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Abstract: Mangrove-derived actinomycetes represent a rich source of novel bioactive natural products
in drug discovery. In this study, four new polyene macrolide antibiotics antifungalmycin B-E (1–4),
along with seven known analogs (5–11), were isolated from the fermentation broth of the mangrove
strain Streptomyces hiroshimensis GXIMD 06359. All compounds from this strain were purified using
semi-preparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity-
guided fractionation. Their structures were elucidated through spectroscopic techniques including
UV, HR-ESI-MS, and NMR. These compounds exhibited broad-spectrum antifungal activity against
Talaromyces marneffei with minimum inhibitory concentration (MIC) values being in the range of
2–128 µg/mL except compound 2. This is the first report of polyene derivatives produced by
S. hiroshimensis as bioactive compounds against T. marneffei. In vitro studies showed that compound
1 exerted a significantly stronger antifungal activity against T. marneffei than other new compounds,
and the antifungal mechanism of compound 1 may be related to the disrupted cell membrane, which
causes mitochondrial dysfunction, resulting in leakage of intracellular biological components, and
subsequently, cell death. Taken together, this study provides a basis for compound 1 preventing and
controlling talaromycosis.

Keywords: actinomycetes; polyene macrolide; Streptomyces hiroshimensis; antifungal activity; antifun-
gal mechanism; Talaromyces marneffei

1. Introduction

Talaromyces (Penicillium) marneffei causes a life-threatening mycosis—Talaromycosis, an
endemic invasive mycosis found primarily in tropical and subtropical Southeast Asia [1–3].
In recent years, some drugs have been reported to encounter antifungal resistance for
T. marneffei, especially fluconazole [4–9]. Moreover, the disease is being recognized with
an increasing frequency well beyond the original endemic areas [10–16]. Therefore, the
discovery of new antifungal drugs is necessary to cover the shifting challenges of this and
other fungal infections.

Mangroves are ecologically significant plants in marine habitats that inhabit the coast-
lines of many countries [17]. Being a highly productive and diverse ecosystem, mangroves
are rich in numerous classes of actinomycete that are of great importance in the field of
antibiotics [18]. Furthermore, about 200 compounds, such as salinosporamide A (to be
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processed for clinical trials for cancer treatment), xiamycins, rifamycins, and antimycin A
were discovered from mangrove actinobacteria, which have become an important source of
novel bioactive compounds [19–23].

In our preliminary study, Streptomyces hiroshimensis GXIMD 06359 was isolated from
mangrove in the west coast of Hainan [24], which was identified as the potential strain to
produce antimicrobial active metabolites against T. marneffei in Am2ab medium. The scaled-
up fermentation and extensive chromatographic separation of the EtOAc extract resulted
in the isolation of four new metabolites, namely antifungalmycins B-E (1–4), together
with seven known compounds (5–11). Herein, we report the isolation and structural
determination of these compounds (Figure 1) along with the antifungal activities. Then
the mechanism of compound 1 inhibiting T. marneffei was studied, with the aim of finding
potential new drugs for the precision treatment of talaromycosis.
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Figure 1. Chemical structures of compounds 1–11 and antifungalmycin.

2. Results
2.1. Structural Elucidation

Compound 1 was obtained as a light-yellow amorphous powder. Its HR-ESI-MS
spectrum showed a characteristic [M − H]− ion peak at m/z 675.3578 (calcd for 675.3592),
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which is consistent with the molecular formula of C33H56O14, indicating 6 degrees of
unsaturation. The 1H NMR spectrum (Figure S1) shows resonances for three methyl
protons δH 1.14 (3H, d, J = 6.2 Hz, H3-28), 1.06 (3H, s, H3-29), and 0.84 (3H, t, J = 6.2 Hz,
H3-6′); seven methylene protons δH 1.71 (1H, m, H-10a), 1.25 (1H, m, H-10b), 1.62 (2H, m,
H2-12), δH 1.54 (2H, m, H2-6), 1.52 (2H, m, H2-4), 1.47 (2H, m, H2-8), 1.44 (1H, m, H-3′a),
1.25 (1H, m, H-3′b), 1.29 (1H, m, H-2′a), and 1.24 (1H, m, H-2′b); thirteen methine protons
δH 4.71 (1H, m, H-27), 4.24 (1H, dd, J = 5.7, 2.3 Hz, H-25), 4.02 (1H, m, H-3), 3.97 (1H, m,
H-9), 3.90 (1H, m, H-5), 3.90 (1H, m, H-7), 3.90 (1H, m, H-11), 3.68 (1H, m, H-1′), 3.65 (1H,
m, H-15), 3.51 (1H, dd, J = 7.2, 2.6 Hz, H-26), 3.34 (1H, m, H-14), 3.29 (1H, m, H-13), and
2.46 (1H, dd, J = 8.6, 6.8 Hz, H-2); and eight olefinic protons δH 6.28 (1H, m, H-21), 6.28 (1H,
m, H-22), 6.28 (1H, m, H-23), 6.26 (1H, m, H-20), 6.24 (1H, m, H-19), 6.15 (1H, dd, J = 15.1,
9.4 Hz, H-18), 5.72 (1H, d, J = 15.0 Hz, H-17), and 5.67 (1H, dd, J = 14.6, 5.8 Hz, H-24).
The 13C NMR and DEPT 135 spectra (Figures S2 and S3) displayed thirty-three signals for
carbon, including one carbonyl carbon δC 171.6 (C-1); one quaternary carbon δC 82.0 (C-16);
eight olefinic carbons δC 138.9 (C-17), 134.1 (C-24), 133.5 (C-22), 133.2 (C-20), 131.5 (C-19),
131.2 (C-21), 130.4 (C-23), and 126.3 (C-18); thirteen methine carbons δC 82.7 (C-15), 82.3
(C-14), 75.7 (C-26), 75.2 (C-13), 72.0 (C-25), 70.3 (C-27), 69.6 (C-3), 69.2 (C-9), 69.2 (C-1′),
68.5 (C-7), 67.8 (C-5), 67.8 (C-11), and 58.3 (C-2); seven methylene carbons δC 44.5 (C-8),
44.3 (C-6), 42.2 (C-10), 41.6 (C-12), 40.9 (C-4), 36.7 (C-2′), and 18.2 (C-3′); and three methyl
carbons δC 22.9 (C-29), 17.4 (C-28), and 14.0 (C-1′).

Careful analysis of the 1H and 13C NMR data (Table 1) of 1 showed they were very
similar to antifungalmycin [25,26], which possesses the same lactone ring. The main
difference was that the signals for two methylene groups [(δH 1.24, δC 31.3, CH2-4′) and
(δH 1.25, δC 22.1, CH2-5′)] at the side chain in the NMR spectra of antifungalmycin were
absent in compound 1. Those were supported by the 1H-1H COSY and HMBC correlations
(Figure 2). In the 1H-1H COSY spectrum of compound 1, correlations were observed for
H-2/H-3/H-1′/H-2′/H-3′/H-4′, H-10/H-11/H-12/H-13/H-14/H-15, and H-24/H-25/H-
26/H-27. The HMBC spectrum shows correlations of H-2 to C-1/C-4/C-1′/C-2′, H-14 to
C-12/C-13/C-15, H-15 to C-16/C-17/C-29, H-25 to C-23/C-24/C-25, H-26 to C27/C-28, and
H-27 to C-1. Thus, the planar structure of 1 was determined. In the NOESY spectrum, the
correlations of H-3/H-1′, H-13/H-15, H-25/H-26 (Figure 3) were not enough to elucidate
the compound 1 relative configuration. Consequently, compound 1’s relative configuration
has not been elucidated, and is named antifungalmycin B.

Compound 2, isolated as a light-yellow amorphous powder. The molecular formula
was deduced to be C33H56O11 by the HR-ESI-MS peak at m/z 627.3743 [M−H]− (calcd for
627.3744), indicating 6 degrees of unsaturation. The 1H NMR spectrum (Figure S10) shows
resonances for three methyl protons δH 1.19 (3H, d, J = 6.3 Hz, H3-26), 0.84 (3H, m, H3-27),
and 0.84 (3H, t, J = 6.9 Hz, H3-6′); eight methylene protons δH 1.92 (1H, m, H-12a), 1.52 (1H,
m, H-12b), 1.50 (2H, m, H2-8), 1.42 (1H, m, H-3′a), 1.24 (1H, m, H-3′b), 1.38 (2H, m, H2-4),
1.40 (2H, m, H2-6), 1.70 (1H, m, H-10a), 1.25 (1H, m, H-10b), 1.34 (1H, m, H-2′a), 1.23 (1H,
m, H-2′b), 1.24 (2H, m, H2-4′), and 1.24 (2H, m, H2-5′); twelve methine protons δH 4.62 (1H,
m, H-25), 4.05 (1H, m, H-3), 3.93 (1H, m, H-5), 3.93 (1H, m, H-7), 3.93 (1H, m, H-9), 3.93
(1H, m, H-11), 3.82 (1H, m, H-24), 3.72 (1H, m, H-1′), 3.63 (1H, m, H-15), 3.21 (1H, m, H-13),
2.87 (1H, m, H-14), and 2.38 (1H, t, J = 8.0 Hz, H-2); and eight olefinic protons δH 6.28 (1H,
m, H-19), 6.26 (1H, m, H-20), 6.23 (1H, m, H-21), 6.20 (1H, m, H-17), 6.20 (1H, m, H-22), 6.18
(1H, m, H-18), 5.89 (1H, dd, J = 14.0, 3.1 Hz, H-16), and 5.79 (1H, dd, J = 14.7, 6.8 Hz, H-23).
The 13C NMR and DEPT 135 spectra (Figures S11 and S12) displayed thirty-three signals
for carbon, including one carbonyl carbon δC 171.2 (C-1); eight olefinic carbons δC 135.9
(C-23), 133.8 (C-22), 133.3 (C-17), 131.4 (C-19), 131.1 (C-21), 130.7 (C-20), 130.4 (C-18), and
129.5 (C-16); twelve methine carbons δC 80.5 (C-13), 76.1 (C-14), 73.3 (C-26), 73.0 (C-13), 72.0
(C-25), 70.3 (C-27), 70.2 (C-3), 69.8 (C-9), 69.7 (C-1′), 69.6 (C-7), 66.7 (C-5), and 58.5 (C-2);
seven methylene carbons δC 44.0 (C-6), 43.7 (C-8), 43.3 (C-10), 40.9 (C-4), 38.5 (C-12), 33.9
(C-2′), 24.4 (C-3′), 31.3 (C-4′), and 22.1 (C-5′); and three methyl carbons δC 17.8 (C-26), 15.6
(C-27), and 14.0 (C-1′).
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Table 1. 1H NMR and 13C NMR data for compounds 1-4 in DMSO-d6.

NO.
1 a 2 a 3 b 4 b

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

1 - 171.6, C - 171.2, C - 171.3, C - 171.7, C
2 2.46, dd (8.6, 6.8) 58.3, CH 2.38, t (8.0) 58.5, CH 2.48, m 58.2, CH 2.46, dd (8.8, 6.6) 58.2, CH
3 4.02, m 69,6, CH 4.05, m 69,7, CH 4.05, m 70.0, CH 4.03, m 69,4, CH
4 1.52, m 40.9, CH2 1.38, m 40.9, CH2 1.45, m 43.3, CH2 1.50, m 40.9, CH2
5 3.90, m 67.8, CH 3.93, m 70.2, CH 3.93, m 68.2, CH 3.92, m 69.4, CH
6 1.54, m 44.3, CH2 1.40, m 44.0, CH2 1.45, m 45.4, CH2 1.50, m 44.1, CH
7 3.90, m 68.5, CH 3.93, m 70.3, CH 3.98, m 69.0, CH 3.92, m 68.2, CH
8 1.47, m 44.5, CH2 1.50, m 43.7, CH2 1.46, m 46.3, CH2 1.50, m 44.6, CH2
9 3.97, m 69.2, CH 3.93, m 69.8, CH 3.93, m 67.0, CH 3.97, m 68.2, CH
10 1.71, m; 1.25, m 42.2, CH2 1.70, m; 1.25, m 42.9, CH2 1.76, m;1.45, m 43.6, CH2 1.76, m; 1.53, m 41.4, CH2
11 3.90, m 67.8, CH 3.93, m 66.7, CH 3.93, m 66.9, CH 3.87, m 67.5, CH
12 1.62, m 41.6, CH2 1.92, m; 1.52, m 38.5, CH2 3.33, m 63.1, CH2 1.74, m; 1.50, m 44.4, CH2
13 3.29, m 75.2, CH 3.21, m 80.5, CH 3.46, m 66.0, CH 3.65, m 71.2, CH
14 3.34, m 82.3, CH 2.87, m 73.0, CH 3.80, m 84.6, CH 2.16, m 41.9, CH2
15 3.65, d (5.4) 82.7, CH 3.63, m 80.5, CH 3.71, d 78.6, CH 3.90, m 76.0, CH
16 - 82.0, C 5.89, dd (14.0, 3.1) 129.5, CH - 80.0, C 84.5, CH
17 5.72, d (15.0) 138.9, CH 6.20, m 133.3, CH 4.18, d (4.4) 83.4, CH 5.65, d (15.0) 137.8, C
18 6.15, dd (15.1, 9.4) 126.3, CH 6.18, m 130.4, CH 5.72, dd (14.5, 4.3) 129.1, CH 6.15, dd (14.5, 6.2) 127.4, CH
19 6.24, m 131.5, CH 6.28, m 131.4, CH 6.31, m 131.1, CH 6.22, m 130.8, CH
20 6.26, m 133.2, CH 6.26, m 130.7, CH 6.26, m 130.4, CH 6.21, m 131.1, CH
21 6.28, m 131.2, CH 6.23, m 131.1, CH 6.31, m 131.5, CH 6.21, m 133.5, CH
22 6.28, m 133.5, CH 6.20, m 133.8, CH 6.26, m 131.2, CH 6.32, m 134.0, CH
23 6.28, m 130.4, CH 5.79, dd (14.7, 6.8) 135.9, CH 6.23, m 133.1, CH 6.25, m 130.3, CH
24 5.67, dd (14.6, 5.8) 134.1, CH 3.82, m 73.3, CH 6.36, m 133.9, CH 5.68, dd (14.6, 6.1) 134.4, CH
25 4.24, dd (5.7, 2.3), 72.0, CH 4.62, m 72.0, CH 5.99, dd (15.1,5.1) 136.1, CH 4.23, m 72.1, CH
26 3.51, dd (7.2, 2.6) 75.7, CH 1.19, d (6.3) 17.8, CH3 3.87, m 72.4, CH 3.50, m 75.5, CH
27 4.71, m 70.3, CH 0.84, m 15.6, CH3 4.57, dd (8.9, 6.3) 72.5, CH 4.77, m 70.2, CH
28 1.14, d (6.2) 17.4, CH3 - - 1.21, d (6.2) 17.9, CH3 1.14, d (6.3) 17.5, CH3
29 1.06, s (7.1) 22.9, CH3 - - 1.20, s 19.6, CH3 1.10, s 22.2, CH3
1′ 3.68, m 69.2, CH 3.72, m 69.6, CH 3.68, m 69.7, CH 3.65, m 69.2, CH
2′ 1.29, m; 1.24, m 36.7, CH2 1.34, m; 1.23, m 33.9, CH2 1.45, m; 1.25, m 34.3, CH2 1.33, m; 1.24, m 34.5, CH2
3′ 1.44, m; 1.25, m 18.2, CH2 1.42, m; 1.24, m 24.4, CH2 1.45, m; 1.25, m 24.6, CH2 1.42, m; 1.24, m 24.5, CH2
4′ 0.83, t (7.0) 14.0, CH3 1.24, m 31.3, CH2 1.24, m 31.3, CH2 1.24, m 31.3, CH2
5′ - - 1.24, m 22.1, CH2 1.25, m 22.1, CH2 1.25, m 22.1, CH2
6′ - - 0.84, t (6.9) 14.0, CH3 0.85, t (6.9) 14.0, CH3 0.85, t (7.1) 14.0, CH3
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Table 1. Cont.

NO.
1 a 2 a 3 b 4 b

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

3-OH 5.12, s - 5.06, m - 5.23, d - 5.10, d -
5-OH 4.85, m - 4.90, d - 4.94, d - 4.88, m -
7-OH 4.85, m - 5.04, m - 4.82, d - 4.88, m -
9-OH 4.90, m - 5.07, m - 4.32, d - 4.86, m -

11-OH 4.85, m - 4.56, d - 4.40, d - 4.68, d -
13-OH - - 4.78, d - 4.71, m - 4.80, m -
14-OH - - - - 4.65, d - - -
15-OH - - 4.78, m - 4.92, d - 4.88, m -
16-OH - - - - 4.48, d - - -
17-OH - - - - 5.00, m - - -
24-OH - - 5.26, d - - - - -
25-OH - - - - - - 4.86, m -
26-OH - - - - 5.29, d - 4.91, d -
1′-OH 4.85, m - 4.82, d - 4.85, d - 4.80, m -

a The 1H NMR measured at 500 MHz and 13C NMR measured at 175 MHz. b The 1H NMR measured at 700 MHz and 13C NMR measured at 175 MHz.
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The 1H and 13C NMR data (Table 1) of 2 suggested that it was similar to antifun-
galmycin [25,26]. Combined with analyzing the 1H–1H COSY and HMBC spectra, it was
revealed that compound 2 was a 26-membered macrocyclic lactone ring. Compared with an-
tifungalmycin, the signals for one-quarter carbon (δC 82.0) and one methylene were absent
in the lactone ring in compound 2. In the COSY spectrum, correlations were observed for
H-2/H-3/H-4/H-1′/H-2′/H-3′/H-4′/H-5′/H-6′, H-10/H-11/H-12/H-13/H-14/H-15/H-
16, and H-23/H-24/H-25/H-26 (Figure 2). The HMBC spectrum shows correlations of
H-13 to C-14/C-27, H-15 to C-14/C-16/C-27, H-23 to C-22/C-23/C-24, H-24 to C-22/C-25,
and H-25 to C-1. Thus, the planner structure of 2 was confirmed. In the NOESY spectrum,
the correlations of H-3/H-1′ and H-13/H-15 (Figure 3) were not enough to elucidate its
relative configuration. Compound 2’s relative configuration has not been elucidated, and is
named antifungalmycin C.

Compound 3 was obtained as a light-yellow amorphous powder. Its HR-ESI-MS
data ([M + H]+, 705.4088; calcd for C35H61O14, 705.4061) possessed the molecular formula
of C35H60O14 (6 degrees of unsaturation). The 1H NMR spectrum (Figure S19) shows
resonances for three methyl protons δH 1.21 (3H, d, J = 6.2 Hz, H3-28), 1.20 (3H, s, H3-29),
and 0.85 (3H, t, J = 6.9 Hz, H3-6′); eight methylene protons δH 3.33 (2H, m, H2-12), 1.76 (1H,
m, H-10a),1.45 (1H, m, H-10b), 1.46 (2H, m, H2-8), 1.45 (2H, m, H2-6), 1.45 (2H, m, H2-4),
1.45 (1H, m, H-2′a), 1.25 (1H, m, H-2′b), 1.45 (1H, m, H-3′a), 1.25 (1H, m, H-3′b), 1.25 (2H,
m, H2-5′), and 1.24 (2H, m, H2-4′); twelve methine protons δH 4.57 (1H, dd, J = 5.1, 2.7 Hz,
H-27), 4.05 (1H, m, H-3), 3.98 (1H, m, H-7), 3.93 (1H, m, H-5), 3.93 (1H, m, H-9), 3.93 (1H, m,
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H-11), 3.87 (1H, m, H-26), 3.80 (1H, m, H-14), 3.71 (1H, dd, J = 5.1, 2.7 Hz, H-15), 3.68 (1H,
m, H-1′), 3.46 (1H, m, H-13), and 2.48 (1H, m, H-2); and eight olefinic protons δH 6.36 (1H,
m, H-24), 6.31 (1H, m, H-19), 6.31 (1H, m, H-21), 6.26 (1H, m, H-20), 6.26 (1H, m, H-22), 6.23
(1H, m, H-23), 5.99 (1H, dd, J = 15.1, 5.1 Hz, H-23), and 5.72 (1H, dd, J = 14.5, 4.3 Hz, H-18).
The 13C NMR (Figure S20) displayed thirty-five signals for carbon, including one carbonyl
carbon δC 171.3 (C-1); one quaternary carbon δC 80.0 (C-16); eight olefinic carbons δC 129.1
(C-18), 131.1 (C-19), 130.4 (C-20), 131.5 (C-21), 131.2 (C-22), 133.1 (C-23), 133.9 (C-24), and
136.1 (C-25); twelve methine carbons δC 84.6 (C-14), 83.4 (C-17), 78.6 (C-15), 72.5 (C-27), 72.4
(C-26), 70.0 (C-3), 69.7 (C-1′), 69.0 (C-7), 68.2 (C-5), 67.0 (C-9), 66.9 (C-11), and 58.2 (C-2);
eight methylene carbons δC 46.3 (C-8), 45.4 (C-6), 43.6 (C-10) 43.3 (C-4), 63.1 (C-12), 34.3
(C-2′), 24.6 (C-3′), 31.3 (C-4′), and 22.1 (C-5′); and three methyl carbons δC 17.9 (C-28), 19.6
(C-29), and 14.0 (C-1′).

The NMR data (Table 1) of 3 suggested that it was similar to antifungalmycin [25,26].
Detailed analysis of the 1H–1H COSY and HMBC spectra revealed that the main differences
between them were the positions of conjugated double bonds. The conjugated double
bonds of 3 were in C-18 to C-25, but in antifungalmycin were in C-17 to C-24. In the
COSY spectrum, correlations were observed for H-2/H-3/H-4/H-1′/H-2′/H-3′/H-4′/H-
5′/H-6′, H-13/H-14/H-15, H-17/H-18, and H-25/H-26/H-27/H-28 (Figure 2). The HMBC
spectrum shows correlations of H-2 to C-1/C-3/C-1′/C-2′, H-14 to C-13/C-14, H-15 to
C-16/C-17, H-17 to C-19, H-18 to C-17/C-19, H-25 to C-24/C-26/C-27, and H-29 to C-17
(Figure 2). Thus, the planar structure of 3 was determined. In the NOESY spectrum, the
correlations of H-3/H-1′, H-13/H-14/H-15 (Figure 3) were not enough to elucidate the
compound 3 relative configuration. Consequently, compound 3’s relative configuration has
not been elucidated, and is named antifungalmycin D.

Compound 4 was obtained as a light-yellow amorphous powder. The molecular
formula was determined as C35H60O13 (five degrees of unsaturation) via HR-ESI-MS (m/z
687.3975, [M − H]−, (C35H59O13 calcd. 687.3956)). The 1H NMR spectrum (Figure S27)
shows resonances for three methyl protons δH 1.14 (3H, d, J = 6.3 Hz, H3-28), 1.10 (3H,s,
H3-29), and 0.84 (3H, t, J = 7.1 Hz, H3-6′); seven methylene protons δH 1.76 (1H, m, H-10a),
1.53 (1H, m, H-10b), 1.74 (1H, m, H-12a),1.50 (1H, m, H-12b), 1.50 (2H, m, H2-4), 1.50 (2H,
m, H2-6), 1.50 (2H, m, H2-8), 1.42 (1H, m, H-3′a), 1.24 (1H, m, H-3′b), 1.33 (1H, m, H-2′a),
1.24 (1H, m, H-2′b), 1.25 (2H, m, H2-5′), and 1.24 (2H, m, H2-4′); thirteen methine protons
δH 4.77 (1H, m, H-27), 4.23 (1H, dd, J = 5.7, 2.3 Hz, H-25), 4.03 (1H, m, H-3), 3.97 (1H, m,
H-9), 3.92 (1H, m, H-5), 3.92 (1H, m, H-7), 3.90 (1H, m, H-15), 3.87 (1H, m, H-11), 3.65 (1H,
m, H-13), 3.65 (1H, m, H-1′), 3.50,(1H, m, H-26), 2.46 (1H, dd, J = 8.8, 6.6 Hz, H-2), and
2.16 (1H, m, H-14); and eight olefinic protons δH 6.32 (1H, m, H-22), 6.25 (1H, m, H-23),
6.22 (1H, m, H-19), 6.21 (1H, m, H-20), 6.21 (1H, m, H-21), 6.15 (1H, dd, J = 14.5, 6.2 Hz,
H-18), 5.68 (1H, dd, J = 14.6, 6.1 Hz, H-24), and 5.65 (1H, d, J = 15.0 Hz, H-17). The 13C
NMR and DEPT 135 spectra (Figures S28 and S29) displayed thirty-five signals for carbon,
including one carbonyl carbon δC 171.7 (C-1); one quaternary carbon δC 84.5 (C-16); eight
olefinic carbons δC 137.8 (C-17), 134.4 (C-24), 134.0 (C-22), 133.5 (C-21), 131.1 (C-20), 130.8
(C-19), 130.3 (C-23), and 127.4 (C-18); eleven methine carbons δC 76.0 (C-15), 75.5 (C-26),
72.1 (C-25), 71.2 (C-13), 70.2 (C-27), 69.4 (C-3), 69.4 (C-5), 69.2 (C-1′), 68.2 (C-7), 67.5 (C-11),
and 58.3 (C-2); seven methylene carbons δC 44.6 (C-8), 44.4 (C-12), 44.1 (C-6), 41.9 (C-14),
41.4 (C-10), 40.9 (C-4), 34.5 (C-2′), 24.5 (C-3′), 31.3 (C-4′), and 22.1 (C-5′); and three methyl
carbons δC 22.2 (C-29), 17.5 (C-28), and 14.0 (C-1′).

The 1H and 13C NMR data (Table 1) of compound 4 were very similar to antifun-
galmycin [25,26]. Detailed analysis of the 1H–1H COSY and HMBC spectra revealed that
compound 4 has no hydroxyl substitution in the C-14 (δH 2.16/δC 41.9). In the COSY spec-
trum, correlations were observed for H-2/H-3/H-1′/H-2′/H-3′/H-4′/H-5′/H-6′, H-10/H-
11/H-12/H-13/H-14/H-15, and H-24/H-25/H-26/H-27/H-28 (Figure 2). The HMBC
spectrum shows correlations of H-2 to C-1/C-3/C-4/C-1′/C-2′, H-15 to C-13/C-16/C-17,
H-25 to C-22/C-23/C-24, and H-27 to C-1/C-25/C-26/C-28 (Figure 2). On the basis of the
evidence, the planar structure of 4 was confirmed. In the NOESY spectrum, the correlations
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of H-3/H-1′, H-13/H-15, and H-25/H-26 (Figure 3) were not enough to elucidate the
compound 4’s relative configuration. Consequently, compound 4’s relative configuration
has not been elucidated, and is named antifungalmycin E.

The known compounds 5 and 6 had the same molecular formula of C35H59O14 as
determined by HR-ESI-MS. The 1H and 13C NMR data of compounds 5 and 6 revealed
that they were similar to the previously reported antifungalmycin [25,26]. The differences
between 5 and 6 were in the positions C-1 (δC 171.8 vs. 171.1), C-2 (δC 57.5 vs. 58.2), C-3 (δC
69.7 vs. 69.2), C-1′ (δC 69.5 vs. 68.2), 2-H (δH 2.46 vs. 2.32), and 1′-OH (δH 4.81 vs. 4.45). The
above difference in chemical shift may be caused by the different stereoscopic configuration
of C-3 and C-1′. Thus, compound 5 was named antifungalmycin a1 and compound 6 was
named antifungalmycin a2.

The molecular formulas of compounds 7 and 8 were determined to be C35H58O12 by
HR-ESI-MS. They were identified as fungichromin [27], by comparing NMR and HR-ESI-
MS data with reported values. The differences between 7 and 8 were in the positions C-1
(δC 171.1 vs. 170.5), C-2 (δC 58.7 vs. 57.8), C-3 (δC 70.0 vs. 69.4), C-1′ (δC 69.6 vs. 68.2), 2-H
(δH 2.46 vs. 2.31), and 1′-OH (δH 4.81 vs. 4.38). The difference in chemical shift may be
caused by the different stereoscopic configuration of C-3 and C-1′. Thus, compound 7 was
named fungichromin a1 and compound 8 was named fungichromin a2.

The known compounds 9 and 10 were identified as filipin III by comparing their NMR
and HR-ESI-MS data with those previously reported [28]. The differences between 9 and 10
were in the positions C-1 (δC 171.1 vs. 170.5), C-2 (δC 58.7 vs. 57.8), C-3 (δC 70.0 vs. 69.7), C-1′

(δC 69.6 vs. 67.9), 2-H (δH 2.46 vs. 2.29), and 1′-OH (δH 4.89 vs. 4.42). The above difference
in chemical shift may be caused by the different stereoscopic configuration of C-3 and C-1′.
Thus, compound 9 was named filipin III a1 and compound 10 was named filipin III a2.

The known compound 11 was obtained as a light-yellow amorphous powder. It was
identified as filipin I [29], by comparing 1H-NMR, 13C-NMR, and HR-ESI-MS data with
that reported.

2.2. Antifungal Activity of the Compounds

The antifungal potency of the compounds against T. marneffei was evaluated by
MIC and MFC values; the results are shown in Table 2. In our experiment, most of
the compounds exhibited antifungal activity except compound 2, which has an MIC
value of more than 128 µg/mL. In addition, compound 9 exhibited the best antifungal
activity against T. marneffei, with MIC and MFC values of 2 and 4 µg/mL, respectively.
Moreover, compound 1 showed the lowest MIC and MBC values, which represented the
best antifungal activity of all the new compounds. So, we further explore the antifungal
mechanism of compound 1 in the next experiment.

Table 2. MIC and MFC of the compounds.

Compounds MIC (µg/mL) MFC (µg/mL)

1 16 64
2 >128 ——
3 128 ——
4 32 ——
5 32 64
6 128 ——
7 4 8
8 16 16
9 2 4
10 32 128
11 32 ——

FLC * 16 64
AMB * 0.5 1

* FLC and AMB serve as positive controls. FLC, Fluconazole; AMB, Amphotericin B. “——" means compounds is
not enough to support the experiment, no detection.
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2.3. Compound 1 Inhibited the Growth of T. marneffei

To further analyze the growth-inhibiting characteristics of compound 1, the time
course of T. marneffei growth in the presence of 1 at different concentrations was plotted.
T. marneffei exhibited rapid growth in the control group, and the logarithmic growth stage
was achieved within 40 h of incubation, then entered a stabilization phase after 60 h of
incubation (Figure 4A). However, the growth of T. marneffei after treatment with 1 at
1/2 MIC and 1 MIC showed a substantially lower growth rate than that of the control.
Moreover, before 60 h of incubation, no further growth of T. marneffei was observed in
1/2 MIC and 1 MIC compound 1-treated groups. But after 60 h of incubation, T. marneffei
with 1 continued to grow, though at a lower rate than control, and the fungi growth rate of
group compound 1 at 1 MIC was lower than group compound 1 at 1/2 MIC. Overall, these
results confirmed that 1 had an inhibitory effect on T. marneffei growth, and was shown to
be concentration-dependent and time-limited.
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2.4. Compound 1 Disrupted the Cell Membrane of T. marneffei

The membrane integrity of the fungi was investigated to verify the ability of compound
1 to damage the fungal cell membrane. The electric conductivity of the cell suspensions
implied the permeability of the cell membrane. Electrolytes are charged molecules such as
sodium chloride and potassium chloride, and they are essential for fungal metabolism and
growth [30]. Thus, their leakage can lead to fungal inhibition or death. Compared with the
control, compound 1 resulted in a significant increase in conductivity. The conductivity of
T. marneffei increased significantly from 1.80 for the control to 2.99 and 3.69 in the presence
of compound 1 at the levels of 1/2 MIC and 1 MIC after 15 h, respectively (Figure 4B).
Moreover, after 9 h exposure to the 1/2 MIC of compound 1, the extracellular conductivity
entered a steady stage. However, for the group of 1 MIC, the extracellular conductivity
continued to increase. This indicates that compound 1 has a destructive effect on the
cell membrane of T. marneffei, and shows a concentration dependence consistent with the
growth-inhibiting results.

In order to further determine the degree of cell membrane damage by compound 1, in
the current work, nucleic acids and proteins released from the cytoplasm were monitored
by the detection of absorbance at 260 nm and 280 nm, respectively. As the previous
work reported, nucleic acid and protein play important roles in bacterial metabolism as
they dominate the genetic information and cellular structure [31]. Leakage of cellular
materials was analyzed by detecting 260 nm and 280 nm absorbing materials. Therefore,
the absorbance of the material and proteins at 260 nm and 280 nm wavelengths can be
used as an indicator of damage to the cell wall and membrane, which causes leakage
of the cellular materials into the surroundings [32]. As shown in Figure 4C,D, both cell
constituents were released rapidly from T. marneffei into cell suspensions and their amounts
increased multi-fold after treatment with compound 1. In addition, there was a progressive
release of proteins and nucleic acids from T. marneffei after exposure to compound 1 for
4 h, followed by a steady state. Moreover, the leakage of nucleic acids and proteins in the
group treated with 1 MIC compound 1 was larger than the control and 1/2 MIC compound
1 group. Compound 1 dose-dependently destroyed the cell membrane of T. marneffei,
which was consistent with the previous results. Similar results have also been reported
for the crude methanolic extract of Myrtus communis roots and leaves when tested against
Candida glabrata, showing increased absorbance at a wavelength of 260 nm [33]. In this
study, compound 1 was efficacious in inhibiting or killing the fungi by damaging their cell
membranes, resulting in the leakage of the 260 nm and 280 nm absorbing materials, such
as DNA, RNA, and proteins, which are essential for fungal growth.

To further investigate the mechanisms underlying compound 1’s disruption of the
cell membrane in T. marneffei cells, the Na+/K+-ATPase and Ca2+-ATPase activities of
T. marneffei cells were detected. Na+/K+-ATPase is a carrier protein that exists in the
phospholipid bilayer of cells. It mainly controls the transmembrane transport of Na+

and K+. It can release energy by decomposing ATP, and uses this energy to transport
Na+ and K+ [34]. Ca2+-ATPase is a membrane transport protein ubiquitously found in
the endoplasmic reticulum of all eukaryotic cells. As a calcium transporter, Ca2+-ATPase
maintains a low cytosolic calcium level that enables a vast array of signaling pathways and
physiological processes [35]. Na+/K+-ATPase and Ca2+-ATPase are important components
of cell membrane transport. The Na+/K+-ATPase and Ca2+-ATPase activities of T. marneffei
cells are shown in Figure 4E,F. Compared with the control group without 1, the Na+/K+-
ATPase and Ca2+-ATPase activities of the experimental group with compound 1 were
significantly decreased. Among them, the experimental group with 1 at the levels of 1 MIC
had the largest decrease. This showed that compound 1 had a certain inhibitory effect on
the Na+/K+-ATPase and Ca2+-ATPase activities of T. marneffei, which is consistent with the
above results.

These results indicated that the antibacterial action mode of compound 1 against
T. marneffei probably involved the alteration of the structure of cell wall and membrane,
causing the loss of cell viability.
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2.5. Effect of Compound 1 on Morphology of T. marneffe

The morphological and ultrastructural changes in T. marneffei treated with compound 1
for 72 h were observed by SEM and TEM to better understand the antifungal mode of action
of compound 1. For T. marneffei cells, deformation was the most significant feature, which
was apparent in the SEM image (Figure 5). The T. marneffei cells treated with compound 1
at 1/2 MIC displayed distorted membrane morphology, disruption of cell membrane, and
leakage of cellular contents; and those treated with 1 MIC displayed distorted membrane
morphology. Furthermore, a proportion of T. marneffei cells treated with compound 1
showed abnormalities in the TEM images, including the disappearance of cell wall, disrup-
tion of cell membrane, thinning of cytoplasm, distortion of cells, heterogeneous distribution
of melanin, and leakage of intracellular materials (Figure 4G). S.K.P. Lau et al. reported
that T. marneffei in yeast form can cause infections, and produce melanin as well, which
plays an important role in the pathogenicity of T. marneffei [36]. Therefore, the decrease
in intracellular melanin may also be the pathway of compound 1 inhibiting T. marneffei.
These findings supported the results of the leakage of extracellular conductivity, nucleic
acids and proteins leakage analysis, and Na+/K+-ATPase and Ca2+-ATPase activities in the
present study.
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2.6. Effects of Compound 1 on Mitochondrial Function

Mitochondria are key energy and metabolic regulatory centers within cells and also
play an important role in maintaining cell growth and survival in mycelial cells. The
core function of mitochondria is to synthesize ATP through oxidative phosphorylation.
Therefore, the normal conduct of mitochondrial oxidative phosphorylation and the TCA
cycle, especially the activities of related enzymes, is essential for maintaining cell sur-
vival. ATPase has an important role in energy metabolism [37]. The results of ATPase
content in T. marneffei cells are shown in Figure 6A. The ATP content of the control group
was 23,693.5 µmol/gprot. After treatment with 1 MIC compound 1, the intracellular
ATP level reduced to 8151.1 µmol/gprot, which was a 65.6% reduction (p < 0.05). In ad-
dition, after treatment with 1/2 MIC compound 1, the intracellular ATP level reduced
to 16,213.2 µmol/gprot, which was a 31.6% reduction (p < 0.05). ATPase content was
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significantly decreased after compound 1 treatment. These results indicated that the an-
tifungal activity of compound 1 against T. marneffei can be attributed to disruption of the
respiratory chain.
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Figure 6. (A) The effect of compound 1 on ATPase content against T. marneffei. (B) The effect of
compound 1 on SDH activity against T. marneffei. (C) The effect of compound 1 on MDH activity
against T. marneffei. Data are shown as mean ± S.D. * p < 0.05, ** p < 0.01, and *** p < 0.001; Student’s
t test, n = 3.

SDH (Succinate dehydrogenase) is a part of the respiratory chain (complex II). SDH
catalyzes the oxidation of succinate to fumaric acid and FADH2. Therefore, it connects
the TCA cycle with the respiratory chain, and the generated FADH2 does not dissociate
from the enzyme, which directly uses the electrons to reduce the coenzyme Q, and then
passes it to the complex III [38]. MDH (Malate dehydrogenase) can catalyze the reversible
conversion between malic acid and oxaloacetate, and is also an important enzyme in
mitochondrial function, which is mainly involved in some metabolic pathways such as
photosynthesis, TCA cycle, and C4 cycle. Compared with the control, compound 1 resulted
in a reduction in the activity of SDH and MDH. The SDH activity of compound 1 at the
levels of 1/2 MIC and 1 MIC was significantly reduced compared with the control (p < 0.05)
(Figure 6B), and the MDH activity of compound 1 at the levels of 1/2 MIC and 1 MIC was
considerably lower than that of the control (p < 0.05) (Figure 6C). The above experimental
results showed that MDH and SDH activities decreased with increasing compound 1
concentration in T. marneffei (Figure 6A,B), which suggested that compound 1 disrupts
mitochondrial function by affecting MDH and SDH activities.

The above results suggested that compound 1 blocked the respiratory chain and
energy metabolism, thereby killing the fungi.

3. Discussion

Polyene macrolide antibiotics are a significant group of antibiotics and have an impor-
tant role in the treatment of fungal infections [39]. For example, amphotericin B, pimamycin,
and nystatin have been widely used in clinical treatment [40]. Many researchers suggest
that most polyene macrolides are bioactive compounds with a wide range of antifungal
activity. However, the high hemolytic toxicity, poor water solubility, and unstable exposure
to light limit the development of some compounds with good antifungal activity into
clinical drugs. For a long time, researchers have been committed to chemical derivation,
structural modification, genetic engineering, combined biosynthesis, and other methods
to improve the antibacterial activity and solubility of these compounds and reduce the
hemolytic toxicity. This has made certain research progress, but far from enough. Extensive
research has shown that some bioactive secondary metabolites of marine microbial origin
with strong antibacterial and antifungal activities are being intensely used as antibiotics
and may be effective against infectious diseases [41]. In our study, four new compounds—
tetrene macrolide compounds (1–4), and seven known polyene macrolide antibiotics, were
isolated from the fermentation broth of the mangrove strain S. hiroshimensis GXIMD 06359.
Their structures, including their relative configurations, were determined by HR-ESI-MS
and NMR spectra. The antifungal activity of the compounds against T. marneffei was mea-
sured by detection of MIC and MBC in the present study. The results demonstrated that
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all compounds except compound 2 exhibit antifungal and fungicidal properties against
T. marneffei. Moreover, the lowest MIC and MFC of the new compounds was compound
1. To further analyze the antifungal activity of 1, the time course of T. marneffei growth
in the presence of 1 at different concentrations was plotted. These results demonstrated
that 1 can significantly inhibit the growth of T. marneffei. Therefore, compound 1 could be
considered an effective antibacterial agent; we further explore the mechanism of compound
1 inhibiting T. marneffei.

Cell membranes have important physiological functions, including maintaining the
stability of the intracellular environment, signal transduction, and material transporta-
tion [42]. The integrity of cell membranes is crucial for cell viability, and membrane damage
can lead to high cytotoxicity. Numerous studies have shown that the cell membrane of fungi
is a target for inhibiting fungal growth and reproduction [43]. The previous studies have
reported that the antifungal mechanism of action of polyene macrolides is binding to the
fungal surface, which produces membrane breakdown, resulting in leakage of protein and
vital nutrients and, ultimately, cell death [44–46]. In this study, it was found that compound
1 caused significant damage to cell membranes. Compound 1 irreversibly damaged the
plasma membrane of T. marneffei cells. Its treatment increased extracellular conductivity,
proteins, and nucleic acids in T. marneffei cultures, suggesting electrolyte leakage due to
reduced membrane integrity of T. marneffei cells. Moreover, the decrease in Na+/K+-ATPase
and Ca2+-ATPase activities confirmed the destruction of cell membrane function. SEM and
TEM results confirmed that compound 1 treatment disrupted the integrity of T. marneffei cell
walls and membranes. Cell wall and membrane integrity are critical for maintaining fungal
viability. Kamble, M. T. et al. reported that SGF disrupted the bacterial cell membrane,
resulting in leakage of intracellular biological components, and subsequently, cell death, in
Vibrio parahaemolyticus and Vibrio harveyi, which is similar to our results [47].

In addition to destructing the cell membrane, mitochondrial dysfunction plays an
important role in the potential mechanisms of antifungal drugs [48]. Xin et al. reported that
antofine against P. digitatum is related to the cell membrane integrity and energy metabolism
by affecting intracellular ATP content [49]. Pristimerin has been reported to exert antifungal
activity; it caused mitochondrial membrane damage and affected mitochondria structure
and functions, then oxidative phosphorylation and TCA cycle were inhibited, and energy
metabolism was blocked in S. sclerotiorum [50]. In this study, we also investigated the role of
mitochondrial function pathways against T. marneffei. Our results indicated that compound
1 caused a significant decrease in intracellular ATP levels and a significant decrease in the
activities of MDH and SDH, and this was shown to be concentration-dependent. These
results indicated that the antifungal activity of compound 1 against T. marneffei can be
attributed to disruption of the respiratory chain. Therefore, the death of T. marneffei may
be caused by mitochondrial dysfunction, in turn caused by the destruction of cytoplasmic
membrane permeability and integrity.

This study showed that compound 1 effectively prevented T. marneffei growth. Com-
pound 1 disrupts cytoplasmic membrane permeability and integrity, causes mitochondrial
dysfunction, and T. marneffei metabolic disorders. We speculate that the antifungal mecha-
nism of compound 1 on T. marneffei is through the destruction of T. marneffei cell membrane
integrity and mitochondrial function to induce apoptosis. Compound 1 showed promising
potential as a drug against T. marneffei. But the detailed role of compound 1 in bacterial
membranes is unclear and needs further investigation.

4. Materials and Methods
4.1. General Experimental Procedures

TLC analyses were conducted on silica gel 60 F254-precoated plates. Silica gel 60
(200–300 mesh) were used for column chromatography (CC). For the HPLC analysis and
purification, we used YMC C18 column (250 mm × 4.6 mm, 5 µm) and (250 mm × 10 mm,
5 µm). NMR spectra were recorded on Bruker AVANCE 500/125 spectrometer (Bruker,
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Fällanden, Switzerland) and Bruker AVANCE 700/175 spectrometer (Bruker, Hong Kong,
China) with TMS as the internal standard.

4.2. Actinomycete Material

The strain S. hiroshimensis GXIMD 06359 was isolated from mangrove in the west coast
of Hainan [24]. This strain is stored at Institute of Marine Drugs, Guangxi University of
Chinese Medicine.

4.3. Fermentation, Extraction, and Isolation

After activation, S. hiroshimensis GXIMD 06359 was inoculated into 1 L flapper conical
flask (containing 300 mL Am2ab medium, sterilized) and fermented in a constant tempera-
ture shaking table at 28 ◦C and 180 r/min for 10 days. After fermentation, the fermentation
solution was filtered, and the bacterial solution and bacteria were separated. The bacterial
solution was extracted with equal volume ethyl acetate three times, and the bacteria were
soaked in equal volume acetone and extracted by ultrasound for 20 min until nearly color-
less. The ethyl acetate phase and acetone phase fermentation crude extracts were obtained
after concentration under reduced pressure. The crude extract (200.2 g) was subjected to
normal phase silica gel column chromatography and gradient elution was performed with
chloroform/acetone system (10:0, 10:2, 10:4, 10:8) and chloroform/methanol system (10:1,
10:2, 10:4, 0:10). The collected fractions were analyzed by thin layer chromatography (TLC)
and HPLC. A total of 13 fractions (Fr. A1–A13) were obtained.

Fr. A10 (8.82 g) was separated by medium pressure preparative chromatography with
ODS self-loaded column and gradient elution with methanol/water system at the flow
rate of 15 mL/min. After the fraction was collected and analyzed by HPLC, a total of nine
fractions (Fr. B1–Fr. B9) were obtained from the combined samples. Fr. B3 (0.2490 g) was
separated by gel column chromatography, and three fractions (Fr. D1–D3) were obtained. Fr.
D1 was separated and purified by semi-preparative HPLC. The mobile phase of Fr. D1 was
methanol/water system [0–30 min: 42% methanol, 35–60 min: 55% methanol, compound 1
(3.6 mg, tR = 36.85 min) and compound 6 (2.2 mg, tR = 53.58 min) were obtained at the flow
rate of 3 mL/min]. Compound 2 (1.5 mg, tR = 63.45 min) was purified by semi-preparative
HPLC from Fr. B4 (0.1772 g) by semi-preparative HPLC (48% methanol iso-degree elution
for 40 min, flow rate 3 mL/min). Fr. B5 (2.7342 g) was isolated and purified by semi-
preparative HPLC (0–30 min: 52% methanol, 35–60 min: 58% methanol, 65–100 min: 70%
methanol, compound 5 (9.0 mg, tR = 30.83 min), compound 3 (1.8 mg, tR = 42.85 min),
compound 4 (5.3 mg, tR = 36.44 min), compound 7 (36.8 mg, tR = 47.59 min), compound 8
(3.3 mg, tR = 58.93 min), compound 9 (7.9 mg, tR = 63.27 min), and compound 10 (1.6 mg,
tR = 71.65 min) were obtained at rate of 3 mL/min. Compound 11 (2 mg, tR = 30.66 min)
was purified by semi-preparative HPLC from Fr.B9 (82% methanol iso-degree elution for
40 min, flow rate 3 mL/min).

4.4. Microbial Strains OriginA and Culture Conditions

Reference strains (Talaromyces marneffei ATCC) were from YE Li from Guangxi Medical
University (Guangxi Key Laboratory of AIDS Prevention and Control, School of Public
Health, Guangxi Medical University). Seven-day-old pure culture of the yeast form grown
on brain-heart infusion (BHI) agar was used in all reactions. The colonies of T. marneffei
were flooded with Phosphate buffer saline (PBS) and the number of fungi was counted
with a hemocytometer after washing three times. The cells were suspended in PBS and
thoroughly vortexed. The suspensions were added to RPMI 1640 medium to obtain a
stock of 1–5 × 106 CFU/mL that was then diluted 1:100, resulting in a working stock of
1–5 × 104 CFU/mL.

4.5. Antifungal Activity

Antifungal susceptibility testing was performed using the microdilution method
according to CLSI protocol M27-A3 (Clinical and Laboratory Standards Institute) with
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minor modifications [51]. Candida parpsilosis ATCC 22019 was included as quality control
through for all experiments. Wells containing inoculum alone and inoculum with DMSO
were used as negative controls. AMB and FLC were used as a positive control. The
minimum inhibitory concentration (MIC) was defined as the lowest concentration resulting
in 100% inhibition of visible fungal growth after incubation at 37 ◦C for 72 h.

4.6. Determination of Minimal Fungicidal Concentration (MFC)

The MFCs of compounds were determined according to the methods of Mbah et al. [52].
Briefly, 10 µL from wells corresponding to 1, 2, 3, and 4-fold of the MIC, were placed on
a Sabouraud Dextrose Agar (SDA) and incubated at optimal temperatures for 72 h. MFC
was defined as the lowest concentration with no fungal growth.

4.7. Mode of Action of Compound 1
4.7.1. Time-Kill Curve

Exponentially growing yeast cells were harvested and resuspended in RPMI-1640 to
obtain a final concentration of 1–5 × 104 CFU/mL. Different concentrations of compound
1 were added to the cells. Cells were incubated under shaking 180 rpm at 37 ◦C, and
10 µL from suspensions were placed on SDA and incubated at optimal temperatures for
72 h, then measured at the indicated time points after incubation (0, 12, 24, 36, 48, 60, and
72 h). The same volumes of solvents (DMSO) were added to the untreated controls. Three
independent experiments were performed for optimal results.

4.7.2. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)

SEM was used to observe the morphological changes of compound 1-treated T. marneffei.
The fungal cells obtained from the logarithmic growth phase were treated with the com-
pound 1 at 1/2 and 1-fold of the MIC value at 37 ◦C for 72 h. Then, the suspensions were
centrifuged at 12,000 rpm/min for 10 min. The sediments were washed with 0.1 M PBS,
(pH = 7.2) and fixed with 2.5% glutaraldehyde in PBS for 2 h at 4 ◦C. The cells were washed
in the same buffer and were post-fixed for 30 min with osmium tetroxide. After harvesting,
the cells were further dehydrated via graded ethanol concentrations (30%, 50%, 70%, 90%,
and 100%) for 10 min each. Untreated cells were similarly processed and used as control.
Then, cells were fixed on SEM support and observed by SEM (Sigma300, Zeiss), Wuhan,
Hubei, China.

The pretreatment of fungal cells for transmission electron microscopy (TEM) were the
same as that for scanning electron microscopy (SEM, Wuhan, Hubei, China). After being
fixed with 2.5% glutaraldehyde, post-fixed by 1% osmic acid, dehydrated using alcohol,
permeated using white resin, and embedded by roasting at 55 ◦C, the samples were cut
into thin sections to perform TEM (HITACHI HT 7800 120 kv, Wuhan, Hubei, China).

4.7.3. Leakage of Extracellular Conductivity

Fungal membrane permeability was determined and expressed as the electric conduc-
tivity according to the method by Maliehe, T. S. et al. [53]. Fungal cells were cultivated at
37 ◦C to mid-exponential stage and collected by centrifugation (8000 rpm for 15 min). Cells
were washed twice in 0.1 M PBS. The different concentrations compound 1 were added
into the isotonic fungal suspensions (1 × 104 CFU/mL) and incubated at 37 ◦C for 15 h.
Thereafter, their conductivities were measured and recorded as A1 (0, 3, 6, 9, 12, 15 h). The
conductivities of the fungi in 0.1 M PBS treated with boiling water for 5 min were used as
the control and marked as A0. The cell membrane permeability was then calculated using
the formula: Electric conductivity = A1 − A0.

4.7.4. Leakage of 260 nm and 280 nm Absorbing Material

Fungal strains were cultured in RPMI-1640 and incubated at 37 ◦C for 12 h. The most
active compound 1 were added to the fungal suspensions at 1-fold and 1/2-fold of the
MIC values. Suspensions were incubated at 37 ◦C and samples were removed at times 0, 2,
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4, 6, 8, and 10 h and centrifuged at 10,000× g for 10 min at 4 ◦C. 200 µL of supernatants
from each condition were added to a 96-well plate. Wells and absorbance values at 260 nm
and 280 nm were recorded using a UV spectrophotometer. The following controls were
included: a fungal suspension in RPMI-1640 without antimicrobial agents as the negative
control; a fungal suspension with AMB as the positive controls.

4.7.5. Detection of Na+/K+-ATPase and Ca2+-ATPase

The fungal cells obtained from the logarithmic growth phase were treated with the
compound 1 at ½ and 1-fold of the MIC value at 37 ◦C for 72 h. Drug-treated fungal
solutions were rinsed with sterile PBS and resuspended (1 × 104 cells mL−1). The activities
of Na+/K+-ATPase and Ca2+ -ATPase were analyzed using commercial kits (NanJing
JianCheng, Nanjing, China) according to the instructions.

4.7.6. Measurement of Intracellular ATPase Concentration

The fungal cells obtained from the logarithmic growth phase were treated with the
compound 1 at ½ and 1-fold of the MIC value at 37 ◦C for 72 h. Drug-treated fungal
solutions were rinsed with sterile PBS and resuspended (1 × 104 cells mL−1). The intracel-
lular ATPase concentration was determined using the ATP assay kit (NanJing JianCheng,
Nanjing, China).

4.7.7. Detection of MDH and SDH

The fungal cells obtained from the logarithmic growth phase were treated with the
compound 1 at ½ and 1-fold of the MIC value at 37 ◦C for 72 h. Drug-treated fungal
solutions were rinsed with sterile PBS and resuspended (1 × 104 cells mL−1). The activities
of MDH and SDH were analyzed using commercial kits (NanJing JianCheng, Nanjing,
China) according to the instructions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md22010038/s1. Figures S1–S35: NMR, HR-ESI-MS and UV spectra for
compounds 1–4.
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