Twenty-three new phloroglucinol derivatives (229–251) (Figure 15), belonging to the
class of fucophlorethols with three to fourteen rings, were isolated from three distinct
Sargassaceae species, namely Carpophyllum maschalocarpum, S. spinuligerum, and Cystophora
torulosa. Among these, 229–234 were obtained from the brown alga C. maschalocarpum
collected at Torbay, north of Auckland, New Zealand [108]. Interestingly, 234 is the largest
fucophlorethol, characterized by 14 phloroglucinol units. Due to the presence of extra
hydroxyl groups, 229, 231, and 233 were also categorized as hydroxyfucophlorethols.

Compounds 235–239 were isolated from the brown alga S. spinuligerum, collected
from Wangaparoa Island, district Auckland, New Zealand [109]. Notably, 238 and 239
were once again obtained from the brown alga C. torulosa, collected at Whangaparoa,
New Zealand [109]. Interestingly, 239 was found as a chlorine-containing fucophlorethol.

Compounds 240–251 were obtained from the brown algae C. torulosa and S. spin-
uligerum harvested at Whangaparoa, New Zealand [109,110]. Among them, 240–242 and
245–251 contain additional hydroxy groups, leading to their classification as hydroxyfu-
cophlorethols as well [110,111]. Compounds 243 and 244, however, are bis-fucophlorethols
that lack a 1,2,3-triphenoxy-5-acetoxybenzene unit [110].

Hydroxyphlorethols

Five new phloroglucinol derivatives belonging to the class of hydroxyphlorethols, 252–256
(Figure 16), were isolated from two Carpophyllum species, namely C. maschalocarpum and
C. angustifolium [112,113]. Specifically, 252 and 253, which contain an additional hydroxyl
group, were isolated from the brown alga C. maschalocarpum collected at Torbay, north of
Auckland [112].

Compounds 254–256 feature three additional hydroxyl groups as well as two 1,2-
diphoxylated 3,4,5-triacetoxybenzene rings linked by an ether bond, leading to their
designation as trihydroxyphlorethols. All of them were isolated from the brown alga
C. angustifolium harvested at Panetiki Island, Cape Rodney [113].

Carmalols

Two new phloroglucinol derivatives belonging to the class of carmalols (257 and 258)
(Figure 17) were isolated from the brown alga C. maschalocarpum mentioned above [112,114].
Compound 257 contains two phloroglucinol units and an additional hydroxyl group,
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and it was named diphlorethohydroxycarmalol nonaacetate. Meanwhile, 258, which
possesses three phloroglucinol units and one additional hydroxyl group, was designated
as triphlorethohydroxycarmalol undecaacetate [114].

Phlorethofuhalols

Three new phloroglucinol derivatives (259–261) (Figure 18), which are part of the
phlorethofuhalol class containing an increased number of 1,4-diphenoxylated 3,5-diacetoxy-
benzene rings compared with their corresponding fuhalol counterparts, were isolated
from the brown alga C. maschalocarpum. Among them, 259 and 260 were two isomers
composed of six phloroglucinol units linked by ether bonds, whereas 261 consisted of
seven phloroglucinol elements linked by ether bonds and contained one additional 1,4-
diphenoxylated 3,5-diacetoxybenzene moiety [114].

Fuhalols and Others

A new phloroglucinol derivative belonging to the class of fuhalols, 262 (Figure 19),
together with two new phlorotannins with a chlorine atom (263 and 264), were isolated
from the brown alga C. angustifolium, collected at Panetike Island/Cape Rodney/New
Zealand [115]. Among them, 262 consists of eight phloroglucinol units linked by ether
bonds and contains additional hydroxyl groups. Compound 263 is a chlorinated bifuhalol
derivative, whereas 264 is a chlorinated difucol derivative.

In addition, a new phloroglucinol derivative, DDBT (265) (Figure 19), was isolated
from the brown alga S. patens, harvested from the coast of the Noto Peninsula, Japan. This
compound showed inhibitory effects against α-amylase and α-glucosidase [116].
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2.3. Steroids

Steroids are another class of unique metabolites discovered in the Sargassaceae family.
Seventeen new sterols (266–282) (Figure 20) were isolated from various species of Sargas-
saceae [117–125]. Interestingly, they are C23-, C27-, and C29- steroids, characterized by keto
and hydroxy groups. Among these steroids, one was obtained from Cystoseira sp., eight
from Sargassum sp., and eight from Turbinaria sp.

Compound 266, a C27-brassinosteroid with two keto groups and a hydroxy group,
was isolated from the brown alga C. myrica, harvested from the region of Fayed, Egypt. It
represented the first report of brassinosteroid analogs derived from seaweed. Compound
266 showed cytotoxic effects against HEPG-2 and HCT116 cell lines [117].

Compound 267, a C29-steroid with an α, β-unsaturated carbonyl group and a tertiary
hydroxyl group, was isolated from the brown alga S. asperifolium, collected at Hurghada,
Egypt. From a biosynthetic perspective, 267 could potentially be derived from saringosterol
via an oxidation process involving 3β-OH, followed by the formation of an α, β-unsaturated
ketone [118].
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Compounds 268 and 269, two polyoxygenated steroids, were isolated from the brown
alga S. carpophyllum, harvested from the coasts of the South China Sea in Beihai, China.
Specifically, 268 is a C29-polyoxygenated steroid, while 269 is a C27-dinorsteroid, represent-
ing only the second example of ring A-dinorsteroid analogs found in natural organisms.
Both compounds could induce morphological abnormalities of Pyricularia oryzae mycelia.
In addition, 268 exhibited cytotoxic activity against HL-60 cell lines [119].

Compounds 270 and 271 are two cholestane-type sterols, each featuring an α, β-
unsaturated ketone moiety. Among them, 270 is a C27-steroid, while 271 is a C29-steroid.
Both were isolated from the brown alga S. fusiforme, harvested from Anhui Bozhou Xi-
ancheng Pharmaceutical Limited Company of China. Their absolute configurations were
determined by comparing the calculated and experimental ECD spectra [120].

Compound 272, a stigmastane-type sterol characterized by three double bonds and
one hydroxyl group, was isolated from the brown alga S. polycystcum, collected from the
North China Sea, China [121].

Compound 273, a tri-unsaturated C29-sterol with a 3β-hydroxy-∆5-steroid skeleton
and a vinyloxy group, was isolated from the brown alga S. thumbergii, harvested at Muro-
ran, Japan. Its structure was determined by combining NMR spectroscopy and chemical
conversion [122].

Compound 274, a C29-sterol with a 3-hydroxy-2,5-dien-4-carbonyl fragment, was
isolated from the brown alga S. thunbergii, harvested along the coasts of Nanji Island in the
East China Sea of China. It was the first sterol example discovered to contain a 3-hydroxy-
2,5-dien-4-carbonyl moiety. Compound 274 showed significant inhibitory activity against
PTP1B with an IC50 of 2.24 µg/mL [123].

Compounds 275–282, which are oxygenated steroids, were isolated from two separate
samples of Turbinaria conoides, one collected at Salin Munthal (India) [124] and another at
the coast of Kenting (Taiwan). Notably, 276 is identified as a cardenolide-type C23 steroid
with an aromatic ring, while the remaining compounds are either stigmasterol or fucosterol
derivatives, comprised of 29 carbons. Compounds 275 and 276 showed antimicrobial
activities [124], whereas 279–282 exhibited cytotoxic effects against cancer cell lines P-388,
KB, A-549, and HT-29 [125].
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2.4. Others

Apart from producing an abundance of unique terpenoids, phloroglucinols, and
steroids, Sargassaceae species also generate a variety of other metabolites, including macro-
cyclic lactones, pyran derivatives, furanones, spiroketals, glycerol derivatives, phenol
derivatives, amide derivatives, and lipids (Figure 21).

Three new macrolide compounds, conoidecyclics A–C (283–285), along with three
novel 2H-pyranoids (286–288), were isolated from the brown alga T. conoides, harvested
from the Gulf of Mannar, India [126,127]. These isolates showed anti-inflammatory and rad-
ical scavenging activities. Specifically, compounds 283–285 also exhibited antihypertensive
and antidiabetic activities [126].

Three new terpenic cyclooctafuranones, turbinafuranones A–C (289–291), together with
three novel 6,6-spiroketals, spirornatas A–C (292–294), were isolated from the marine alga
T. orata, collected from the Gulf of Manner of India [128,129]. The six compounds showed
scavenging activities against DPPH and ABTS radicals. Notably, 289–291 also exhibited
in vitro antidiabetic properties [128], while 292–294 showed antihypertensive activities [129].

Five new glycerol derivatives, identified as 295–299, were isolated from three different
Sargassum species [130–132]. Among them, 295 and 296 were identified from S. parvivesicu-
losum in Sanya, China, 297 was obtained from S. sagamianum on Jeju Island, Korea [131],
and 298 and 299 were derived from S. thunbergii in the West Sea, Korea [132]. Particularly,
296 and 297 were determined to be monoglycerides, whereas 298 and 299 were glycolipids.
Compound 297 exhibited inhibitory activities against COX-2 and sPLA2-IIA [131].

Two novel resorcinols, 1-(5-acetyl-2,4-dihydroxyphenyl)-3-methylbutan-1-one (300) and
1-(5-acetyl-2-hydroxy-4-methoxyphenyl)-3-methylbutan-1-one (301), were isolated from the
brown alga S. thunbergii, supplied by the Guanghua Algae Company in Weihai, Shandong,
China. Their structures were determined by extensive spectrometric analysis [133].

Two new aryl cresol isomers (302 and 303) were isolated from the brown alga
S. cinereum, harvested along the coasts of the Red Sea in Hurghada, Egypt. Interestingly, the
two isolates showed antiproliferative activities against certain cancer cell lines and inhibitory
effects against 5-LOX and 15-LOX, the enzymes that have a vital effect on the viability of
tumor cells [134].

A novel ketone hybrid of mix biogenesis (304), consisting of a four-carbon chain at-
tached to a hydroquinol ring, was isolated from the aforementioned brown alga C. abies [60].
Its structure was determined by spectroscopic analysis, including NMR, MS, and UV.

A new amide derivative, sargassulfamide A (305), was obtained from the brown alga
S. naozhouense, harvested from the Leizhou Peninsula, China. Its structure was established
by spectrometric analysis and single-crystal X-ray diffraction [135].

Two new unsaturated lipids, (10Z,13Z)-hexadeca-10,13-dienal (306) and Ethyl-(10Z,13Z)-
hexadeca-10,13-dienoate (307), were isolated from the brown alga C. barbata, harvested from
Salses, France. Compound 306 showed anticancer effects against P388 cells in mice at
40 mg/kg [136].
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3. Conclusions

The merging of the former Cystoseiraceae and Sargassaceae families has resulted
in Sargassaceae becoming the largest family in Fucale. To date, more than 60 species of
Sargassaceae have been chemically studied, leading to the identification of more than
400 metabolites. Based the available literature, this review summarizes a total of 307 new
compounds obtained from 44 Sargassaceae species spanning six genera, and newly discov-
ered compounds derived from the 44 species collected from diverse locations along the
Tunisian, Chinese, Italian, Japanese, Australian, Moroccan, Irish Atlantic, Spanish, French,
Indian, Egyptian, Portuguese, Algerian, Korean, and New Zealand coasts (Table 1). These
include 223 terpenoids, 42 phloroglucinols, 17 steroids, and 25 other types of compounds.

Table 1. Chemical compounds studied in the Sargassaceae species in this review.

Species Sampling Locations Compounds and Types Ref.

Cystoseira schiffneri Chebba, Tunisia 1 (monoterpenoid) [27]

C. crinita Catania, Sicily, Italy 3, 42–44, 58
(sesquiterpenoid and diterpenoids) [31,46]

South coast of Sardinia, Italy 70, 71, 73–78, 80, 81 (meroterpenoids) [57]
Toulon, France 72, 79, 82 (meroterpenoids) [58]

C. myrica El-Zaafarana, Egypt 63–66 (diterpenoids) [52]
Fayed, Egypt 266 (steroids) [117]

C. abies-marina Mosteiros, Portugal 83, 84, 87, 88 (meroterpenoids) [59]
Punta del Hidalgo, Spain 85, 86, 304 (meroterpenoids, ketone) [60]

C. amentacea var. stricta Le Brusc, Toulon, France 89, 166 (meroterpenoids) [62]
C. baccata El Jadida, Morocco 90, 91, 167–173 (meroterpenoids) [63,88]

Cystoseira sp. Montaña Clara Island, Spain 92, 93, 174–176 (meroterpenoids) [64]
C. balearica Portopalo, Sicily, Italy 94 (meroterpenoid) [66]

C. stricta var. amentacea Castelluccio, Syracuse, Sicily, Italy 95, 96, 104–107 (meroterpenoids) [67,71]
C. stricta Acicastello, Catania, Sicily, Italy 97–100, 108, 109 (meroterpenoids) [67,68,72]

Portopalo, Sicily, Italy 103 (meroterpenoid) [70]
C. stricta var. spicata near Cava d’Aliga, Italy 101, 102 (meroterpenoids) [69]

C. tamariscifolia Mediterranean Sea, Algeria 110–113, 177 (meroterpenoids) [73]
C. usneoides Mediterranean coast, Morocco 114–119 (meroterpenoids) [74]

Tarifa, Spain 120–131 (meroterpenoids) [75]
Sesimbra and Cabo Espichel, Portugal 132–135 (meroterpenoids) [76,77]

C. sauvageuana Aci Castello, Sicily, Italy 136, 137 (meroterpenoids) [78]
C. barbata Salses, France 306, 307 (lipids) [136]

Sargassum naozhouense Leizhou Peninsula, China 2, 305 (monoterpenoid and amide) [28,135]
S. hemiphyllum Heda Coast, Izu Peninsula, Japan 4–6 (norditerpenoids) [32]
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Table 1. Cont.

Species Sampling Locations Compounds and Types Ref.

S. micracanthum

Kominato, Chiba, Japan 7–14 (norditerpenoids) [33]
Coast of Gosa, Japan 15, 16 (norditerpenoids) [34]

Coast of Toyama Bay, Japan 144–147, 179, 180 (meroterpenoids) [82,91]
Wando County, Korea 227 (phloroglucinol) [106]

S. ilicifolium Gulf of Manner, India 67 (diterpenoid) [53]

S. fallax Governor Reef near Indented Head, Port
Phillip Bay, Australia 139, 140, 178 (meroterpenoids) [80]

S. macrocarpum Coast of Tsukumowan, Japan 141–143 (meroterpenoids) [81]

S. paradoxum Governor Reef near Indented Head,
Australia 148–151 (meroterpenoids) [83]

S. sagamianum Manazuru, Japan 152–154, 181, 182 (meroterpenoids) [84]
Jeju Island, South Korea 297 (glyceride) [131]

S. sagamianum var.
yezoense Oshoro Bay, Japan 155, 156 (meroterpenoids) [85]

S. siliquastrum Jeju Island, Korea 157, 158, 215–223, 184–206
(meroterpenoids) [86,93–96]

Seashore of Pusan, Korea 183 (meroterpenoids) [92]

S. tortile
Awa-Kominato, Chiba, Japan 159–165 (meroterpenoids) [87]

Tanabe Bay, Japan 210–213 (meroterpenoids) [99]
Wakasa Bay, Japan 214 (meroterpenoid) [100,101]

S. thun(m)bergii

Coast of Busan, Korea 208, 209 (meroterpenoids) [98]
Muroran, Japan 273 (steroid) [122]

Nanji Island, East China Sea, China 274 (steroid) [123]
West Sea, Korea 298, 299 (glycolipids) [132]

Weihai, Shandong, China 300, 301 (resorcinols) [133]
S. nigrifoloides Nanji Island, Zhejiang, China 224–226 (phloroglucinols) [105]

S. spinuligerum Wangaparoa Island, New Zealand 228, 235–239 (phloroglucinols) [107,109]
Auckland Harbour, New Zealand 245, 249 (phlorotannins) [111]

S. patens Coast of Noto Peninsula, Japan 265 (phlorotannins) [116]
S. asperifolium Hurghada, Egypt 267 (steroid) [118]

S. carpophyllum South China Sea, Beihai, China 268, 269 (steroids) [119]

S. fusiforme Anhui Bozhou Xiancheng Pharmaceutical
Limited Company, China 270, 271 (steroids) [120]

S. polycystcum Weizhou Island, Beihai, China 272 (steroid) [121]
S. parvivesiculosum Sanya, Hainan, China 295, 296 (glycerols) [130]

S. cinereum Red Sea, Hurghada, Egypt 302, 303 (aryl cresols) [134]
Cystophora moniliformis Port Phillip Bay, Victoria, Australia 17–19 (norditerpenoids) [35]

C. harveyi East of Cape Leeuwin Lighthouse, Australia 138 (meroterpenoid) [79]
C. torulosa Whangaparoa, New Zealand 238–251 (phlorotannins) [109–111]

Bifurcaria bifurcata

Atlantic coasts of Morocco 20–22, 24–26, 60, 62
(linear diterpenoids) [36,37,39,51]

Oualidia, Morocco 23, 27, 59, 61 (linear diterpenoids) [38,40]
Roscoff, Brittany, France 28, 29, 50–57 (linear diterpenoids) [41–50]

Kilkee, County Clare of Ireland 30–39, 45 (linear diterpenoids) [42–44]
Quiberon, Brittany, France 40, 41, 46–48 (linear diterpenoids) [45]

Near Piriac, France 49 (linear diterpenoid) [47]

Turbinaria conoides
Gulf of Manner, India 207, 283–288 (meroterpenoid,

macrolides, and pyranoids) [97,126,127]

Salin Munthal, Gulf of Mannar, India 275, 276 (steroids) [124]
Kenting, Taiwan, China 277–282 (steroids) [125]

T. ornata
Indian peninsular, India 289–291 (furanones) [128]

Gulf of Manner, India 292–294 (spiroketals) [129]
T. decurrens Mandapam region, India 68, 69 (triterpenes) [54]

Carpophyllum
maschalocarpum Torbay, north of Auckland, New Zealand 229–234, 252, 253, 257–261

(phlorotannins) [108,112,114]

C. angustifolium Panetiki Island, Cape Rodney, New Zealand 254–256, 262–264 (phlorotannins) [113,115]



Mar. Drugs 2024, 22, 59 22 of 30

The majority of the secondary metabolites are meroterpenoids, diterpenoids, and
phloroglucinols (Figure 22). Sargassum and Cystoseira are the most studied genera, reported
by 42 and 27 articles, respectively, and are rich in meroterpenoids (Figure 23). Bifurcaria,
investigated in 15 articles, is rich in linear diterpenoids, followed by Turbinaria, Cystophora,
and Carpophyllum, which were discussed by eight, five, and five articles, respectively.
Notably, the most productive species were B. bifurcata and S. siliquastrum, which have
yielded 39 and 35 new compounds, respectively. They were followed by C. usneoides,
C. crinita and S. micracanthum, which produced 22, 18, and 17 new compounds, respectively
(Table 1).
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Notably, from a chemical viewpoint, B. bifurcata is clearly distinguishable from other
Sargassaceae species due to its extensive production of linear diterpenes. In contrast, the
remaining species, with the exception of C. crinita, do not produce acyclic diterpenoids.
Interestingly, the linear diterpenes yielded by B. bifurcata belong to mono-, dio-, and
trioxygenated geranylgeraniol derivatives with the oxygenated function located at C-12,
C-13, or C-10, depending on the specific sampling locations.

Remarkably, a total of 134 compounds (Table 2), including 85 meroterpenoids, 16 diter-
penoids, 2 triterpenoids, 5 phloroglucinols, 10 steroids, 3 macrolides, 3 pyran derivatives,
3 furanones, 3 spiroketals, 3 phenols, and one glycerol derivative, showed various biological
activities, such as cytotoxic, antiprotozoal, antioxidant, antifouling, antiviral, antiglycation,
antimicrobial, anti-Alzheimer’s disease, antidiabetic, antihypertensive, and antiphotoaging
effects. Among them, 34 showed cytotoxicities against multiple cancer cell lines, including
P388, A-549, L-1210, KB, HT-29, NSCLC-N6, MDA-MB-231, KA3IT, Colon26-L5, AGS,
HT-1080, HEPG-2, HCT116, MCF-7, Caco-2, and HL-60. Structure-activity relationships in-
dicated that the configuration of the double bond and positions/quantities/oxidation of hy-
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droxyl groups played key roles in their cytotoxic activities. Additionally, 74 of them demon-
strated potent radical-scavenging effects in the DPPH and ABTS assay, while 22 of them
showed superior attenuation potential against cyclooxygenase-1/2 and 5-lipoxygenase,
and TNF-α.

Table 2. Bioactive compounds reported from Sargassaceae species in this review.

Activity Class Compounds Biological Activities Ref.

Cytotoxicity

4–6 against P388, IC50: 5.1, 2.2, and 50 µg/mL [32]

132, 133
against P388, IC50: 0.8 and 1.5 µg/mL [76]

against A-549, IC50: 1.25 and 1.4 µg/mL [76]

134, 135
against P-388, IC50: 3.2 and 6.8 µg/mL [77]

against L-1210, inhibition rate: 50–100%, 10–20 µg/mL [77]
against A-549, inhibition rate: 50–70%, 20 µg/mL [77]

139, 140, 178 against P388, IC50 > 27–29 µM [80]
210–213 against P388, ED50: 20.8, 14.0, 16.8 and 5.7 µg/mL [99]
279–282 against P-388, ED50: 0.6, 0.8, 0.9 and 0.4 µg/mL [125]

against KB, ED50: 5.9, 4.0, 4.6 and 1.8 µg/mL [125]
against A-549, ED50: 3.1, 2.5, 2.3 and 1.8 µg/mL [125]
against HT-29, ED50: 0.4, 1.4, 1.2 and 1.7 µg/mL [125]

307 against P388 in mice in vivo at 40 mg/kg [136]
21, 22 against NSCLC-N6, IC50: 12.3 and 9.5 µg/mL [37]

31 against MDA-MB-231, inhibition rate: 78.8%, 100 µg/mL [43]
35 against MDA-MB-231, IC50: 30.7 µg/mL [44]

63–66 against KA3IT, IC50: 10, 5, 5 and 5 µg/mL [52]

83, 84, 87 against Hela in Log and Lag phases, IC50: 17.3–25.0, 20.1–32.0
and 2.8–10.2 µg/mL [59]

152, 153, 181 against Hela S3, IC50: 10, 4.0 and 10 µg/mL [84]
144–146 against Colon 26-L5, IC50: 1.51, 17.5 and 1.69 µg/mL [82]

204 against AGS, HT-29 and HT-1080, IC50: 6.5, 3.4 and 13.9 µg/mL [95]
266 against HEPG-2 and HCT116, IC50: 2.96 and 12.38 µM [117]
302 against HepG2, MCF-7 and Caco-2, IC50: 14.5, 17.6 and 18.2Mm [134]
303 against HepG2, MCF-7, and Caco-2, IC50: 13.1, 12.7 and 11.2 µM [134]

268
against HL-60, IC50: 2.96 µg/mL [119]

causing morphological abnormality of Pyricularia oryzae mycelia,
MMDC: 63 µg/mL [119]

269 causing morphological abnormality of P. oryzae mycelia,
MMDC: 250 µg/mL [119]

28, 62, 89 against Paracentrotus lividus, ED50: 12, 4 and 12 µg/mL [41,51,62]

Anti-
inflammatory

67 inhibit COX-1/2 and 5-LOX, IC50: 3.52, 2.47 and 4.70 mM [53]
68, 69 inhibit COX-1, IC50: 21.62 and 22.02 µM [54]

inhibit COX-2, IC50: 15.51 and 13.98 µM [54]
inhibit 5-LOX, IC50: 3.92 and 3.02 µM [54]

207 inhibit COX-2 and 5-LOX, IC50: 1.47 and 3.70 µM [97]

283–288
inhibit COX-1, IC50: 3.13, 3.19, 3.35, 4.06, 5.11 and 5.23 mM [126,127]
inhibit COX-2, IC50: 1.75, 1.93, 1.99, 2.15, 2.93 and 3.27 mM [126,127]
inhibit 5-LOX, IC50: 4.24, 4.88, 5.07, 2.41, 2.99 and 3.22 mM [126,127]

297 inhibit COX-2 and sPLA2-IIA,
inhibition rate: 35.6%, 50 µM; 26.1%, 10 µM [131]

114, 115, 117 TNF-α inhibition, inhibition rate: 11–33%, 6–10 µM [74]
120 TNF-α inhibition, inhibition rate: 81%, 10 µM [75]

121, 123, 127, 129, 130 TNF-α inhibition, inhibition rate: 21–35%, 8–10 µM [75]
125 TNF-α inhibition, inhibition rate: 79%, 8 µM [75]
128 59% inhibition against TNF-α at 5 µM [75]
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Table 2. Cont.

Activity Class Compounds Biological Activities Ref.

Antioxidant

67 scavenge DPPH and ABTS+ radicals, IC50: 1.26 and 1.38 mM [53]
70, 71, 73–78, 80, 81 scavenge DPPH radicals, scavenging rate: 29.0–96.7%, 164–230 µM [57]

87, 88 scavenge DPPH radicals, scavenging rate: 29–30%, 500 µg/mL [59]
114–117 scavenge ABTS˙+ radicals, EC50: 22.5–55.9 µM [72]

120–125, 127–130 scavenge ABTS˙+ radicals, EC50: 14.81–32.41 µM [75]

144–146
inhibition lipid peroxidation, IC50: 0.95–44.3 µg/mL [82]

scavenge DPPH radicals, IC50: 3.00– 52.6 µg/mL [82]
157 scavenge DPPH radicals, RC50: 0.24 µg/mL [86]
183 scavenge DPPH radicals, scavenging rate: 96.07%, 0.5 mg/mL [92]

187–202 scavenge DPPH radicals, scavenging rate: 87–91%, 100 µg/mL [94]

205, 206
scavenge DPPH radicals, EC50: 31.1–57.1 mM [96]
scavenge ABTS+ radicals, EC50: 15.8–28.1 µM [96]

207 scavenge DPPH and ABTS+ radicals, IC50: 24.25 and 24.32 µM [97]

208, 209
scavenge DPPH radicals, EC50: 30 and 31 µg/mL [98]

scavenge authentic/induced ONOO-,
scavenging rate: 60/98.6%, 57.1/90.6% [98]

215–219 scavenge DPPH radicals, RC50: 11.72–23.23 µg/mL [86]
220–223 scavenge DPPH radicals, RC50: 0.10–0.33 µg/mL [86]

227 scavenge ABTS+ radicals, IC50: 47 µM [106]

283–285
scavenge DPPH radicals, IC50: 1.20, 1.35 and 1.54 mM [126]
scavenge ABTS+ radicals, IC50: 1.48, 1.54, and 1.81mM [126]

286–288
scavenge DPPH radicals, IC50: 0.54, 0.54 and 0.68 mg/mL [127]
scavenge ABTS+ radicals, IC50: 0.58, 0.58 and 0.76 mg/mL [127]

289–291
scavenge DPPH radicals, IC50: 1.16, 1.05 and 1.21 mM [128]
scavenge ABTS+ radicals, IC50: 1.38, 1.24 and 1.41 mM [128]

292–294
scavenge DPPH radicals, IC50: 1.14, 1.25 and 1.42 mM [129]
scavenge ABTS+ radicals, IC50: 1.28, 1.34 and 1.71 mM [129]

184–186
reduce ROS formation in HT 1080 cells by over 67.2% at 5 µg/mL [93]

inhibit lipid peroxidation induced by H2O2 [93]
increase GSH levels in HT1080 cells at 5 µg/mL [93]

Antifouling

110–113, 177
against Pseudoalteromonas elyakovii, Vibrio aesturianus, Polaribacter
irgensii, Halosphaeriopsis mediosetigera, Asteromyces cruciatus, and

Lulworthia uniseptate, MIC: 0.1–10 µg/mL
[73]

against Exanthemachrysis gayraliae, Cylindrotheca closterium,
Pleurochrysis roscoffensis, Ulva intestinalis, and Undaria pinnatifida,

MIC: 0.1–10 µg/mL
[73]

168 against Sargassum muticum and phenoloxidase,
IC50: 2.5 and 1 µg/mL [63]

169 against S. muticum, U. intestinalis, phenoloxidase,
and E. gayraliae, IC50: 1 µg/mL [63]

171 against U. intestinalis and phenoloxidase, IC50: 2.5 and 2.5 µg/mL [63]

Antimicrobial

149–151 against Streptococcus pyogenes (345/1), zones of inhibition:
1–3 mm, 1 mg/mL [83]

152, 153, 181 against Bacillus subtilis and Staphylococcus aureus, inhibition rate:
ca. 30 and 80% [84]

157 slight inhibition against isocitrate lyase from S. aureus [86]
158, 215–223 weak inhibition AGAINST sortase A from Candida albicans [86]

275 against Staphylococcus aureus, S. epidermidis, Escherichia coli and
Pseudomonas aeruginosa, MIC: 32–128 µg/mL [124]

against Candida albicans and Aspergillus niger, MIC: 16 µg/mL [124]

276 against S. aureus, S. epidermidis, E. coli and P. aeruginosa,
MIC: 32–128 µg/mL [124]

against C. albicans and A. niger, MIC: 4 and 2 µg/mL [124]
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Table 2. Cont.

Activity Class Compounds Biological Activities Ref.

Anti-
Alzheimer’s

disease

193, 201 butylcholine esterase inhibition, inhibition rates: 82.7 or 80% [94]
224–226 against CDK5, IC50: 12, 18 and 17 µM [105]

against GSK3β, IC50: 1.6, 1.1 and 1.8 µM [105]

Antidiabetic

265 against α-amylase and α-glucosidase with IC50 values of 3.2
and 25.4–114 µg/mL, respectively [116]

274 PTP1B inhibition, IC50: 2.24 mM [123]
283–285 PTP-1B inhibition, IC50: 1.39, 2.33 and 3.13 mM [126]
289–291 PTP-1B inhibition, IC50: 2.58, 2.42 and 2.77 mM [128]

α-amylase inhibition, IC50: 0.39, 0.31 and 0.48 mM [128]
α-glucosidase inhibition, IC50: 0.34, 0.27 and 0.44 mM [128]

Antihypertensive
283–285 ACE-I inhibition, IC50: 1.23, 1.89 and 2.23 mM [126]
292–294 ACE-I inhibition, IC50: 4.55, 4.72 and 4.86 mM [129]

Antiprotozoal 30 against Plasmodium falciparum, IC50: 0.65 µg/mL [42]

Antiviral 132–135
against CV-1, IC50: 4.0, 1.0, 3.6 and 4.0 µg/mL [76,77]
against BHK, IC50: 6.2, 1.1, 3.7 and 6.2 µg/mL [76,77]

Antiglycation 141–143 AGEs inhibition, IC50: 2.1, 2.6 and 1.0 mM [81]

Antiphotoaging 172, 173 photodamage attenuation effect, cell viability value:
82.6–95.1%, 5–20 µg/mL [90]

Therefore, Sargassacean algae are an important source of bioactive secondary metabolites.
Given the great number of species of this family that remain chemically and pharmacolog-
ically underexplored, it is thus worthy to further investigate novel lead compounds from
Sargassacean algae.
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