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Abstract: The study of bioactive molecules of marine origin has created an important bridge between
biological knowledge and its applications in biotechnology and biomedicine. Current studies in
different research fields, such as biomedicine, aim to discover marine molecules characterized by
biological activities that can be used to produce potential drugs for human use. In recent decades,
increasing attention has been paid to a particular group of marine invertebrates, the Ascidians, as
they are a source of bioactive products. We describe omics data and computational methods relevant
to identifying the mechanisms and processes of innate immunity underlying the biosynthesis of
bioactive molecules, focusing on innovative computational approaches based on Artificial Intelligence.
Since there is increasing attention on finding new solutions for a sustainable supply of bioactive
compounds, we propose that a possible improvement in the biodiscovery pipeline might also come
from the study and utilization of marine invertebrates’ innate immunity.

Keywords: bioactive molecules; marine invertebrate; artificial intelligence; innate immunity

1. Introduction

Ascidians are tunicates, marine invertebrate chordates, considered the sister group of
vertebrates [1–4]. They owe their name to the tunic, an epidermally secreted external layer
that envelops the body. The tunic is composed of an ECM rich in collagen and tunicin (a
form of cellulose) and also rich in immune cells [5–9]. The tunic also contains proteins with
3,4-dihydroxyphenylalanine (DOPA), with a catechol moiety involved in the first line of im-
mune reaction [10] and wound healing [11,12], and 3,4,5-trihydroxyphenylalanine (TOPA)
with a pyrogallol moiety [13]. Ascidians are the source of many bioactive molecules belong-
ing to a wide variety of chemical categories [14,15] and with potential health applications,
including cytotoxic, antimitotic, antiviral and antimicrobial compounds [16–19]. Most of
the metabolites synthesized by ascidians contribute to creating the physico-chemical barrier
preventing the entrance of foreign organisms into the internal fluids or the colonization
of the tunic by encrusting organisms. The most represented chemical classes among the
bioactive secondary metabolites isolated from tunicates are alkaloids, polyketides, and
peptides [18]. Cytotoxicity against mammalian cell lines and anti-proliferative activity
were the most frequently assigned bioactivities. Compounds with cytotoxic and antineo-
plastic properties isolated from ascidians belong to disparate chemical classes, and three of
them have entered clinical trials [20]. Due to their key phylogenetic position in chordate
evolution, the ascidians are a powerful model for studying innate immunity [4]. They pos-
sess an exclusively innate immune system, including inflammatory, humoral, and cellular
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responses. On an evolutionary level, inflammation is a highly conserved phenomenon
and appears to be an essential first line of defense for both invertebrates and vertebrates.
The innate immune system is the major contributor to acute inflammation [21,22], a rapid
protective response to microbial infection, tissue injury, and insults [23], and the principal
promoter of inflammatory responses often involves infection by microbial invaders or
exposure to foreign particles/irritants/pollutants [24].

When host cells capable of innate immune responses encounter pathogenic microbes
or other foreign or host irritants, the inflammatory response initiates within minutes. The
host cells recognize the stimulus through various sensing mechanisms involving trans-
membrane receptors. In Ciona robusta (previously Ciona intestinalis), these interactions
transmit signals to the nucleus, resulting in the activation and regulation of numerous
genes via both transcriptional and post-transcriptional mechanisms [21,25–33], such as
antimicrobial peptides and complement factors [34,35] and proinflammatory cytokines
and chemokines which activate endothelial cells and recruit immune system cells to the
infection site [36–38].

The immune system is made up of a complex and dynamic network of cell subsets and
mediators that promote host defense from infectious agents or tumor cells and maintain
immunological tolerance in the organisms [39,40]. Vertebrate immunity is classically
divided into innate and adaptive immune systems that act interdependently based on
bidirectional crosstalk [41]. It is well known that the innate immune system provides
the first line of defense in immune response and can induce and regulate many different
adaptive immunity functions [42].

This review provides an overview of the bioactive molecules isolated from the innate
immune system response of ascidians and, at the same time, describes a new approach
combining omics technologies and new bioinformatic strategies for drug discovery based
on Artificial Intelligence to reduce costly and time-consuming conventional laboratory
testing, validation, and synthetic procedures and accelerate the drug discovery process.
We also propose the study of omics data obtained from the innate immune processes of
ascidians as an excellent source of innovative bioactive molecules such as antimicrobial,
anticancer, and immunomodulatory peptides.

2. Bioactive Molecules in Ascidians

Bioactive peptides (BPs) are composed of protein fragments or peptides with beneficial
metabolic and physiological functions that promote human health; thus, they are excellent
molecules for studying human health and disease and potential therapeutics [43,44]. Most
have similar structures, such as <20 amino acid residue lengths, and contain hydrophobic
residues [45,46]. Based on their modes of action, different classes of BP are evidenced: anti-
cancer (ACP), antiviral, antimicrobial (AMP), anti-oxidative stress, and immunomodulatory
peptides [15–19,47,48].

In the following sections, only AMP and immunomodulatory peptides will be dis-
cussed, as they are the only bioactive molecules shown in ascidians.

2.1. Bioactive Molecules with Antimicrobial Activity

AMPs are a class of small peptides that exist widely in nature, and they are an impor-
tant part of the innate immune system of different organisms. AMPs have a broad range of
inhibitory effects against bacteria, fungi, parasites, and viruses. The emergence of antibiotic-
resistant microorganisms and increasing concerns about the use of antibiotics have resulted
in the development of AMPs, which have good application prospects in medicine, food,
animal husbandry, agriculture, and aquaculture. Microorganism resistance to antimicro-
bials is becoming increasingly severe with the abuse of antibiotics in medicine, agriculture,
and animal husbandry. The prevalence of vancomycin-resistant enterococcus (VRE) and
methicillin-resistant Staphylococcus aureus (MRSA) is increasing in clinical medicine, so
countermeasures are urgently needed to address these bacterial infections. Research on
AMPs is continuously developing, and AMP databases store a considerable amount of data



Mar. Drugs 2024, 22, 6 3 of 21

on AMPs. A massive variety of antimicrobials has been extracted from tunicates. They
belong to disparate chemical classes, such as polysulfides, alkyl sulfates, terpenes, amino
alcohols, spiroketals, alkaloids, furanones, peptides, and others [15]. Some of them are
synthesized by symbiotic organisms colonizing the tunic or the internal fluids [49,50].

Most of the known AMPs are produced by ascidian-circulating cells, mainly immuno-
cytes (i.e., cells involved in immune responses) for defense purposes [51–60] (Table 1).

Table 1. Bioactive molecules in ascidians from immunocytes: antimicrobial and immunomodula-
tor peptides.

Species Peptide Activity References

Halocynthia roretzi Halocyamines A and B Antimicrobial [51]
Halocynthia aurantium Dicynthaurin halocidin Antimicrobial [54]
Halocynthia papillosa Halocintin and papillosin Antimicrobial [60]

Styela plicata Clavanins A-D Antimicrobial [55]
Ciona intestinalis Antimicrobial peptides Antimicrobial [34,52,61]

Ciona robusta C8, CrCp Immunomodulatory [62,63]

In Halocynthia roretzi, the tetrapeptides halocyamines A and B are produced by cyto-
toxic morula cells (MCs) [51], and their cytotoxic activity is likely related to their diphenol
rings, representing suitable substrates for the enzyme phenoloxidase (PO), which is also
stored inside MCs. The enzyme induces oxidative stress by oxidizing phenols to quinones
with the consequent production of ROS [64]. The hemocytes of species H. aurantium synthe-
size the peptide dicynthaurin and the cationic peptide halocidin [54]. The native peptide of
halocidin has a mass of 3443 Da and comprises two different subunits containing 18 amino
acid residues and 15 residues which are linked covalently by a single cystine disulfide
bond. Two different monomers were separately synthesized to make three additional
isoforms (15-residue homodimer, 18-residue homodimer, heterodimer). Antimicrobial
assays performed with synthetic peptides of halocidin confirmed that congeners of the
18-residue monomer were more active than those of the 15-residue monomer MRSA and
multidrug-resistant Pseudomonas aeruginosa.

Hemocytes from the solitary tunicate Styela clava contained a family of four α-helical
antimicrobial peptides that were purified, sequenced, and named clavanins A, B, C, and
D. Clavanins A–D (histidine-rich, -helix peptides) [49] and clavaspirin are synthesized by
Styela clava MCs [56]. In lysates of hemocytes of the same species, five cationic antimicrobial
peptides, called styelins, were identified and isolated [57,58]. In hemocytes of Styela
plicata, the octapeptide plicatamide was isolated [59]. In the tunicates Microcosmus sabatieri
and Halocynthia papillosa, antimicrobial activities were detected, and two novel peptides,
halocyntin and papillosin, were isolated and characterized. These molecules display
antibacterial activity against Gram-positive and Gram-negative bacteria. A combination of
Edman degradation and mass spectrometry obtained a complete peptide characterization.
The mature molecules of halocyntin and papillosin comprise 26 and 34 amino acid residues,
respectively [60].

The enormous quantity of genomic data has become a promising source of putative
AMPs due to progress in bioinformatics [65–68]. In C. intestinalis, using genome and ex-
pressed sequence tag (EST) data, a putative gene family has been identified exhibiting
several structural features typical of AMPs. The synthetic peptide exerted potent antimicro-
bial activity against various bacteria and against the yeast Candida albicans, but it was not
cytolytic for mammalian erythrocytes. Using the synthetic peptide as an antigen, specific
antibodies were generated, and the natural parent molecule was localized to a compartment
of a distinct hemocyte type, the univacuolar refractile granulocytes [53]. Furthermore, a
gene family coding for putative AMPs was identified in the EST database of C. intestinalis
and subsequently identified and cloned from the Northern European Ciona subspecies.
Molecular analysis revealed that the natural peptide is synthesized and stored in a distinct
hemocyte type, the univacuolar non-refractile granulocytes, and that the expression of the
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gene is markedly upregulated in hemocytes after immune challenge. The peptide proved
highly effective against Gram-negative and Gram-positive bacteria, including several hu-
man and marine pathogens, as well as the yeast C. albicans. Using two different methods,
it was demonstrated that the peptide kills Gram-negative and Gram-positive bacteria
by permeabilizing their cytoplasmic membranes. Circular Dichroism (CD) spectroscopy
revealed that in the presence of liposomes composed of negatively charged phospholipids,
the peptide undergoes a conformational change and adopts an alpha-helical structure.
Moreover, the peptide was virtually non-cytolytic for mammalian erythrocytes. Hence, this
designed AMP may represent a valuable template for developing novel antibiotics [52].

Ci-MAM-A24, a synthetic AMP derived from a peptide precursor from immune cells of
C. intestinalis, is potently active against representatives of Gram-positive and Gram-negative
bacteria by permeabilizing their cytoplasmic membrane. The activity of Ci-MAM-A24
against different bacterial pathogens which frequently cause therapeutic problems was
tested. Fedders et al. tested the killing capacity of Ci-MAM-A24 against clinically important
anaerobic bacteria as well as multiresistant aerobic strains such as MRSA, VRE, extended-
spectrum α-lactamase-producers, and multiple-resistant Pseudomonas aeruginosa, and all
strains proved to be highly susceptible to Ci-MAM-A24 at low concentrations [69].

Furthermore, an in silico screening method has been developed based on further
criteria such as size, amphipathicity, and aggregation propensity, by which 22 potential
LCAMP candidates in the Ciona genome were computationally predicted. Among these
LCAMP candidates, five novel salt-resistant LCAMPs with broad-spectrum antimicrobial
activity were experimentally confirmed. This strategy was also successfully applied to the
Xenopus tropicalis genome, suggesting that this method could apply to the in silico screening
of any genome [34].

Finally, Lu et al. [61] investigated the potential sORFs encoding AMPs in C. intestinalis,
and over 180 peptides deduced from the sORFs were predicted to be AMPs. Among the ten
peptides tested, six were found to have significant EST matches, providing strong evidence
for gene expression; five were proved to be active against the bacterial strains.

2.2. Bioactive Molecules with Immunomodulatory Effects

A recent idea is to use invertebrates as a source of molecules with potential im-
munoregulatory activities to improve strategies for modulating human immune system
responses [65,66]. The innate immune system is composed of many interdependent cell
types and mediators. It is one of the most critical natural systems for protection against
many harmful bacteria, viruses, parasites, and fungi in human health, and against autoim-
mune diseases, cancer, allergies, and infections [70,71].

Preliminary studies have shown evidence supporting a complex interaction between
the immune system and tumors [72]. Several innate system immunomodulators have been
identified; these include cytokines (interleukins, interferons, and chemokines), substances
isolated from microorganisms and fungi (lipopolysaccharides; LPS), and substances isolated
from plants (polysaccharides and phenolic compounds) [73]. Tumor cells secrete altered
protein products that must be recognized as foreign by the immune effector cells such as
B, T, natural killer and natural killer T cells, and type I and II interferons, and perforin
which are able to destroy tumor cells [74,75]. Therefore, the enhancement of the host
immune response is one of the most important methods for inhibiting tumor growth and
maintaining cellular homeostasis without harming the host.

The selective modulation of immunity is an emerging concept driven by the tremen-
dous advances in our understanding of this crucial host defense system. Invertebrates have
drawn researchers’ interest as potential sources of new bioactive molecules owing to their
immunomodulatory activities. An LPS challenge in the ascidian C. intestinalis generates the
transcript, Ci8 short, with cis-regulatory elements in the 3′ UTR region which is essential
for shaping innate immune responses. The derived amino acidic sequence from in silico
analysis showed specific binding to human major histocompatibility complex (MHC) class
I and class II alleles. The role of Ci8 short peptide (Table 1) was investigated in a more
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evolved immune system using human peripheral blood mononuclear cells (PBMCs) as an
in vitro model. The biological activities of this molecule include the activation of the 70 kDa
TCR ζ chain associated protein kinase (ZAP-70) and T cell receptor (TCR) Vβ oligo clonal
selection on CD4+ T lymphocytes as well as increased proliferation and IFN-γ secretion.
Furthermore, Ci8 short affects CD4+/CD25high-induced regulatory T cells (iTreg) subset
selection, which co-expressed the functional markers TGF-β1/latency-associated protein
(LAP) and CD39/CD73 [62].

Furthermore, Colombo et al. [63] evaluated the 3D structure of the C8 short-derived C.
robusta chemo-attractive peptide (CrCP) (Table 1) by homology modeling, which showed
that CrCP displayed structural characteristics already reported for a short domain of the
vertebrate CRK gene, suggesting its possible involvement in cell migration mechanisms.
The biological activity of CrCP was studied in vitro using a primary human dermal cell
line. In vitro assays demonstrated that CrCP could induce the motility of HuDe cells in
both wound healing and chemo-attractive experiments. Furthermore, CrCP modulates
the expression of the matrix metalloproteinase-7 (MMP-7) and E-cadherin genes, and it
induces the activation of the NF-κB signaling pathway.

3. Bioactive Molecule Identification through Omics Technologies

Classical methods for peptide analysis have relied principally on targeted immunoas-
says which enable the biochemical purification of bioactive peptides from tissues or cells
by identifying fractions with a desired bioactivity [76]. By performing multiple rounds
of purification, bioactive peptides could be subsequently identified. This approach dis-
covered many peptides in ascidians, including the isolation of Clavanins in Styela clava
hemocytes [55] and Halocyamine in the ascidian Halocynthia roretzi [51]. During the last
decade, technological innovations and the advent of omics data have led to an explo-
sion of biological information. Indeed, different strategies, including transcriptomics and
proteomics approaches, such as next-generation sequencing or mass spectrometry, have
substituted the classical methods for peptide analysis, producing a considerable amount of
biological data. The increasing amount of biological data produced was accompanied by
the use of bioinformatics tools to support big data analysis.

Fedders et al.’s initial efforts to integrate genomic data and bioinformatics [53] pro-
ceeded through a reverse search for AMPs in C. robusta. They used the completed genome
project and the substantial amount of EST data available as a screening matrix in associa-
tion with bioinformatics techniques for the design of synthetic AMPs with in silico tools.
Another recent approach to investigating bioactive peptides in C. robusta by integrating
omics data analysis with bioinformatics focused on the study of the 3D structure of the
C8short-derived CrCP, which was evaluated by homology modeling. In vitro studies using
a primary human dermal cell line (HuDe) evaluated the biological activity of CrCP. A short
domain of the vertebrate CRK gene was identified, suggesting its possible involvement in
cell migration mechanisms [75].

Later, Kawada et al. [77] showed how omics studies associated with AI algorithms
could contribute to the elucidation of gene expression profiles. These revealed key regu-
latory genes for Ciona follicle growth, maturation, and ovulation, verifying essential and
novel molecular mechanisms underlying these biological events with the contribution of
machine learning techniques. Furthermore, AI has been employed to solve some of the
most challenging issues of bioinformatics, including protein structure prediction, homology
searches, multiple alignment and phylogeny construction, genomic sequence analysis,
gene finding, and more. Thus, combining omics data with AI and single-cell technologies,
Kawada et al. [77] paved the way for investigating in greater detail the nervous, neuroen-
docrine, and endocrine systems of ascidians and the molecular and functional evolution
and diversity of peptidergic regulatory networks throughout chordates. Franchi et al. [78]
reported the identification, by mining the B. schlosseri transcriptome, of a transcript for a
putative styelin-like AMP named botryllin, which is actively transcribed by morula cells
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(MCs). The synthetic peptide, obtained from in silico translation of the transcript, exerted
toxic activity toward bacterial and unicellular yeast cells.

Additional omics data may come from proteome analyses and can also be useful for
identifying proteins and peptides with molecule bioactive features, such as AMPs [79].
One of the most widespread proteomic approaches is liquid chromatography coupled with
mass spectrometry (LC-MS) [80]. The analysis of spectra obtained by mass spectrometry
consists of protein profiling, peptide mapping and identification, and protein quantification.
Matos et al. [81], through shotgun proteomics of the ascidian tunic, provided new insights
on host–microbe interactions by revealing diverse AMPs. They reported different proteins
associated with immune mechanisms of invertebrates, as in the case of the metazoan Down
syndrome cell adhesion molecule-like protein, which was detected in Molgula sp. samples
and related to immune mechanisms mediating phagocytosis and adherence of bacteria [82],
or the barrier to autointegration factor (BAF), involved in innate immune response as an
inhibitor of exogenous viral DNA replication and involved in host defense response [83],
revealing the tunic as a very active tissue in terms of bioactive compound production [81].

A recent study on innate immune response mechanisms to microbial stimuli in a C.
robusta invertebrate model showed the importance of multi-omics analysis and bioinfor-
matics approaches. Indeed, the intersection of large-scale sequencing or other “-omics”
approaches, as the combination of transcriptomic and proteomic data analysis, allows the
better investigation of the cellular pathways and biological processes affected by microbial
treatments and the investigation of host responses to PAMPs in different physiological
conditions and at various stages of maturation of the immune system, thus filling potential
gaps concerning expression differences observed in the synthesis of proteins related to
mRNA expression [84].

4. AI-Based Computational Approaches and Their Role in Drug Discovery

To guide the reader in the following methodological sections, we will briefly intro-
duce the main concepts of AI and its principal subclasses, and then we will focus on AI
approaches applied to drug discovery.

AI is a technology-based system that can mimic human intelligence through features
such as reasoning, knowledge representation, and solution research. At the same time, it
does not threaten to completely replace human physical presence. Moreover, AI can help
manage the massive amount of data produced and give decision-making support in clinical
and translational research.

Machine learning (ML) is a subclass of AI. Through ML processes, computers can
learn without explicitly being programmed. It performs prediction and classification tasks
through pattern detection without using defined rules [85]. There are two ML algorithm
classes: supervised and unsupervised learning.

In supervised learning, the datasets are designed to train or “supervise” algorithms to
classify data or to accurately predict outcomes. Moreover, supervised learning problems
can further be divided into “classification” and “regression” tasks: classification assigns
test data to specific categories, and regression can predict a continuous numerical output,
helping in establishing a relationship among the variables by estimating how one variable
affects the other. Another subclass of ML is classification, which is “unsupervised” as it
takes references from datasets consisting of input data without labeled responses [85–92].

Due to the massive amount of data produced by NGS techniques, AI has made
a significant contribution to data analysis. Also, in bioactive compound analysis, ML
algorithms are the basis of many prediction and analysis methods. Deep Learning (DL)
algorithms are a subset of ML [93–98].

Drug discovery is the process through which new medications against diseases are
discovered. It consists of a combination of a wide variety of technologies and expertise
aimed at finding potential drugs against specific targets. Typical examples of drug discovery
tasks are drug-target prediction [99], bioavailability prediction [100], and de novo drug
design [101]. Moreover, there is also the main category of pharmaceutical analysis that
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groups these examples of drug discovery, involving different subtasks such as toxicity
analysis, bioactivity evaluation, and physiochemical property analysis.

Advancements in AI techniques have revolutionized their applications to this field
of research (Figure 1). Indeed, many AI approaches have been developed during the last
decade specifically for this aim, allowing the acceleration of the drug discovery process
and, at the same time, reducing the high-cost characteristics of conventional methods in
terms of money and time [102].
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Figure 1. Principal classes and subclasses of AI algorithms and their involvement in drug discovery.

Drug toxicity prediction is one of the subtasks of drug discovery, and it allows us to
predict how much a molecule could adversely affect humans. The use of AI technologies
allows the testing of a specific molecule’s toxicity, avoiding animal tests and high costs
(Figure 2) [103,104]. The physico-chemical properties of molecules are another essential
feature to assess in drug discovery studies. Their knowledge allows the understanding
and modeling of the action of drugs. Among the numerous types of physico-chemical
properties are the solubility, molar mass, charge, hydrophobicity, isoelectric point, and
percentage of hydrophobic amino acids [105,106]. About 65% of the small molecule drugs
are derived from natural products or their derivatives [107]; hence, drug bioactivity assess-
ment has become an active area in drug discovery. AI techniques have been effectively
applied to predicting drug bioactivities, such as anticancer, antiviral, and antibacterial
activities (Figure 2) [108,109]. Among the different types of bioactive features, antimicrobial
properties are gaining much attention as AMPs can be cutting-edge treatments for many
infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has
persisted for an extended period, making them the best option for addressing the growing
problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become
more prominent, particularly in therapeutic applications.
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The prediction of AMPs has become difficult for academics due to the explosive in-
crease of AMPs documented in databases. Wet-lab investigations to find antimicrobial
peptides are exceedingly costly, time-consuming, and even impossible for some species.
Therefore, to choose the optimal AMP candidates before in vitro trials, an efficient compu-
tational method must be developed [110]. Bioactive compounds can also assert an essential
role as anticancer molecules. Indeed, most of them exert their antiproliferative effects by
inhibiting different signaling pathways or intervening in cell-cycle arrest [111]. Various AI-
based tools have recently been developed to help solve this aim. Another important subtask
of drug discovery is the accurate binding prediction between a major histocompatibility
complex (MHC) allele and bioactive peptides, as these last molecules are essential players
in the synthesis of personalized cancer vaccines [112]. The immune system struggles to
distinguish between a cancerous and a healthy cell. In a patient who has cancer with a
particular MHC allele, only those peptides that bind with the MHC allele with high affinity
help the immune system recognize the cancerous cells. AI approaches can help predict
MHC-II binding, a fast alternative to wet-laboratory investigations, since experiments for
MHC class II binding peptide identification are expensive and time consuming.

Finally, the protein structure is another important aspect to investigate in drug dis-
covery as it allows us to understand the structural interactions, investigating the potential
functionality of a protein and acquiring information on important binding domains for
target proteins. Indeed, most drug targets are proteins that play essential roles in enzymatic
activities, cell signaling, and cell–cell transduction. Although conventional experimental
techniques, such as X-ray crystallography, cryogenic electron microscopy, and nuclear
magnetic resonance spectroscopy have been proposed to investigate potential protein struc-
tures, they are still time-consuming and costly. Therefore, AI technology can help develop
novel methods to fill the gap between the number of protein sequences and known protein
structures. Virtual Screening (VS) is a computational approach that allows the prediction
of the 3D structure of a chemical compound or a potential bioactive molecule against a
specific target (Figure 3). It can be divided into ligand-based and structure-based methods.
The former is used when very little structural information is available for the target and a
set of active ligand molecules is known. Ligand-based methods include pharmacophore
modeling and quantitative structure–activity relationship (QSAR) methods. The latter is
used to model the interaction between a small molecule with a target protein at the atomic
level, thus characterizing the behavior of small molecules in the binding site of target
proteins and elucidating fundamental biochemical processes [113].
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5. AI-Based Web Tools for Bioactive Compound Identification and Analysis

As omics technologies have led to a vast increase in biological knowledge, this raises
the necessity of figuring out how to mine helpful knowledge from it, which requires
sophisticated data analysis and data-mining methods. To this aim, high-performance
computing analysis methods have been developed to support the massive amount of data
produced and, at the same time, give decision-making support to clinical and translational
research [114,115].

By using ML algorithms, computers can learn without explicitly being programmed.
It accomplishes prediction and classification tasks through pattern detection without using
defined rules. Many bioactive compound analysis and identification methods use ML [116].
Several types of omics data, such as transcriptomics and proteomics, can be used alone
or can be integrated into a multi-omics approach to be further analyzed by different
computational methods based on AI (Figure 4). Different steps can be completed starting
from genome or proteomic sequences to identify and analyze different features of potential
bioactive molecules.
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Indeed, different tools have been developed based on AI (Table 2):

5.1. To predict the Antimicrobial Activity of Peptides

CAMPR3 (http://www.camp3.bicnirrh.res.in/, accessed on 1 October 2023) (Collec-
tion of Antimicrobial Peptides) [117,118] allows the expansion and acceleration of AMP
family-based studies. It uses information on the conserved sequence signatures captured
as patterns and Hidden Markov Models (HMMs) [90]; AmPEPpy is a web tool for pre-
dicting AMP sequences using a random forest classifier (https://github.com/tlawrence3
/amPEPpy, accessed on 1 October 2023) [119]; InverPrep contains the CALCAMPI algo-
rithm that can calculate the physico-chemical properties (molar mass, charge, hydropho-
bicity, Boman index, aliphatic index, isoelectric point, and percentage of hydrophobic
amino acids) of multiple peptides simultaneously (http://ciencias.medellin.unal.edu.co/
gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en) ac-
cessed on 2 October 2023 [120]; AntiBP2 (http://crdd.osdd.net/raghava/antibp2/, ac-
cessed on 2 October 2023) [121] is based on the support vector machine (SVM) algorithm
using the composition of peptide sequences. The overall accuracy of the web server is about
92%, and the source of antibacterial peptides can also be predicted; AMPA is a web tool for
the prediction of protein antimicrobial regions (http://tcoffee.crg.cat/apps/ampa, accessed
on 4 October 2023), and its main application is the fast automatic detection of antimicrobial
regions in proteins that can serve as new templates for AMP design. AMPA-derived AI
values can be used to classify proteins or domains as antimicrobial or non-antimicrobial
automatically and compare different protein sequences in this regard. When used in con-
junction with the T-coffee alignment tool, antimicrobial regions can be checked to identify
potentially conserved antimicrobial domains [122].

5.2. To Identify Peptides with Anticancer Properties

The AntiCP tool (https://webs.iiitd.edu.in/raghava/anticp/, accessed on 4 October
2023) [123] is a web-based prediction server based on machine learning techniques such
as SVMs. It can predict every possible single-mutant/analog of a given peptide, and
it can also predict their anticancer activity along with all the essential physico-chemical
properties like hydrophobicity, charge, isoelectric point, etc. Other anticancer prediction
tools using ML or DL models have been developed. Between them is a novel meta-
approach which implements a user-friendly webserver for accurately identifying ACPs,
which is called MLACP 2.0 [124]. The tool employs 11 different encoding schemes and
eight different classifiers, including convolutional neural networks, to create a stable meta-

http://www.camp3.bicnirrh.res.in/
https://github.com/tlawrence3/amPEPpy
https://github.com/tlawrence3/amPEPpy
http://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
http://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
http://crdd.osdd.net/raghava/antibp2/
http://tcoffee.crg.cat/apps/ampa
https://webs.iiitd.edu.in/raghava/anticp/
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model (https://balalab-skku.org/mlacp2, accessed on 6 October 2023); ACP-MCAM can
automatically learn adaptive embedding and the context sequence features of ACP [125].
Chen et al. used the features of amino acid dipeptide composition and pseudo-amino acid
composition, combined with an SVM, to construct an ACP prediction algorithm called iACP
(http://crdd.osdd.net/raghava/anticp/multi_pep.php, accessed on 6 October 2023) [126].

Other methods can discriminate between ACPs and non-ACPs, and they include
ACPP [127], iACP-GAEnsC [128], TargetACP [129], ACPred [130], ACPred-FL [131], ACPred-
Fuse [132], ACP-DL [133] and iACP-FSCM [134].

5.3. To Predict Peptide Binding with Immune Protein Classes

The automated platform to benchmark peptide–MHC class II binding prediction tools,
called the Immune Epitope Database (IEDB), includes different prediction servers, such
as NetMHCII 2.3 for T cell epitope prediction, along with other B cell epitope predic-
tion tools (http://tools.iedb.org/main/, accessed on 10 October 2023) [135]. NetMHCII
2.3 (https://services.healthtech.dtu.dk/services/NetMHCII-2.3/, accessed on 10 October
2023) [136,137] uses artificial neuron networks (ANNs) to predict the binding of pep-
tides to HLA-DR, HLA-DQ, HLA-DP, and mouse MHC class II alleles. The user is also
guided in their choice of binding strength by strong and weak binding indicated in the
output. Other computational methods for the prediction of MHC class II binding include
ARB (http://epitope.liai.org:8080/matrix, accessed on 11 October 2023) [138], MHCpred
(http://SVRMHC.umn.edu/SVRMHCdb, accessed on 11 October 2023) [139], TEPITOPE
(https://github.com/dmnfarrell/epitopepredict, accessed on 11 October 2023) [140], and
several others [141].

5.4. To Predict AMPs

Prediction tools can be applied to protein sequences from the proteome. A peptide
must have many different features to be considered potentially bioactive, such as physico-
chemical characteristics, signal peptides, and the location of their cleavage sites. Web
tools such as SignalP 5.0 can achieve this aim (https://services.healthtech.dtu.dk/services/
SignalP-5.0/, accessed on 13 October 2023) [142]. This web tool can predict the presence
of signal peptides or the location of their cleavage sites in proteins from different species
through evolution, such as Archaea, Gram-positive Bacteria, Gram-negative Bacteria, and
Eukarya. This method uses a combination of several ANNs and HMMs to predict cleavage
sites and signal peptides/non-signal peptides. Both ANN and HMM are algorithms
belonging to a subset of ML algorithms which are DL models. In ANN, the nodes of the
networks are considered to be the neurons of the brain, and the edges connecting the nodes
are considered to be “synapses”. DL models have also been applied among AMP predictors.
Indeed, a key issue concerning DL models in AMP prediction is the need for samples in
the positive class and their ambiguity in the negative class [106]. MultiPep (https://agbg.
shinyapps.io/MultiPep/, accessed on 15 October 2023) is a hierarchical DL approach to the
multi-label classification of peptide bioactivities [143]. PeptideRanker (http://distilldeep.
ucd.ie/PeptideRanker/, accessed on 15 October 2023) [144] predicts peptide bioactivity
using bioactivity probability scores. PeptideLocator (http://bioware.ucd.ie/, accessed
on 15 October 2023) [145] is based on a BRNN algorithm. Other DL approaches used for
different types of peptide analyses are Antimicrobial Peptide Scanner vr.2 (https://www.
dveltri.com/ascan/v2/ascan.html, accessed on 16 October 2023) [146] and Deep-AmPEP30
(https://cbbio.cis.um.edu.mo/AxPEP, accessed on 16 October 2023) [147]. Antimicrobial
Peptide Scanner vr.2 proposes a neural network model with convolutional and recurrent
layers that leverage primary sequence composition to predict AMP properties.

A recent work by Hussain [148] describes an AMP prediction tool called AMP-
PFPDeep, which is based on a deep neural network. It improves the accuracy of short
antimicrobial peptide prediction using three different sequence encodings and an NN algo-
rithm. The different sequences of the benchmark datasets used in the study were converted

https://balalab-skku.org/mlacp2
http://crdd.osdd.net/raghava/anticp/multi_pep.php
http://tools.iedb.org/main/
https://services.healthtech.dtu.dk/services/NetMHCII-2.3/
http://epitope.liai.org:8080/matrix
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https://github.com/dmnfarrell/epitopepredict
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https://services.healthtech.dtu.dk/services/SignalP-5.0/
https://agbg.shinyapps.io/MultiPep/
https://agbg.shinyapps.io/MultiPep/
http://distilldeep.ucd.ie/PeptideRanker/
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into three-channel images comprising information related to the position, frequency, and
sum of 12 physiochemical features as the first, second, and third channels, respectively.

AMPGANv2 is a bidirectional conditional generative adversarial network-based ap-
proach for rational AMP design (https://gitlab.com/vail-uvm/amp-gan, accessed on 18
October 2023). AMPGAN v2 uses generator–discriminator dynamics to learn data-driven
priors and control generation using conditioning variables [149]. The bidirectional compo-
nent, implemented using a learned encoder to map data samples into the latent space of
the generator, aids in the iterative manipulation of candidate peptides.

5.5. To Predict Secondary Protein Structure

Web tools that use DL include the PSIPRED Protein Structure Prediction Server from
the University College London Bioinformatics Unit (http://bioinf.cs.ucl.ac.uk/psipred/
psiform.html, accessed on 20 October 2023) [150], which consists of a two-stage neural
network and is based on the position-specific scoring matrices generated by PSI-BLAST. It
predicts highly accurate secondary structure predictions.

Another secondary structure prediction method is PSSpred (Protein Secondary Struc-
ture prediction) (https://zhanggroup.org/PSSpred/, accessed on 20 October 2023). It also
uses PSI-BLAST to collect multiple sequence alignments. Then, amino-acid frequency and
log-odds data are used to train the secondary structure, based on the Rumelhart error
backpropagation method, and finally, a consensus of seven neural network predictors is
used to predict the secondary structure prediction [151]. Among secondary structure pre-
diction tools using DL approaches, there is also the APSSP2: Advanced Protein Secondary
Structure Prediction Server [152] http://crdd.osdd.net/raghava/apssp2/ (accessed on 20
October 2023).

5.6. To 3D Modeling

The AlphaFold method (https://alphafold.ebi.ac.uk/, accessed on 21 October 2023) [153]
is a program that performs predictions of 3D protein structures and is designed as a
DL system. IntFOLD (Integrated Fold Recognition) (https://www.reading.ac.uk/bioinf/
IntFOLD/, accessed on 21 October 2023) is a fully automated, integrated pipeline for the
prediction of 3D structures and functions from amino acid sequences [154]. RaptorX is
another DL-based web server predicting both secondary predictions and 3D modeling
(raptorx.uchicago.edu, accessed on 24 October 2023) [155]. ESyPred3D is an automated
homology modeling program. Alignments are obtained by combining, weighing, and
screening the results of several multiple alignment programs. The final three-dimensional
structure is built using the MODELLER modeling package [156] (http://www.fundp.ac.
be/urbm/bioinfo/esypred/, accessed on 24 October 2023).

5.7. Web Tools Employed in VS Techniques

Docking and molecular modeling allow us to know information about molecule orien-
tation and the spatial conformation of the molecule under investigation to infer potential
interactions with specific targets as proteins involved in immunity [157]. Some examples
of ML-based web servers are OCHEM (https://ochem.eu/home/show.do, accessed on
30 October 2023) [158–161] and ChemSAR (http://chemsar.scbdd.com, accessed on 30
October 2023) [162], which are both employed in target prediction.

Finally, we show one example of a pipeline used in the study of bioactive molecules
with high-throughput omics technologies. Starting from transcriptomics or proteomics of a
whole dataset, candidate peptide can be identified and further analyzed through different
bioinformatics web tools that allow the evaluation the bioactivity of the putative peptide
sequences, the AMP, and the anticancer activity. Moreover, the protein structure of putative
peptides and the interaction with target proteins can be predicted. The candidate peptides
identified can be then synthetized, and finally, in vitro testing can be used to validate the in
silico predictions (Figure 5).
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Table 2. AI-based tools developed for bioactive peptide analyses.

Drug Discovery Task Web Tool/Method AI Algorithm Ref. URL

Antimicrobial
activity prediction

CAMPR3 HMM (ML) [118] http://www.camp3.bicnirrh.res.in/
amPEPpy RF (ML) [119] https://github.com/tlawrence3/amPEPpy
InverPrep [120] https://InverPep/public/home_en

AntiBP2 SVM (ML) [121] https:
//webs.iiitd.edu.in/raghava/antibp2/index.html

AMPA ML [122] http://tcoffee.crg.cat/apps/ampa
Antimicrobial Peptide

Scanner vr.2 ANN (DL) [146] https://www.dveltri.com/ascan/v2/ascan.html

Deep-AmPEP30 CNN (DL) [147] https://cbbio.cis.um.edu.mo/AxPEP
AMP-PFPDeep DNN (DL) [148] https://github.com/WaqarHusain/sAMP-PFPDeep

AMP design AMPGANv2 generative adversarial
network (DL) [149] https://gitlab.com/vail-uvm/amp-gan

Anticancer properties

AntiCP SVM (ML) [123] https://webs.iiitd.edu.in/raghava/anticp/
MLACP 2.0 ANN (DL) [124] https://balalab-skku.org/mlacp2

ACP-MCAM multi-kernel CNN [125]
iACP SVM (ML) [126] http://lin.uestc.edu.cn/server/iACP
ACPP SVM (ML) [127] https://github.com/brsaran/ACPP

iACP-GAEnsC Genetic Algorithm (ML) [128] https://github.com/MLBC-lab/iACP-RF
TargetACP SVM (ML) [129]

ACPred RF+SVM (ML) [130] https://github.com/chaninlab/acpred-webserver
ACPred-FL SVM (ML) [131] http://server.malab.cn/ACPred-FL

ACPred-Fuse RF (ML) [132] http://server.malab.cn/ACPred-Fuse
ACP-DL LSTM (DL) [133] https://github.com/haichengyi/ACP-DL

and iACP-FSCM Genetic Algorithm [134] http://camt.pythonanywhere.com/iACP-FSCM

MHC class II
binding prediction

NetMHCII 2.3 ANN (DL) [135] https://services.healthtech.dtu.dk/services/
NetMHCII-2.3/

ARB Average Relative Binding
(ARB) matrix [138] http://epitope.liai.org:8080/matrix

MHCpred
PLS-based

allele-specific multivariate
statistical model

[139] http://SVRMHC.umn.edu/SVRMHCdb

TEPITOPEpan ANN (DL) [140] http://www.biokdd.fudan.edu.cn/Service/
TEPITOPEpan/

Signal peptides
cleavage site location SignalP 5.0 ANN + HMM

(ML + DL) [142] https:
//services.healthtech.dtu.dk/services/SignalP-5.0/

Peptide bioactivity

MultiPep deep neural network
multi-label [143] https://agbg.shinyapps.io/MultiPep/

PeptideRanker feed-forward neural
network (DL) [144] http://distilldeep.ucd.ie/PeptideRanker/

PeptideLocator BRNN (DL) [145] http://bioware.ucd.ie/

Secondary structure
prediction

PSIPRED Two-stage NN (DL) [150] http://bioinf.cs.ucl.ac.uk/psipred/psiform.html
PSSpred Neural Network (DL) [151] https://zhanggroup.org/PSSpred/
ASPPS2 Neural Network (DL) [152] http://crdd.osdd.net/raghava/apssp2/

3D modeling

AlphaPhold HMM (DL) [153] https://alphafold.ebi.ac.uk/
IntFOLD Neural Network (DL) [154] https://www.reading.ac.uk/bioinf/IntFOLD/
RaptorX Neural Network (DL) [155] https://raptorx.uchicago.edu/

ESyPred3D Neural Network (DL) [156] http://www.fundp.ac.be/urbm/bioinfo/esypred/

Virtual Screening
OCHEM Neural Network [161] https://ochem.eu/home/show.do

ChemSAR ML [162] http://chemsar.scbdd.com
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https://agbg.shinyapps.io/MultiPep/
http://distilldeep.ucd.ie/PeptideRanker/
http://bioware.ucd.ie/
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https://zhanggroup.org/PSSpred/
http://crdd.osdd.net/raghava/apssp2/
https://alphafold.ebi.ac.uk/
https://www.reading.ac.uk/bioinf/IntFOLD/
https://raptorx.uchicago.edu/
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https://ochem.eu/home/show.do
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6. Conclusions

Drug discovery has always been a complex and time-consuming endeavor that tradi-
tionally relies on labor-intensive techniques, such as trial-and-error experimentation and
high-throughput screening. However, these methods can be slow, costly, and often yield
results with low accuracy. AI techniques such as ML and natural language processing,
combined with the experimental production of omics data, offer the potential to accelerate
and improve this process by enabling more efficient and accurate analyses of large amounts
of data. This combined approach allows researchers to examine a large number of poten-
tial drug compounds to identify those with the desired properties. Classic methods can
be limited by the availability of suitable test compounds and the difficulty of accurately
predicting their pharmacological behavior. Different algorithms based on AI, including
supervised and unsupervised learning methods, reinforcement, and evolutionary or rule-
based algorithms, can potentially contribute to solving these problems. For instance, the
efficacy and toxicity of new drug compounds can be predicted using these approaches
with greater accuracy and efficiency than when using traditional methods. Furthermore,
AI-based algorithms can also be employed to identify new targets for drug development,
such as the specific proteins or genetic pathways involved in diseases. This can expand the
scope of drug discovery beyond the limitations of more conventional approaches and may
lead to the development of novel and more effective drugs. AI-based methods, on the other
hand, can improve the efficiency and accuracy of drug discovery processes and lead to the
development of more effective drugs. Furthermore, high-throughput gene sequencing has
revolutionized the method used to identify novel molecular targets for drug discovery.

Since there has been increasing attention to finding new solutions for a sustainable
supply of bioactive compounds, we would like evidence of the most recent bioinformatics
methods to be connected to bioactive compound research. We also propose that a promis-
ing source of bioactive molecules, such as ACPs, antiviral, antimicrobial, anti-oxidative
stress and immunomodulatory compounds, along with innovative solutions as therapeutic
strategies, might come from the study of ascidian innate immunity processes.

Finally, the research’s expected impacts are therefore multiple: from the standardiza-
tion of a workflow of several techniques that can be replicated by using omics data coming
from the study of immune processes of different animal models and different AI based
algorithms to the identification of various classes of bioactive molecules that can form the
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basis for a new groups of drugs which are pharmacologically more efficient and have fewer
side effects.
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