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Abstract: USP7 is highly expressed in a variety of tumors and is thought to play a major role in
cancer development. However, there are no drugs available to target USP7, so there is a need to
develop new USP7 inhibitors. In this study, AutoQSAR, multiple linear regression, and Naive
Bayesian models were constructed using 543 compounds and used to analyze marine compounds.
After selecting 240 small molecules for molecular docking with Maestro, MOE, and GOLD, better
small molecules than the positive compound P217564 were screened. The molecular structure of “1,
2-dibromobenzene” was optimized to improve the binding effect of the protein, and 10 optimized
compounds in ADMET performed well during the screening process. To study the dynamic combina-
tion of protein-ligand effect consistency with static molecular docking, 100ns molecular dynamics
simulations of candidate compound 1008-1, reference compound P217564, and negative-positive
GNE2917 were conducted. The results of molecular docking and molecular dynamics simulation
analysis showed that compound 1008-1 maintained a stable conformation with the target protein.
Thus, the comprehensive analysis suggests that compound 1008-1 could provide new possibilities for
USP7 covalent inhibitor candidates.

Keywords: marine natural compounds; USP7; QSAR; molecular docking; scaffold hopping; virtual

screening; molecular dynamics

1. Introduction

Ubiquitination is a significant mechanism for managing the stability of the majority
of proteins in the cell, and it is also essential for the cell cycle and other cellular processes,
DNA repair, and cell death. It is also an important pathway for protein post-translational
modification [1-4]. Deubiquitinating enzymes (DUBs) can block the ubiquitination
pathway, as they remove ubiquitin from proteins and, if inhibited, can lead to the
degradation of specific proteins [5]. According to the structure of the catalytic domain of
deubiquitination enzymes, deubiquitination enzymes can be divided into the following
seven subfamilies: Ubiquitin-specific proteases (USPs), ubiquitin carboxyl-terminal
hydrolases (UCHs), ovarian tumor proteases (OTUs), Josephins, the JAB1/MPN/MOV34
family, Zinc finger UB-specific proteases (ZUP/ZUFSP), and monocyte chemotactic
protein-inducing proteins (MCPIP) [6,7].

Ubiquitin-specific proteases (USPs) are the largest family of ubiquitinating enzymes [8].
Ubiquitin-specific protease 7 (USP7), also known as herpes virus-associated protease
(HAUSP), has received widespread attention in recent years due to its close association with
the occurrence and development of a variety of cancers, including breast cancer, ovarian
cancer, prostate cancer, cervical cancer, and colorectal cancer [9-12]. USP7 was the first
USP found to bind and stabilize p53 and is one of the most widely studied. USP7 can
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increase the level of MDM2, the negative regulatory protein of the tumor suppressor gene
p53, and then decrease the level of p53 [13]. USP7 has multiple roles in regulating the
p53 pathway, especially in p53-dependent cellular stress responses [14-16]. Inhibition of
USP7 leads to degradation of the E3 ligase MDM?2, which in turn reactivates the tumor
suppressor p53 in various cancers [5]. In addition, USP7 is involved in the regulation
of several key signal transduction proteins associated with cancer development, such as
PTEN, FoxO4, HIF-1«, and PHFS8 [9,10,17-20]. Taken together, USP7 is a promising target
for anticancer therapy. Over the past decade, many researchers have made great efforts
to search for USP7 inhibitors, but no related inhibitors have entered clinical trials. Ac-
cording to the different modes of action, USP7 inhibitors are mainly divided into three
categories: (a) inhibitors that do not directly bind to inhibit USP7 activity, such as P5091,
which accelerate their proteasome degradation by promoting ubiquitination of MDM2 and
MDMX [21]; (b) covalent binding inhibitors, such as P22077, covalently modify cysteine
223 in the catalytic center of USP7, causing conformational changes in the active site and
inhibiting its enzyme activity [22]; (c) allosteric inhibitors, such as XL188, can bind directly
to the ubiquitin-binding site of USP7 or are domain-specific to inhibit the activity of its
deubiquitinating enzyme [23]. Some of the currently developed USP7 inhibitors have a
narrow kinetic window, and although they can achieve the purpose of stabilizing P53, they
have obvious side effects and also inhibit unrelated enzymes, showing weak inhibitory
activity or containing undesirable chemical properties. Therefore, it is urgent to optimize
more efficient and accurate methods to screen new USP7 inhibitors.

In recent years, marine organisms have produced products with unique chemical
structures, significant biological activity, and high medicinal value. People continue to
explore these marine natural products more deeply [24]. Studies have shown that sub-
stances extracted from marine organisms have antitumor, antithrombotic, and antibacterial
effects and show surprising activity, which makes it possible to screen out active USP7
inhibitors with novel structures [25-27]. In order to make marine compound sources more
comprehensive, we have integrated three databases related to marine natural products:
(a) the Marine Natural Products Database (MNPD); (b) the Comprehensive Marine Natural
Products Database (CMNPD); and (c) the Seaweed Metabolite Database (SWMD). We hope
to use the valuable resources of the ocean to screen for novel USP7 inhibitors.

In the past decades, more and more marketed drugs have added their effects through
covalency, and there is growing interest in covalent drugs [28]. The pharmacological
advantages of covalent inhibitors are being extensively studied. Covalent inhibitors can
obtain longer drug residence times and improve target selectivity compared to non-covalent
inhibitors. Drugs that work through covalency, such as Osimertinib, Clopidogrel, and
Boceprevir, have been approved by the Food and Drug Administration (FDA) [29]. In the
USP?7 crystal structure, the catalytic domain is composed of amino acid residues CYS223,
HIS464 and ASP481, which are called catalytic triplets and together participate in the
substrate deubiquitination process [30]. Some studies have shown that compound FT827
contains a vinyl sulfonamide structure, which can be covalently modified to the amino acid
residue CYS223 in the USP7 catalytic domain [5]. Therefore, USP7 structural crystals can
provide a structural basis for screening covalent inhibitors and improve selectivity through
covalent action.

In this study, we sought to identify novel and effective covalent inhibitors of USP7. To
this end, we first collected UPS7 inhibitors and evaluated and selected QSAR models using
different procedures and different methods: two regression models (the AutoQSAR model
and multiple linear regression model), and a Naive Bayesian model. The QSAR model was
used to analyze the structural relationship of USP7 inhibitors. Then, the model is used to
screen the Marine combinatorial library. Then, the structure-based virtual screening was
carried out. Three different docking programs—Maestro; MOE; and GOLD—were used for
molecular docking; and the better compounds were screened according to the interactions
between the composites. Three different docking programs, Maestro, MOE, and GOLD,
were used for molecular docking, and the better compounds were selected according to
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the interactions between the compounds. We then selected small Marine molecules that
were better than the positive control compounds to perform the Scaffold hopping. The
compounds before and after structure optimization were compared by molecular docking.
The absorption, distribution, metabolism, excretion, and toxicity of the selected compounds
were predicted. Finally, molecular dynamics simulations of candidate compound 1008-1,
positive and negative compounds, were performed, taking into account the static and
dynamic interactions of the crystal complexes, and effective USP7 covalent inhibitors were
identified by observing the conformational stability of the complexes. Figure 1 illustrates
the workflow of this study.
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Figure 1. Virtual screening process for USP7 covalent inhibitors: Three marine compound libraries
were selected, and the compound library was screened by constructing three different QSAR models
to analyze active and inactive compounds. After molecular docking with Maestro, GOLD, and MOE,
consensus analysis of Marine compounds was performed, and the hit compounds were optimized
by scaffold hopping. Subsequently, another round of molecular docking was performed, and using
positive controls, the results before and after docking were analyzed to find out the dominant small
molecules. The optimized small molecules were then subjected to pharmacokinetics, and finally, they
were each subjected to three molecular dynamics simulations and averaged. Through comprehensive
analysis from multiple perspectives, the superior USP7 covalent inhibitor 1008-1 was screened out.

2. Results
2.1. The Analysis of Three Different QSAR Models
2.1.1. Construction and Verification of AutoQSAR Model

As more data becomes available over time, updated QSAR models will make the
predictive models more accurate. Based on various regression algorithms, 10 AutoQSAR
models were constructed by using the small molecules of USP7 inhibitory activity in the
public database BindingDB. The 10 models are ranked according to their overall score. As
shown in Table 1, these are the statistical parameters of 10 AutoQSAR models. Although
the standard deviation and root mean square error of the kpls_linear_20 model and the
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kpls_dendritic_20 model are lower than other scores, their combined scores are not the
best two models. The model with the highest composite score is the model kpls_radial_20,
which is the best model produced with a radial fingerprint by the kernel-based partial
least squares (KPLS) regression method. The ranking score of kpls_radial_20 is 0.7847, the
R-square value (coefficient of determination) of the training set is 0.8077, and the Q-square
value of the test set is 0.8016. Compared with other models, the difference between them
is the smallest, which is 0.0061, indicating that kpls_radial 20 has stronger generalization
ability and can predict unknown small molecules with different activities. Because there
are 52,119 compounds in the target compound library to be screened, the AutoQSAR model
is required to have stronger generalization ability. Therefore, we chose the kpls_radial 20
model to predict small molecules in the marine compound library.

Table 1. Statistical results of the numerical AutoQSAR models of the top 10.

Model Code Score S.D. R? RMSE Q?

kpls_radial_20 0.7847 0.5998 0.8077 0.6184 0.8016
kpls_radial 5 0.7827 0.5797 0.8224 0.6101 0.8018
kpls_linear_20 0.7776 0.4559 0.8889 0.5662 0.8337
kpls_dendritic_20 0.7765 0.4491 0.8922 0.5648 0.8345
kpls_dendritic_34 0.7700 0.5324 0.8501 0.6018 0.8048
kpls_linear_5 0.7641 0.5264 0.8528 0.6050 0.8051
kpls_linear_34 0.7613 0.5377 0.8471 0.6116 0.7984
kpls_radial 13 0.7598 0.5320 0.8498 0.6110 0.8050
kpls_molprint2D_13 0.7501 0.5263 0.8545 0.6161 0.8017
kpls_dendritic_5 0.7500 0.5276 0.8522 0.6178 0.7967

S.D.: Standard deviation of the model; R?: R-squared value (coefficient of determination) for the training set;
RMSE: Root-mean-square error of the test set predictions; Q2 Q-squared value (the R-squared for the test set).

The automatic quantitative structure-activity relationship model can be applied to the
validation set in the same work in which the model is built, or it can be applied to newly
acquired compounds at any later point in time. The kpls_radial_20 model was evaluated
as the best model for AutoQSAR. Thus, using this model to predict marine compounds,
240 marine small-molecule compounds with pIC50 values greater than 6 were selected for
the next step of XP docking and covalent docking.

2.1.2. Construction and Verification of Naive Bayesian Model

The Naive Bayes (NB) model shows excellent classification recognition ability. For
the classification of active molecules, the true positive rate (recall rate) reached 75.6%; for
inactive molecules, the model has a prediction rate of 84.0% for true positives (inactive
molecules classified correctly). The AUC of this model is 0.878, close to 1, indicating
that this model has good classification ability. The classifier model is slightly better at
identifying inactive molecules than active ones. This result shows that classification using
this model can increase the risk of incorrectly excluding active compounds. However, more
false positives can be avoided. Because we used more screening and validation methods
throughout the screening process, the results were acceptable. The results obtained in the
five validation tests of the model are similar to the classification results after training. As
can be seen from Figure 2, in our 5-fold cross-validation results, the model also shows a
good ROC-AUC index. On the basis of the ECFP_6 fingerprint, high-frequency good /bad
feature fragments (GF/BF) of active and inactive compounds were calculated. Since the
molecular fingerprint frequencies of all compounds classified as “active” by Bayesian
classifiers are taken into account when calculating favorable fragments, the fragments in
Figure 3 represent only the statistical results of a large data-based study of the structure-
activity relationship of potential USP7 inhibitors, contributing to our understanding of the
key structure of USP7 inhibitors.
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Figure 2. ROC curve obtained by five-fold verification of the NB model. (ROC = 0.884; AUC = 0.878).
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Figure 3. Favorable/unfavorable active fragments calculated based on ECFP_6: (a-h) top 8 good
fingerprints (G1-G8) calculated based on ECFP_6 fingerprints; (i-p) top 8 bad fingerprints (B1-BF8)
calculated based on ECFP_6 fingerprints.

2.1.3. Construction and Verification of Multiple Linear Regression Model

As shown in Figure 4, the MLR model constructed by DS has good performance. In the
real and predicted values of compounds, R2 of the training set is 0.938 and R2 of the test set
is 0.725. Therefore, we chose this model for the pIC50 classification of Marine compounds.
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We screened a total of 232 effective small molecules. As with the AutoQSAR model, we
chose small molecules with pIC50 > 6. There are 10 of them in total, and they are included
in the 240 clocks screened in the AutoQSAR model. They will undergo docking analysis of
Maestro, GOLD, and MOE in turn.

(a) (b) -
‘ y=0.938x +0.183 Vs y=0.942x +0.216
i R-square = 0.938 . '(/ . o+ R-square =0.725

»
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Figure 4. Correlation between predicted and true values of the MLR model. (a) The correlation be-
tween the predicted and true values of the training set. (y = 0.938x + 0.183, R? = 0.938); (b) Correlation
between the predicted and true values of the test set. (y = 0.942x + 0.216, R? = 0.725).

2.2. The Analysis of Molecular Docking

The good performance of a molecular docking tool is essential for structure-based
screening and analysis of the interaction forces between protein-ligands. In order to treat
the molecular docking process with more rigor, the binding site of its eutectic ligand was
re-docked with extra precision (XP) using the USP7 protein (PDBID: 6M1K) prior to true
covalent docking. When the docked small molecule and the primary crystal ligand are
superimposed, the RMSD values between them are calculated. If the RMSD value is less
than 2.0A, the molecular docking tool is considered to perform well. The primary eutectic
ligand and the re-docking ligand show that the small molecules after the re-docking are
very close to the primary eutectic ligand. The RMSD between Maestro, GOLD, and MOE
were 0.3234A, 0.778A, and 0.5480A, respectively. Thus, this proves that Maestro, GOLD,
and MOE are trusted docking tools.

In order to find suitable covalent inhibitors of USP7, we performed XP docking before
covalent docking. This is because covalent docking consumes more computer power
and time than XP docking. At the same time, this can also successfully enter the active
pocket of the chemical compounds screened out. Also, in Scaffold hopping, it is very
important to consider the flexibility of the receptor. If not considered, it can hinder the
discovery of correct posture in docking [31]. It is therefore reasonable to perform XP
docking before covalent docking. The results showed that 240 small molecules could be
successfully docked, and 78 compounds were better than the positive control. In addition,
a second XP docking after Scaffold hopping was also successfully performed. Therefore,
the 78 compounds and the optimized compounds will undergo the next covalent docking.

According to GOLD docking results, positive control P217564 (reference compound)
produced a total of 20 conformations, and its average CHEMPLP value was 35.0956, which
was lower than that of the other 15 small molecules, so covalent docking was performed on
these 15 small molecules.

MOE docking results showed that P217564 (the reference compound) and the opti-
mized compound were successfully docked. However, only optimized compound 1008-1
showed results due to positive control compounds, and optimized compound 1008-1 was
also the only docking analysis that could pass three different docking procedures simulta-
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neously. Therefore, optimized compound 1008-1 has great potential to become a covalent
inhibitor of USP7.

2.3. Covalent Docking

The pharmacological advantages of covalent inhibitors are being studied extensively.
Covalent inhibitors can not only obtain a longer drug residence time but also improve
the selectivity of the target. In the USP7 protein structure, the core consists of amino
acids CYS223, HIS464 and ASP481, which together participate in the process of substrate
deubiquitination, so it is also known as the catalytic domain. As shown in Figure 5a, the
catalytic domain of USP7 is a typical hand-like structure, where the positive control is
bound in the gap between the thumb and the palm, and this region is also a key region
that guides the C-terminal of ubiquitin to bind to the active site. The covalent docking
fraction between P217564 (the reference compound) and protein was —5.583kcal /mol.
As shown in Figure 5b, compound P217564 (reference compound) forms hydrogen bond
interactions with residues CYS223 and GLY462, and salt bridge interactions with ASP482
and HIS464. Therefore, compound P217564 (the reference compound) can be used as a
reliable control compound.

Figure 5. The analysis of the positive compound P217564 (reference compound) and protein pocket.
(a) The relationship between the positive control compound P217564 (reference compound) and the
surface of the active pocket (the red part is the location of the active pocket); (b) the three-dimensional
binding pattern of P217564 (reference compound) to USP7 protein (PDBID: 6M1K). The hydrogen
bond interaction is yellow. The salt bridge is orange. The covalent interaction is directly linked to the
residue (CYS223).

In XP docking, 78 compounds were selected for covalent docking with the USP7
protein. The docking fraction and docking pattern of 22 marine compounds were better
than those of the positive control compound P217564 (reference compound), so these
compounds were used for scaffold hopping, thereby improving the interaction between
ligand and protein. The optimized structure of thousands of compounds is once again
XP docking and covalent docking. All compounds target the cysteine residue CYS223 for
covalent binding. According to different compounds, different covalent reaction equations
are chosen. Finally, we found that 58 compounds with optimized structures had better
docking scores and docking patterns than positive controls and original small molecules.
Therefore, they were selected for further ADMET property analysis to find more stable
USP7 covalent inhibitors.

According to the covalent docking results of GOLD, the positive control P217564
(reference compound) formed three conformations, and its average CHEMPLP value was
—70.12986667, and the average CHEMPLP value of six small molecules was lower than
that of P217564 (reference compound).
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2.4. Scaffold Hopping

The main purpose of scaffold hopping is to enhance the physicochemical and phar-
macological properties of the original drug. Scaffold hopping is mainly based on the
binding effect of the pocket and the molecule. The diversity of fragment binding resulted
in a large number of newly generated molecules, and the replacement results of each
molecule showed a large amount of data—more than 100. Therefore, we restrict according
to the requirements of the pharmacophore of the original molecule, molecular weight, and
lipid solubility to meet better pharmacological properties. The GBVI/WSA dG score was
used to evaluate the binding effect between the structurally optimized small molecule
and the original pocket. We performed scaffold hopping on each of the 22 molecules.
Through conditional restriction, score screening, and visual observation, 22 groups of small
molecules with optimized structures were obtained for XP docking and covalent docking
again. As shown in Table 2, better GBVI/WSA dG scores were obtained after scaffold
hopping through fragment replacement. In particular, compound 13057 had the same
structure “1,2-dibromobenzene” as the positive control compound, and it was observed
that this structure did not interact well with the key residue during the covalent docking
visualization. However, according to the binding relationship between MOE molecules
and pockets, the exposed area represented by 13057-3 is smaller than 13057-1 and 13057-2.
However, due to the consideration of the substitution principle and the rigor of the ex-
periment, we carried out different selection schemes of pharmacophore for the two parts,
respectively. In order to find compounds with better structure, the structurally optimized
compounds were compared before and after a second XP docking and covalent docking.

Table 2. The results of scaffold hopping through fragment replacement. (The replacement structure is
marked in pink).

Pharmacophore . o Before Scaffold After Scaffold
Name o e Filter Criteria Score
Limitation Replacement Replacement
O
%O HN
o / \
o]
Weight < 600, o:< : \—NH HN—< N HN_<O
1008-1 No SlogP 14, 8], O):o d ° ° —18.4846
TPSA [40, 140], _ =0 — '
Score less than —12 HN HN
Br Br
NH
. NH oi . /&O
Weight<500,
24428-35 W SlogP [4, 8], o N o) &o —13.1977
TPSA [40, 140] NH®

o
HoN
NH
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Table 2. Cont.
Name Phal_‘m?co!)hore Filter Criteria Before Scaffold After Scaffold Score
Limitation Replacement Replacement
®—\ V
Br WOH
N HN—
13058-2 —10.7885
Weight < 500, A HN
SlogP [4, 8], N0 °
/ TPSA [40, 140], o W
HN Score less than —10 o ) < o XV
13058-3 N [©[ . ~13.0436
13057-1 —11.2398
H@
Weight < 500,
13057-2 Slf)lggP [; ] 114333
TPSA [40, 140]
13057-3 7O —8.5368
NH
o
8171-3 —14.2391
o
HN Weight < 500,
8171-6 nlllH SlogP [4, 8], —12.9634
G TPSA [40, 140]
o
8171-7 —12.4163

2.5. Analysis before and after Scaffold Hopping

The three compounds with good covalent docking results are shown in Figure 6 and
Table 3, which respectively show the three-dimensional binding patterns of complexes
before and after the skeleton transition and the interactions of key residues. All the
compounds can covalently interact with CYS223, a key residue of the catalytic domain. In
particular, the structurally optimized compound 13058-2 interacts with residue CYS223
and hydrogen bonds, which makes it better bound to the protein. Both compound 1008
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and the optimized compound 1008-1 have the same interaction with GLY220, SER457,
and CYS223. Although the covalent docking scores of compounds 1008 and 1008-1 are
close, compound 1008-1 is superior to compound 1008 in the docking modes of their
respective complexes. Both compound 13057 and compound 13057-3 form hydrogen
bond interactions with ASP482 residues, but in particular, compound 13057-3 also forms
salt bridge interactions with ASP482, forming a stronger binding force. Therefore,
the optimized compounds 13058-2, 1008-1, and 13027-3 are better than the original
compounds and the positive control compound.

(a) J&\ %TYR—%S (b) - "

CYS-223
GLY-463

SER-457

LY-463
@) b NS (@) aspnX ® jﬁsp-482
cysanrarsg ™ P ASp-az2 =/ =
: SER- 457 y ASN-460 Y, TYR-465
. jLY-ZZO o
: 4
GLY-220 Vs o AP |-
[ W TYR-465 CVS-223 % :
ASN-218 ‘ GLY 462

Figure 6. Three-dimensional binding patterns between protein-ligand complexes. (a) Three-
dimensional structure of the protein complex of compound 13058. (b) Three-dimensional structure of
compound 1008 and protein complex. (c) Three-dimensional structure of the protein complex of com-
pound 13057. (d) Three-dimensional structure of the optimized compound 13058-2 protein complex.
(e) Three-dimensional structure of the structurally optimized compound 1008-1 and protein complex.
(f) Three-dimensional structure of the optimized compound 13057-3 protein complex. (Hydrogen
bond interactions are yellow, cation-7 interactions are red, -7 interactions are green, salt-bridge
interactions are orange, and covalent interactions are directly connected to residues CYS223.).

To further confirm the reliability of our selected structures, we used GOLD and MOE
software for docking, and the optimized structure of 1008-1 was able to obtain better
results than the positive compound P217564 (reference compound) in three different
docking software. As shown in Figure 7a, the docking results of 1008-1 in MOE software
showed that the compound formed the Aromatic H bond interaction with residues
GLY462, GLY220, and ASN218, and the hydrogen bond interaction with residues ASP482.
The interactions of the residues above are basically consistent with the docking results
shown with Maestro. As shown in Figure 7b, the compound interacts with residues
SER226 and GLY219 to form hydrogen bonds. After comprehensive analysis of the
docking results of Maestro, MOE, and GOLD, the optimized compound 1008-1 has
potential candidate compound capability.
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Table 3. The interaction of compounds with key residues of proteins.
. . Covalent Docking
Compound Hydrogen Bonds T-TC Cation-7 Salt Bridge Score (kcal/mol)
P217564 CYS223, GLY462 - - ASP482, HIS464 —5.583
TYR465, GLY463,
13058 GLY462, ASN218 i i i o866
CYS223, TYR465,
13058-2 GLY220, ASN218, - - ASP482 —7.865
ASP482
GLY220, GLY462,
1008 GLY483, SER457, - - - —7.852
HIS464
ASP459, ASP482,
1008-1 GLY220, TYR465, - - - —7.868
SER457
13057 ASP482, GLY463 HIS464 HIS464 - —5.820
ASN460, ASP482,
13057-3 TYR465, GLY462 - - ASP482 —6.549
GLY-4?\ 'y A
2 GLY-22

]

g

| L

Figure 7. The three-dimensional binding mode between compound 1008-1 and protein after
optimization. (a) three-dimensional combination mode using MOE docking; (b) 3D bonding
mode using GOLD docking. (The hydrogen bond interaction is yellow, and the Aromatic H bond
interaction is cyan).

2.6. Property Analysis of ADMET

The online website ADMETlab2.0 was used to predict the absorption, distribution,
metabolism, excretion, and toxicity of 58 compounds after structural optimization. Some
physical and chemical properties of positive control compound P217564 (reference com-
pound) exceeded the threshold, such as LogP exceeding the upper limit and LogS exceeding
the lower limit. The other compounds selected after structural optimization are within the
appropriate range of physical and chemical properties. As shown in Table 4, the ADMET
properties of the structurally optimized compounds were compared with the positive
control compounds. Madin-Darby canine kidney cells (MDCK) have been developed as
an in vitro model for permeability screening. Compounds 1008-1, 13057-3, 13058-2, and
P217564 (the reference compound) all showed good MDCK values, indicating that they
enter the body more efficiently. Compounds 1008-1, 13057-3, and P217564 (the reference
compound) have a lower blood-brain barrier. Volume distribution (VD), which relates the
administered dose to the actual initial concentration present in circulation, is an important
parameter to describe the distribution of a drug in the body. Compounds 1008-1, 13057-3,
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13058-2, and P217564 (reference compound) all showed good VD values. In addition, liver
damage from drugs is a common side effect of drugs. The H-HT value of compound
P217564 (reference compound) is 0.547, which is higher than that of compounds 1008-1,
13057-3, and 13058-2. Therefore, the three optimized compounds 1008-1, 13057-3, and
13058-2 have good properties for patent medicine.

Table 4. ADMET results for compound P217564 and the scaffold-optimized compounds.

Compound MDCK BBB VD Fu CYP2C19-Sub H-HT AMES EC EI
1008-1 8.34 x 107° 0.071 1.813 29.79% 0.053 0.116 0.442 0.003 0.006
13057-3 248 x 1072 0.063 0.954 65.57% 0.065 0.134 0.007 0.006 0.012
13058-2 3.48 x 107° 0.355 1.011 67.65% 0.064 0.062 0.007 0.003 0.019
P217564 3.15 x 1072 0.016 1.196 1.65% 0.423 0.547 0.947 0.003 0.043

MDCK Permeability: high permeability > 20 x 107 cm/s, medium permeability for 2-20 x 107° cm/s, low
permeability for < 2 x 10=% cm/s; BBB: blood brain barrier, 0-0.3 cm/s: excellent, 0.3-0.7cm/s: medium,
0.7-1.0 cm/s: poor; VD: Volume Distribution, 0.04-20 L/kg: excellent; otherwise: poor; Fu: The fraction un-
bound in plasms >20%: High Fu, 5-20%: medium Fu <5%: Low Fu; CYP2C19-sub: the probability of being
substrate/inhibitor, within the range of 0 to 1; H-HT: The human hepatotoxicity, 0-0.3: excellent, 0.3-0.7: medium,
0.7-1.0: poor; AMES: The Ames test for mutagenicity, 0-0.3: excellent, 0.3-0.7: medium, 0.7-1.0: poor; EI/EC: The
eye irritation/corrosion, 0-0.3: excellent, 0.3-0.7: medium, 0.7-1.0: poor.

2.7. The Analysis of RMSD and RMSF

The RMSD value reflects the degree to which the atoms deviate from the average
position, that is, the size of the motion of each atom. The RMSD of the protein-ligand
complexes is shown in Figure 8. The RMSD value of compound P217564 (the reference
compound) fluctuated slightly between 18ns and 55ns, but remained stable overall. The
RMSD of compound 1008-1 was stable after 15ns. The RMSD value of GNE2917 (the
negative control compound) tended to stabilize after 40ns, but the RMSD value after its
equilibrium was higher than that of P217564 (the reference compound) and 1008-1. The
average RMSD of the complexes of protein and P217564 (reference compound), 1008-1,
and GNE2917 (negative control compound) were 0.3447, 0.3637, and 0.4081, respectively.
Compared with P217564 (the reference compound), 1008-1 has a similar RMSD value, while
the RMSD value of GNE2917 (the negative control compound) was higher than that of
P217564 (the reference compound) and 1008-1.

For candidate compounds 1008-1, the fluctuation of RMSD after reaching stability is
not more than 2 nm, which indicates that the complex can finally reach a relatively stable
state during the simulation process.

The RMSF calculates the fluctuations of the individual amino acid residues during
MD simulation with respect to time, which reflects the degree of freedom of the atom.
The RMSF of the protein is shown in Figure 9. In general, the overall movement trend of
the P217564 (reference compound) is consistent with that of 1008-1, while the GNE2917
(negative control compound) has a higher RMSF value. RMSF shows lower values near
residues ASP482, CYS223, and TYR465, which indicates that the protein has a more stable
structure near these residues. This is consistent with the results of molecular docking.

2.8. Hydrogen Bond Analysis

The hydrogen bond between the protein and the ligand is an important factor in
keeping the molecule within the active site cavity. During the simulation process, the
ligand forms a certain number of hydrogen bonds with the protein, and the number of
these hydrogen bonds also reflects the degree of binding of the ligand to the protein. As
shown in Figure 8, the number of hydrogen bonds formed by compound 1008-1 within
100 ns is stable. Compared with 1008-1, GNE2917 (the negative control compound) had
fewer hydrogen bonds with the protein, indicating that 1008-1 has better hydrogen bond
interactions with the protein. The results of RMSD, RMSEF, and hydrogen bond analysis
indicate that 1008-1 has good binding stability.
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Figure 8. RMSD and hydrogen bond analysis diagram of the complexes of USP7 and compounds.
(a) RMSD of USP7 and positive control compound P217564 (reference compound). (b) RMSD of USP7
and compound 1008-1. (¢) RMSD of USP7 and compound GNE2917 (negative control compound).
(d) Hydrogen bond number of USP7 and compound P217564 (reference compound). (e) Hydrogen
bond number of USP7 and 1008-1. (f) Hydrogen bond number of USP7 and GNE2917 (negative
control compound).
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Figure 9. RMSF diagram of USP7 with compounds.
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3. Discussion

USP7 is a human ubiquitin-specific protease 7, also known as the herpes virus-
associated protein. It has been shown to regulate the stability of different cellular proteins,
which play an important role in DNA replication and transcription, apoptosis, and the
immune response [32]. USP7 is the target of the herpes virus protein that enables the virus
to escape and replicate efficiently, playing multiple roles in the process of viral infection [33].
At the same time, it is a key factor in the p53 pathway. In the p53-MDM2-USP7 pathway,
USP7 maintains a sufficient MDM2 level, resulting in a low level of p53, thus creating
conditions for the occurrence and development of tumors [34]. As a result, USP7 has be-
come a pandemic target for many diseases. Recognizing the importance of USP7 in the p53
pathway, it was reported in 2006 that USP7 plays an important role in the carcinogenesis of
non-small cell lung cancer (NSCLCs) through the p53-dependent pathway [35]. USP7 is
highly expressed in a variety of cancers and affects cancer development. This has fueled
research interest in USP7 inhibitors [36]. Based on experimental and molecular docking
methods, USP7 inhibitors of the natural primary crystal triterpene skeleton were reported
in 2018 and demonstrated inhibitory effects on myeloma cell proliferation [37]. Molecu-
lar dynamics simulations and biological evaluation techniques were used to determine
that USP7 inhibitors had an inhibitory effect on LNCaP in human prostate cancer cells.
Despite the fact that many USP7 inhibitors have been reported, there are currently no
drugs available for purchase. Therefore, small molecules that can inhibit USP7 for clinical
treatment have yet to be discovered. Fortunately, computer technology has advanced to the
point where CADD can be used to screen potential small molecules from large compound
libraries, allowing for a more efficient and cost-effective drug screening process with a
higher hit rate of potential compounds.

Covalent inhibitors are a class of compounds that can covalently bind to specific target
proteins, thereby inhibiting their biological functions. Targeted covalent inhibitors (TCI)
have continued to innovate in recent years and have expanded beyond cysteine-directed
electrophiles, kinases, and cancers, offering broad opportunities for a new generation
of breakthrough therapies [38]. In 2020, the structurally active study of electrophilic
peptide inhibitors in the catalytic domain of USP7 was reported, and it was found that
inhibitors with 1-Cyanopyrrolidine warheads can promote the (3-elimination reaction of
covalent admixtures [39]. Based on the highly conserved catalytic triad structure of USP7
protein, cysteine residue CYS223 was covalently added with different chemical shells to
induce conformation changes at the active site, thereby inhibiting its enzyme activity [5].
Reported FT827 contains a vinyl sulfonamide structure extending towards the catalytic
center and covalently modifies USP7 cysteine. Therefore, it is reasonable to design covalent
compounds of cysteine targeting USP7 to provide novel inhibitors of USP7 derived from
marine compounds.

Quantifying the binding affinity between small molecules and their targets is essential
for modern drug discovery. To predict the activity of the Marine compound library, we
collected small molecules with high or low activity of USP7 inhibitors from BindingDB
and built three different QSAR models: the AutoQSAR model, Naive Bayesian model, and
the MLR model. The best model, kpls_radial_20, had the smallest difference between R2
and Q?, indicating its extensive and robust nature. In Naive Bayesian model, we found
that pyrrole structure can play a positive role in active action. Three kinds of molecular
docking procedures were performed based on Marine compounds co-screened by three
different QSAR models. We also evaluated the performance of the docking software and
conducted scaffold hopping to optimize the covalent docking results over positive control
compounds to enhance the binding ability of the compounds to proteins and their stability
in dynamic simulations. The three optimized compounds, 13058-2, 1008-1, and 13057-
3, were covalently bonded. Compounds 1008-1 and 13058-2 underwent a Nucleophilic
Addition to a Double Bond, while 13057-3 underwent a Nucleophilic Substitution. The
replaced fragment of the compounds enhanced the interaction with the protein. Although
13057-1 and 13057-2 had the same 1,2-dibromobenzene structure as the positive control
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compounds and achieved better scores on the covalent butt and GBVI/WSA dG scores,
they did not dominate the ADMET property analysis and molecular dynamics simulation.
Thus, changing the 1, 2-Dibromobenzene structure may improve the binding effect. At
the same time, the optimized compound 1008-1 showed good interaction with residues
ASP482, GLY220, and GLY220 in different docking procedures. The screened compounds
formed more hydrogen bonds with USP7 than positive compounds, and the key binding
residues were similar, suggesting that optimized compound 1008-1 may be a covalent
inhibitor of USP7. Molecular dynamics simulations of the complex showed the dynamics
of ligand—protein binding and confirmed the results of static covalent docking. Through
a comprehensive analysis, we have concluded that these three compounds possess the
desired qualities of target binding and pharmaceutical properties, thereby making them
ideal candidates for the further development of USP7 covalent inhibitors.

4. Materials and Methods
4.1. Compound Data Set Preparation

To be able to collect data on reported USP7 inhibitors with experimental activity, we
collected data on 667 compounds with ICsg activity values from the publicly accessible
database BindingDB. (https://www.bindingdb.org/rwd/bind/index.jsp, accessed on 6
February 2023) In order to ensure the integrity of the compound data and to process the
subsequent steps of the data, the small molecules with incomplete data information were
deleted, resulting in 543 compounds. In addition, the second-generation USP7 inhibitor
P217564 (reference compound) [40] was selected as a positive control compound in this
study due to its high potency and selectivity, its ability to selectively target the catalytic
crack of USP7, and its ability to modify cysteine at the active site by forming a covalent
adduct. For all compounds, the Maestro 11.8 (Schrodinger, Shanghai, China) Structure File
Converter is used for file format conversion of small molecules, and the Glide module is
used for small molecule preparation. In this step, all the small-molecule structures were
desalted at pH 7.0 £ 2.0 using the OPLS_2005 force field and Epik module using LigPrep
tools to generate 3D structures with corresponding low-energy states and their isomers.

4.2. Protein Crystal Structure Preparation

Human ubiquitin-specific protease 7(PDB ID: 6M1K) was downloaded from the PDB
database (https:/ /www.rcsb.org/, accessed on 19 September 2022). In the Protein Prepara-
tion Wizard tool in Maestro 11.8, the protein crystal structure is prepared. In order to make
the protein crystal structure more refined, the PH value was set to 7.0, and the protonation
state of the protein residues was optimized by hydrogen bonding using PROKAs pKa
prediction. In addition, in order to better simulate the effect, the OPLS_2005 force field
was used to minimize the energy of the protein structure and limit the heavy atoms of the
protein to the RMSD value of 0.3 A. We will use the prepared small-molecule structure and
protein structure for further USP7 inhibitor screening.

4.3. The Construction of Three Different QSAR Models
4.3.1. Construction and Prediction of AutoQSAR Model

Maestro 11.8’s AutoQSAR tool is a powerful automated application that builds QSAR
models based on machine learning methods and has been used to build QSAR models that
combine affinity with reliable performance comparable to published QSAR models. [41]
In the construction of the AutoQSAR model, 543 small molecule structures prepared by
LigPrep are input as the learning set of the model, and the inhibitory activity of all small
molecules [ICsp(nmol/L)] is transformed into a negative logarithmic scale [pIC50(mol/L)].
Small molecules with different ICsq values across different orders of magnitude were
randomly assigned 75% as the training set and 25% as the test set. It then computes
497 physicochemical and topological descriptors as well as various canvas fingerprints,
producing a large pool of independent variables. But because descriptors often contain a
high degree of redundancy, a feature selection process is performed to identify a smaller
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subset of descriptors. If these descriptors of the learning set do not provide statistically
significant information when at least 90% of the compounds in the learning set have
the same value, then these descriptors are removed. After initial filtering, the set of
descriptors still exhibits significant collinearity, and some machine learning methods can
effectively reduce redundancy, such as recursive segmentation and partial least squares
regression. The filtered descriptors are further reduced to no descriptor pairs exhibiting
absolute Pearson correlation coefficients. A subset of 0.8. The number of models to be
constructed for each model type is set to 50. Multiple regression algorithms integrating
optimal subset multiple linear regression (MLR), partial least squares regression (PLS),
kernel-based least squares regression (KPLS), and principal component regression (PCR)
are used to construct numerical models. And according to S.D. (Standard deviation of the
model), R? (coefficient of determination for the training set), RMSE (root mean-square error
of the test set predictions), and Q? (the R-squared for the test set), statistical parameters and
composite scores were used to select the best numerical models for AutoQSAR. The best-
evaluated AutoQSAR model was used to screen marine natural compounds for potential
USP7 inhibitors.

4.3.2. Construction and Prediction of Naive Bayesian Model

The discrimination ability of machine learning classification models depends heav-
ily on whether the chemical spatial distribution of the compounds in the training data
set is sufficiently diverse. Therefore, the chemical spatial diversity of 55 calculated de-
scriptors from the entire data set was investigated using a principal component analysis
(PCA) analysis. The PCA of the molecular descriptors yielded eight key molecular descrip-
tors, namely ES_Count_aasN, ES_Count_aaO, ES_Count_dCH2, Num_AromaticRings,
Molecular_FractionalPolarSurfaceArea, IsChiral, Num_Rings, and QED. Five principal
components (PCs) were obtained by assigning distinct weighting factors to these descrip-
tors. The first three most critical principal components (PC1-PC3) were selected for the
chemical spatial analysis. Bayesian classification models were constructed using 737 ac-
tive/inactive usp7-targeted compounds. The key molecular descriptors obtained from the
dimensionality reduction in the PCA, as well as the molecular fingerprint ECFP_n, were
applied to the proposed model construction process. Various fingerprint-descriptor combi-
nations were attempted during the model construction, whereas the area under the ROC
curve (AUC) values of the obtained models were considered as indicators representing their
classification ability. The best-performing Bayesian model was selected for further analysis,
in which an active flag was used for classification. The naive Bayesian model is based on a
binary (i.e., “yes or no’) approach to determining whether a compound has target inhibitory
activity, with the classification process using the model’s activity cut-off value (—4.000 in
our model) as a benchmark, along with a Bayesian score for each compound. When the
absolute value of the Bayesian score is greater than the cut-off value, the compound is
classified as ‘active’, and the opposite is classified as “inactive”. Subsequently, ECFP_6 and
eight key descriptors were applied (ES_Count_aasN, ES_Count_aaO, Num_AromaticRings,
Molecular_FractionalPolarSurfaceArea, IsChiral, Num_Rings, ES_Count_dCH?2, and QED).

4.3.3. Construction and Prediction of Multiple Linear Regression Model

Through extensive literature review and the use of databases, we collected 481 molecules
structure and bioactivity data related to 2D QSAR. Dividing them into training sets and
test sets. We use computational chemistry to calculate 2D molecular descriptors for each
molecule, including the topological structure, charge distribution, and solubility. These
descriptors are used as the basis for constructing quantitative structure-activity relation-
ships. The pic50 value was used as the activity data. Using the Create Multiple Linear
Regression Model in Discovery Studio, we construct 2D QSAR models using advanced
modeling techniques. The MLR QSAR model was used to predict the biological activity of
240 molecules.
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4.4. Structure-Based Virtual Screening
4.4.1. Molecular Docking Using Maestro

In order to further screen the USP7 covalent inhibitors, super-precision docking (XP)
and covalent docking (covalent docking) were performed on the candidate compounds
based on the USP7 structure (PDB ID: 6M1K). For molecular Docking studies using the
Maestro 11.8 software, the pre-prepared USP7 protein crystal structure was placed into
the Ligand Docking tool for XP docking. However, before starting the docking with the
Glide module, the scoring function and docking parameters are verified in advance. In
order to make the docking result more accurate, the docking mode is set to flexible docking.
Here, to soften the potential of the non-polar part of the ligand, set the scale factor to 0.80
and the partial charge cutoff value to 0.15. Other than that, to soften the potential of the
non-polar portion of the protein structure, the van der Waals radius scaling factor and
partial charge cutoff values of the receptor are set to 1.0 and 0.25, respectively. Therefore,
240 marine compounds and scaffold hopping compounds screened from the AutoQSAR
model were coupled with the USP7 protein structure with additional precision in order to
better determine the protein-ligand binding site and bring the ligand close to the covalent
residue CYS223.

To screen for covalent inhibitors of the USP7 catalytic domain, we restricted the ligand
to within 10A of the catalytic triad of the receptor (CYS223, HIP464, ASP481). On the basis
of the structure after XP docking, the virtual screening of optimized marine compounds
was carried out. In addition to analyzing the ranking of ligand-receptor covalent docking
scores, all complex binding patterns were visually examined. Compared with the positive
control compound P217564 (reference compound), better compounds were screened for
further analysis and optimization.

4.4.2. Molecular Docking Using MOE

Molecular Operating Environment (MOE) docking software (MOE2019.0102) was
used for molecular docking. The compounds screened by the first two Maestro and
GOLD were moleculetically docked with the positive compound P217564 (reference
compound). We use MOE to minimize the energy of a three-dimensional geometry
for small molecules. The protein structure was optimized with A root-mean-square
gradient of 0.1kcal/mol/A and the QuickPrep minimization constraint retained. We
used Triangle Matcher as the placement method. We use the London dG scoring function
to rank the docked conformations because the function estimates the binding free energy
of the ligand for a given conformation. And we calculate the docking method by
calculating the root-mean-square deviation (RMSD) between the primary ligand and the
redocking ligand. Three kinds of docking consensus judgments were used to determine
the candidate compounds with good potential.

4.4.3. Molecular Docking Using GOLD

GOLD 5.3 (Genetic Optimization for Ligand docking 5.3) was used for docking. USP7
and a novel inhibitor complex (PDBID:6M1K) were used as receptors to add hydrogen
atoms and remove water molecules. CYS223, HIS464, and ASP481 were set as binding sites,
and chemscore_kinase was selected as an available Template. The GA Runs of P217564
(the reference compound) were set to 20. The GA Runs of the other 15 molecules are set
to 10, and CHEMPLP is selected as the docking score. In order to improve the calculation
accuracy, the Search efficiency was set to Very Flexible, and molecular docking was started.

In addition, GOLD was used for covalent docking with CYS223 as the reaction residue,
and chemscore_kinase was selected as an available Template. The GA Runs of positive
control P217564 (reference compound) were set to 20, the GA Runs of the other 15 molecules
were set to 10, and CHEMPLP was selected as the docking score. Ligand link mode Select
the Atom option to define the Protein link atom and the Ligand link atom. Similarly, to
improve the accuracy of the calculation, we set the Search efficiency to Very Flexible.
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4.5. Scaffold Hopping by Fragment Replacement

Scaffold hopping is a common strategy for drug structure optimization. Changes
in the position and number of heteroatoms in the molecular skeleton based on fragment
design can greatly affect the physicochemical properties, bioactivity, and pharmacokinetics
of small molecules. Therefore, the rational use of scaffold hopping strategies based on
target structure can improve the success rate of drug candidates [42,43].

4.5.1. Molecular Processing

We chose the calculation software MOE, and the fragment database we selected was
the fragment library that came with MOE (40,626 fragments). In order to achieve a better
binding effect between protein and ligand, partial replacement of the molecular skeleton
was performed according to artificial judgment to achieve an optimal effect. First, we looked
at the 2D representation of the binding effect of the molecule to the protein pocket presented
by MOE. Secondly, based on the ligand interaction identified by MOE, we analyzed the
exposed regions of the molecule and the locations of the special bonds between the molecule
and the pocket. Finally, the area with a large exposure area and less binding force is selected
manually. When the box selection area is wrapped in green, the selected area is recognized
as replaceable by MOE. In addition, in order to ensure that the molecules after the transition
are not less effective than the original molecules, pharmacophore restriction should be
applied to the selected hydrogen bonds or large pie bonds to preserve them if necessary.
For most of the transition molecules, we give the following uniform restriction conditions:
Weigh < 500, SlogP [4, 8], TPSA [40, 140], thereby limiting the newly formed molecule,
and when the molecular weight of the selected structure increases significantly, we change
the molecular weight to 600 to achieve better results.

4.5.2. Optimization and Scoring

In order to better judge the binding effect of the original pockets, GBVI/WSA dG is
used as a scoring function to score the conformation of the newly generated molecules and
order the resulting molecules (scaffold hopping part) [44]. The higher the absolute value of
the calculated scores, the better the binding effect of the small molecules with the original
pockets. After the computer gives the ranking, we uniformly select the small molecules
whose score is above 10 in absolute value. When the overall score is high or low, we select
the top 100 or so molecules for subsequent calculation.

4.6. Prediction of ADMET Properties

It can be known from past experience that predicting the ADMET (Absorption,
Distribution, Metabolism, and Toxicology) properties of compounds is an extremely
important process for drug discovery. In this study, the ADMETIlab2.0 online website
(https:/ /admetmesh.scbdd.com/service/screening/index, accessed on 23 April 2023) was
used to measure the ADMET properties of compounds [45]. The site can import SMILES
files or SDF files to predict drug properties, including physicochemical properties, phar-
macochemical properties, and pharmacokinetics. Based on the predicted results, a better
compound than the positive control compound P217564 (reference compound) was selected
for further Dynamics simulation analysis.

4.7. Molecular Dynamics Simulations

In order to further test the stability of the candidate compounds in the binding pocket,
molecular dynamics simulations were performed using the GROMACS2019.1 software
package. We used the Bio2byte Web server to generate topology files for the candidate
compounds and positive control compounds (https://www.bio2byte.be/acpype/, accessed
on 8 October 2023) [46,47]. The AMBER99SB-ILDN force field and the SPC216 water model
were used for molecular dynamics simulation [48,49]. To ensure the electrical neutrality of
the reaction system, a corresponding number of sodium ions were added to the system to
replace water molecules. Periodic boundary conditions were applied to the three directions
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of the spatial coordinates of the complex system. Set the analog temperature to 300 k,
and the energy minimization of the system is carried out in 50,000 steps. After correcting
the position constraints, the isothermal volume (NVT) and isothermal pressure (NPT)
were adjusted, respectively, to achieve the equilibrium of the acceptor, ligand, and solvent.
We selected 1008-1, which has better ADMET properties and a better docking score than
the positive control compound P217564, for MD simulation with a duration of 100ns,
while using the structurally similar compound GNE2917 [4] as the negative control. Each
simulation process was repeated three times to ensure the reliability of the data.

5. Conclusions

USP?7 is closely related to the occurrence and development of many cancers and
is a promising anticancer target. In this study, three different QSAR models were first
constructed: the optimal AutoQSAR model kpls_radial 20 and the MLR model were
constructed by the regression method, and the Naive Bayesian model was constructed by
the classification method. The QSAR model was used for preliminary screening of Marine
compound libraries. Next, after the screening of the AutoQSAR model and the MLR model,
compounds with pIC50 greater than 6 were selected for molecular docking. At the same
time, the positive control compound P217564 (reference compound) was compared, and
the better compound was selected for Scaffold hopping. The molecular docking was then
performed again, comparing it not only with P217564 (the reference compound) but also
with the compound before the structural optimization. Then, 58 compounds with optimized
structures were selected to predict ADMET properties. We selected 10 compounds for
kinetic simulation and took the average three times to observe the stability between the
compounds and proteins. Based on the above analysis results of marine compounds and
compounds with optimized structures, compound 1008-1 has great potential to become
a novel covalent inhibitor of USP7, providing a new possibility for accurate treatment of
USP7-related diseases.
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