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Abstract: This review provides information on the synthesis and revision of the structures of natural
dimeric (poly)hydroxynaphthazarins, metabolites of echinoderms and lichens, and on the refinement
of the direction and mechanism of reactions in the synthesis of some of these compounds.
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1. Introduction

Compounds based on the structure of 1,4-naphthoquinone are widespread in nat-
ural objects [1–9]. Among thousands of its derivatives, including dimeric and trimeric
products [1–3,10–12], derivatives of naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) oc-
cupy a very prominent place [13–17]. Among them, dimeric (poly)hydroxynaphthazarin
metabolites of echinoderms and lichens constitute a relatively small but structurally diverse
group of biologically active natural compounds. The first representatives of this series of
compounds were isolated in the early 1970s, yet little information on the isolation of new
dimeric products of this group, their synthesis, and correction of the structures of previ-
ously isolated compounds appears in print to this day. Our research initially concerned
the synthesis of compounds of this group, with the aim of obtaining them in quantities
required for biotests. However, it soon became clear that the real structures of some of
the compounds did not correspond to the declared ones. This is primarily due to the
imperfection of the physicochemical equipment that existed at the time of the study and
the lack of or incorrect interpretation of the information available. It should be noted that
ignorance of the exact structures of substances makes it impossible to create structure-
activity correlations and, therefore, a targeted search for substances with desired properties.
In this situation, synthesis, in addition to a supplier of substances with a given structure,
plays the role of a reliable tool for its analysis. This review provides information on the
synthesis of natural dimeric (poly)hydroxynaphthazarins, metabolites of echinoderms and
lichens, as well as some information on the revision of their structure and the mechanism
of formation. In this way, this review differs from the recently published [18,19], in which
significant attention was paid to the isolation and structures of spinochromes, as well as
the assessment of their biological activity, the parent organisms, and the methods used
for isolation and identification. In addition, attention was paid to the study of the biosyn-
thesis of spinochromes and the ecological function, stability, and chemical synthesis of
(poly)hydroxynaphthazarins.

When analyzing the structures of the above compounds, we can conclude that all,
formally, are the end products of three types of reactions. The first subgroup consists of
dimeric (poly)hydroxynaphthazarins, which are the end products of the aldol condensation
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reaction. The initial 2-hydroxynaphthazarins act as methylene components in this reaction.
The second part of the review consists of dimeric (poly)hydroxynaphthazarins, products
of oxidative C-C or C-O dimerization. Finally, the third subgroup includes the only one
synthesized to date and, then, dimeric (poly)hydroxynaphthazarin, recently discovered
in sea urchins, a product of heterodiene condensation, in which diene and dienophile are
two forms of the same hydroxynaphthazarin derivative.

2. Types of Dimeric (Poly)Hydroxynaphthazarins
2.1. Aldol Condenation Compounds

The first report on the isolation of this type of product appeared in 1971, when
ethylidene-bis(trihydroxynaphthazarin) 1 (Figure 1) was isolated from an extract of the
sea urchin Spatangus purpureus (Figure 2) [20]. The structure of compound 1 was reliably
established using UV, IR, and 1H NMR spectroscopy and mass spectrometry. In addition
to product 1, another product was isolated from the extract, the structure of which, due
to its small amount, could not be reliably determined. In the 1H NMR spectrum of this
product, as in the spectrum of 1, proton signals of the ethylidene bridge connecting the
hydroxynaphthazarin fragments were observed, and the mass spectrum showed a peak of
the molecular ion with m/z 484, eighteen mass units less than the peak of the molecular
ion of compound 1 (m/z 502). This suggested that the product is an anhydro derivative
of ethylidene-bis(trihydroxynaphthazarin). In order to test this assumption, an attempt
was made to synthesize this compound from substrate 1. Thus, heating 1 in concentrated
sulfuric acid gave a product in low yield which, according to the UV, mass spectrum,
and Rf value, is an anhydro derivative of ethylidene-bis(trihydroxynaphthazarin). This
product can correspond to one of the three isomeric dibenzo[b,i]- (2), [b,h]- (3), and [c,h]- (4)
xanthetetraones (Figure 1). At the same time, in the IR spectrum of the obtained product
(KBr) there are two absorption bands of carbonyl at 1621 and 1600 cm−1, while in the
spectrum of the natural product, there is only one broad multi-shouldered carbonyl band
at 1600 cm−1. Despite this, the authors, having analyzed all the data at their disposal,
made a choice in favor of structure 2 [20]. At the same time, they indicated that the final
conclusion about the structure of the cyclization product can be made by the number of
methoxy groups (tetra-2, penta-3, hexa-4) obtained by methylation of β-hydroxy groups of
compound with diazomethane (1H NMR).
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Thus, the structure of the dehydrated ethylidene-bis(trihydroxy-naphthazarin) deriva-
tive 1 remained not fully elucidated, and therefore it is not mentioned in the fundamen-
tal monography by Thomson, R. H. [2]. At the same time, some authors referred to it
as proven [21], and only in 2017 was complete spectral information on the structure of
dibenzo[b,i]xanthetetraone 2 [22].

Recently, mirabiquinone (1H-dibenzo[b,h]xanthenetetraone, 3) was isolated from the
sea urchin Scaphechinus mirabilis (Figure 2) [23], which was previously considered as an al-
ternative to 5H-dibenzo[b,i]xanthenetetraone 2 isolated from the sea urchin S. purpureus [20].
In the IR spectrum of mirabiquinone (CHCl3), there is one absorption band of carbonyl at
1626 cm−1. Comparison of the IR spectra of the anhydro derivative 2, mirabiquinone (3),
and the cyclization product of ethylidene bis(trihydroxynaphthazarin) 1, under the action
of concentrated sulfuric acid [20], made it possible to establish that the latter Is a mixture of
dibenzo[b,i]xanthetetraones 2 and 3.

Mirabiquinone (3) and two related binaphthazarins 1 and 2 demonstrated excellent
scavenging of the 2,2-diphenyl-1-picrylhydrazyl radical [23]. However, these compounds
are not easily accessible on a preparative scale for extended bioassays due to their very low
natural abundance and separation difficulties. Therefore, the question of the synthesis of
these compounds for biotesting has become pertinent.

The key stage in the synthesis of biquinone 1 was the aldol condensation of spinochrome
D dimethyl ether 5 and acetaldehyde (Scheme 1) [24]. Demethylation of tetramethyl ether
6a by the action of AlCl3 in nitrobenzene gave ethylidene-bis(thrihydroxynaphthazarin)
1 in good yield [25]. An attempt of demethylation of tetramethyl ester 6a by the action
of conc. HBr yielded 5H-dibenzo[b,i]xanthetetraone 2, previously isolated from the sea
urchins S. purpureus [20] and S. droebachiensis [21], and mirabiquinone A (3), a metabolite of
the sea urchin Scaphechinus mirabilis [23], in a ratio of 1.2:1.
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It is obvious that the cyclization of ethylidene-bis(thrihydroxynaphthazarin) 1 and its
derivatives is a key step for the preparation of 5H-dibenzo[b,i]- (2) and 1H-dibenzo[b,h]- (3)
xanthenetetraone. It has been found that the boiling of tetra- (6a), penta- (6b) or hexamethyl
(6c) ethers in toluene in the presence of p-TsOH gave the corresponding anhydro derivatives
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7a and 7b in good yields (Scheme 2) [26]. The generation of mirabiquinone (3) from its
tetra- (7a) and penta- (7b) methoxy derivatives was affected by exposure to AlCl3-EtSH
in CH2Cl2.
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As suggested by the authors of [20,21], the cyclization of ethylidene-bis(trihydroxyna-
phthazarin) 1 in concentrated sulfuric acid produces anhydrous derivative 2. To obtain
some amount of this substance for biological testing, a replica of this experiment was
conducted. Surprisingly, it was found that, under the described conditions, ethylidene-
bis(trihydroxynaphthazarin) 1 undergoes cyclization with the formation of mirabiquinone
(3) instead of 5H-dibenzo[b,i] xanthenetraone 2 in good yield [26]. This suggests that UV-,
IR-spectroscopy, and TLC are not reliable enough at establishing structures of polyhydrox-
ynaphthazarins, even by the comparison method. For example, these methods cannot
distinguish between bisnaphthazarin 1 and related naphthazarins 2 and 3, which were
considered in the cited work [20].
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As noted, natural dimeric (poly)hydroxynaphthazarins are often available only in
small amounts, which hinders the use of chemical methods for the establishment of
their structures, whereas the available physicochemical methods do not allow unam-
biguous conclusions about the arrangement of the substituents in the quinoid moiety
at the C(2) and C(3) atoms with respect to the substituents at the C(6) and C(7) atoms.
This fully applies to cuculoquinone, hydroxylated bisnaphthazarin isolated from the
red thallus tips of the lichen Cetraria cucullata [27]. Cuculoquinone is one of the three
identifiable quinonoid compounds produced by this lichen species, which grows in the
Magadan region of Russia. For this compound, the following structure, 3,3′-bis(7-ethyl-
1,4,5,8-tetrahydroxy-2,6-naphthoquinone) (12) (Figure 3), was proposed. The amphi-(2,6)-
quinonoid structure of bisnaphthazarin 12 raised doubts in Thomson R. H., who proposed,
for this product, the structure of 3,3′-bis(7-ethyl-2,5,6,8-tetrahydroxy-1,4-naphthoquinone)
(13), i.e., 1,4-naphthoquinonoid structure, in which the β-hydroxy groups of each fragment
are located in positions 2 and 6 [2].
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Later, a series of substituted 2,6- and 2,7-dihydroxynaphthazarins were synthesized. It
is shown that the absorption bands in the ultraviolet and visible regions of the electronic
spectrum of alkaline solutions, as well as the frequencies of stretching vibrations of β-O-
H in the IR-spectrum of 2,6- and 2,7-dihydroxynaphthazarins have characteristic, non-
overlapping ranges of values [30]. The regularities found made it possible to revise the
structure of cuculoquinone, isolated from the lichen C. cucullata, into 3,3′-bis(6-ethyl-2,5,7,8-
tetrahydroxy-1,4-naphthoquinone) (8).

In addition, compounds 13 and 8 were synthesized, and the latter was shown to be
completely identical to bisnaphthazarin isolated from the lichen C. cucullata [31]. Thus,
treatment of monomethyl ether 14 with (NH4)2S2O8 in MeCN-H2O gave the bisnapht-
hazarin dimethyl ether 15 (30%) (Figure 4). Compound 15 was easily converted into the
corresponding bis(2,6-dihydroxynaphthazarin) 13 by the action of AlCl3 in nitrobenzene
(44%). In the same way the ether 16 via dimethyl ether 17 was converted into bis(2,7-
dihydroxynaphthazarin) 8 (total yield 21%).
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hazarins 13 and 8 [31].

Bisnaphthazarin 8 has been found in the deep-sea holothuroids Psychopotes longicauda,
Benthodytes typica, B. lingua [2], and in the lichen C. islandica [28] (Figure 5). The well-
studied mechanism of biosynthesis of compounds analogous to spinochromes [32,33] can
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be considered as circumstantial evidence in favor of structure 8. The structures of all
natural naphthoquinone derivatives containing the 2,7 dihydroxynaphthazarin fragment
as a subgroup [2,29,34–37] are consistent with the above mechanism.
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Figure 5. Photography of lichens and abyssal sea cucumbers in which cuculoquinone (8) was found:
(a) Cetraria cucullata; (b) C. islandica; (c) Psychopotes longicauda; (d) a member of the genus Benthodytes.

Another formal product of oxidative dimerization is islandoquinone, a metabolite iso-
lated from the lichen C. islandica [28]. Structure 18 was proposed for this compound
as a result of the comparison of the compound obtained with the lapachol peroxide
structure 19 (Figure 6) [38,39]. However, the IR-spectrum of islandoquinone did not
contain ν(C=O) absorption bands at ≈1750 cm−1 that are found for 2,3-dihydro-2-oxo-1,4-
naphthoquinones [40].

Mar. Drugs 2023, 21, x 6 of 19 
 

 

well-studied mechanism of biosynthesis of compounds analogous to spinochromes 
[32,33] can be considered as circumstantial evidence in favor of structure 8. The struc-
tures of all natural naphthoquinone derivatives containing the 2,7 dihydroxynaphtha-
zarin fragment as a subgroup [2,29,34–37] are consistent with the above mechanism. 

  
(a) (b) 

 
(c) (d) 

Figure 5. Photography of lichens and abyssal sea cucumbers in which cuculoquinone (8) was 
found: (a) Cetraria cucullata; (b) C. islandica; (c) Psychopotes longicauda; (d) a member of the genus 
Benthodytes. 

Another formal product of oxidative dimerization is islandoquinone, a metabolite 
isolated from the lichen C. islandica [28]. Structure 18 was proposed for this compound as 
a result of the comparison of the compound obtained with the lapachol peroxide struc-
ture 19 (Figure 6) [38,39]. However, the IR-spectrum of islandoquinone did not contain 
ν(C=O) absorption bands at ≈1750 cm−1 that are found for 
2,3-dihydro-2-oxo-1,4-naphthoquinones [40]. 

18 20
Q2H Q1,4

α OH

OH

O

O

O
OH

O

OH
HO

OH

O

OH
OH

O

O

O

O

HO
OH

HO

O
OH

HO

OH

O

19 R=-CH2CH=CMe2

O

O

O

O

O

O

R
R

2

 
Figure 6. The structure of islandoquinone (18) as a result of a comparison of the compound with the 
structure of lapachol peroxide (19), and its correction in favor of gem-diol 20, considering the data 
of IR-spectroscopy. 

Accordingly, the 2,3-dihydro-2-oxo-1,4-naphthoquinonoid structure of the Q2H 
fragment of biquinone 18 was revised, and this natural product was identified as 20, i.e., 
the 2,3-dihydro-2,2-dihydroxy-1,4-naphthoquinonoid structure was assigned to the Q2H 
subgroup [41]. An argument in favor of structure 20 was based on the comparison of its 

Figure 6. The structure of islandoquinone (18) as a result of a comparison of the compound with the
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Accordingly, the 2,3-dihydro-2-oxo-1,4-naphthoquinonoid structure of the Q2H frag-
ment of biquinone 18 was revised, and this natural product was identified as 20, i.e., the
2,3-dihydro-2,2-dihydroxy-1,4-naphthoquinonoid structure was assigned to the Q2H sub-
group [41]. An argument in favor of structure 20 was based on the comparison of its
spectral data with those of the 2,3-dihydro-2,2-dihydroxy-1,4-naphthoquinones described
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in the literature [42,43]. However, doubts have emerged regarding the proposed structure
of islandoquinone, with the major discrepancy concerning the presence of proton signals of
only three α-hydroxy groups in the 1H NMR spectrum of islandoquinone [28].

Based on the accumulated spectral data, it was concluded that islandoquinone is one
of four dioxabenzo[a]tetracenetetraones from the two diastereoisomeric pairs of 9, 9′ and
21, 21′ (Figure 7). According to quantum chemical calculations [44], the diastereoisomers
7aS*,13aS*- (9) and 7aR*,13aR*- (21) are more favorable than the corresponding diastereoiso-
mers 7aS*,13aR*- (9′) and 7aR*,13aS*- (21′). The difference in Gibbs energy between 9 and
21 is only 0.4 kcal/mol [45]. The conclusive choice in favor of either 9 or 21 may be based
on the X-ray diffraction analysis of islandoquinone or structurally similar compounds.
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Within this context, the oxidative coupling products of ethylhydroxynaphthazarins
22a and 22b (Figure 8) [42] were synthesized and analyzed. The oxidative coupling of the
chlorinated hydroxynaphthazarin 22a upon treatment with lead dioxide in boiling acetic
acid resulted in a product that, judging from the spectral data, was an unsymmetrical
biquinone [45]. In the case of cristazarin (22b), a mixture of two biquinones (1:1.8 ratio, 1H
NMR) was produced. The crystallization of the chlorinated biquinone and major product of
oxidative dimerization of cristazarin (22b) from acetone afforded crystals that were suitable
for single-crystal X-ray diffraction.
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The molecular structures of the obtained products and their corresponding structural
formulas (23a,b) are shown in Figure 9 [45].

The upfield signals of the ethyl group protons at C(15), C(16), C(17), and C(18)
and carbon atoms C(6a), C(7a), C(13a), and C(14a) (Table 1) of the dioxane ring of the
biquinones 23a,b were in very good agreement with the corresponding signals of is-
landoquinone [28,42]. Therefore, the connection of rings B and C and the position of
the substituents in these rings in these biquinones and islandoquinone are identical. These
data indicate that the early proposed structure of islandoquinone should be revised in
favor of dioxabenzo[a]tetracenetetraone 9 and compound 23b is its dimethyl ether. All
attempts to convert 23b into islandoquinone were unsuccessful at yielding a complex
mixture of compounds.
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Table 1. 1H (the region of upfield signals) and 13C (dioxane ring) NMR data of islandoquinone [28,42]
and dioxabenzo[a]tetracenetetraones 23a–c in CDCl3.

Compounds δH(CH2(15)) δH(CH3 (16)) δH(Ha(17)) δH(Hb(17)) δH(CH3(18)) δC(C-6a) δC(C-7a) δC(C-13a) δC(C-14a)

islandoquinone 2.96 1.37 1.79 2.36 1.05 146.0 83.0 93.0 145.0
23a 2.95 1.35 1.79 2.37 1.05 147.2 83.7 92.3 144.2
23b 2.92 1.37 1.75 2.36 1.04 146.1 82.6 92.4 136.2
23c 2.55 0.97 1.69 2.34 1.17 144.2 92.8 83.1 138.3

On the other hand, based on the B3LYP/6-311G(d) method [44], it was concluded that
the minor product obtained by oxidative dimerization of cristazarin is dioxabenzo[a]tetrace-
netraone 23c (Figure 9). In the 1H NMR spectrum of compound 23c, the upfield signals of
the ethyl group protons at C(15), C(16), and C(18) and carbon atoms C(7a) and C(13a) do
not fit with those of islandoquinone and dioxabenzo[a]tetracenetetraones 23a,b (bolded in
Table 1). Therefore, these signals are important structural evidence.

The cytotoxic pentacyclic naphthazarin-derived dimer, hybocarpone (10), was isolated
from the lichen Lecanora hybocarpa by Elix J. A. and co-workers in 1999 [29]

Several years later, the synthesis of 10 and the related (5aS*,6aS*,12aS*,12bS*)-binaphtho
[2,3-b; 2,3-d]furantetraones, 24a,b (Figure 11) was realized [46–48].

The total synthesis of hybocarpone involves two key synthetic steps: the formation
of 2-hydroxy-1,4-naphthoquinone 25a from substituted benzaldehyde 26 and its oxidative
dimerization on treatment with CAN in MeCN (Scheme 4) [46,47]. (Figure 10).
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More recently, another route to substituted 1,4-naphthoquinone 25a from flaviolin
trimethyl ether 28 [49,50], o-naphthoquinone 29 [51], and α-naphthol 30 [52] were proposed
(Figure 12). These approaches include the multistep synthesis of both the key substrates 26,
28–30 themselves, and their subsequent conversion to hybocarpone (10).
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Figure 12. Key intermediates in hybocarpone synthesis described previously [47,49–52].

By analogy with hybocarpone, the related binaphtho[2,3-b; 2,3-d]furantetraones 24a,b
were synthesized from the corresponding derivatives of 1,4-naphthoquinone 25b,c [47]
(Figure 13).
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Figure 13. The key intermediates 25b,c in the synthesis of binaphtho[2,3-b; 2,3-d]furantetraones 24a,b.

In another synthetic approach to hybocarpone (10) and its analogs, the use of the
direct oxidative dimerization of the 2-hydroxynaphthazarin precursors 31a,b was ex-
plored (Figure 14) [53]. These compounds are more readily available [54,55] than the
1,4-naphthoquinone precursors 25a–c. However, all attempts to construct the appropriate
binaphtho[2,3-b; 2,3-d]furantetraone skeleton by the action of CAN in MeCN [47] led to
degradation of the starting structures 31a,b. Upon screening a number of reagents and
conditions, success was finally achieved with the use of Pb(Oac)4 as an oxidant in benzene.
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Figure 14. The products of the oxidative coupling of hydroxynaphthazarin 31a (32a and 33a) and
methylcristazarin (31b) (dimethyl ethers 32b and 33b).

Oxidative coupling of hydroxynaphthazarin (31a) on treatment with Pb(Oac)4 in
benzene gave two compounds in a ratio of ca. 1:1. One of them exhibited a simple 1H NMR
spectrum reminiscent of that of 10, and judging from the spectral data, was binaphtho[2,3-b;
2,3-d]furantetraone (32a) (Figure 14). As such, the upfield 1H NMR signals of the ethyl
group protons and 13C NMR signals of carbon atoms of the tetrahydrofuran ring of 32a
were in very good agreement with the corresponding signals of hybocarpone (10) [29].

The other isomeric biquinone exhibits the correct mass (by mass spectrometry) and
simple 1H and 13C NMR spectra, but the upfield signals of the ethyl group protons and
carbon atoms of the tetrahydrofuran ring of that compound do not fit those of 10. The
crystallization of this biquinone from hexane-acetone afforded crystals that were suitable
for single-crystal X-ray diffraction. The molecular structure of the product obtained (33a) is
shown in Figure 15.
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calculated energy differences among compounds in each row are large (more than 9 
kcal/mol), and because the central dihydroxyfuran systems of them can exist in equilib-
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Figure 15. X-ray crystal structure of 33a. Crystal data: monoclinic, space group Pc, a 8.4327(3), b
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size 0.20 × 0.25 × 0.35 mm [53].
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Thus, the oxidative coupling of hydroxynaphthazarin (31a), on treatment with Pb(Oac)4
in benzene, gave the diastereomeric mixture of 5aS*,6aS*,12aS*,12bS* (32a) and 5aS*,6aR*,
12aR*,12bS* (33a), analogs of hybocarpone (10). The ratio of the arising compounds 32a
and 33a (1:1) was determined by the equally possible formation of the intermediary S*S*
(34a) and R*S* (35a) diastereomers (Scheme 5). So, according to the quantum chemical
calculation [44], the difference between Gibbs energy of diastereomers 32a and 33a is less
than 0.4 kcal/mol) [53].
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Scheme 5. S*S*- (34a) and R*S*- (35a) hexaketone intermediates, the precursors of the S*,S*,S*,S*-
(32a) and S*,R*,R*,S*- (33a) binaphthofurantetraones.

The hydration/cyclization of intermediary S*S* (34a) and R*S* (35a) diastereomers
would potentially lead to the formation of up to six diastereomeric furan systems arranged
in two rows of three (Figure 16). Molecular modeling and computational studies indicated
that, among the diastereoisomeric compounds in each row, the isomers 32a and 33a ap-
peared to be clearly favored in terms of relative Gibbs energy [44,56]. Since the calculated
energy differences among compounds in each row are large (more than 9 kcal/mol), and
because the central dihydroxyfuran systems of them can exist in equilibrium with their
open chain counterparts, diastereoisomers 32a and 33a are the only imaginable products in
this reaction.
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NMR and mass spectrometry) and comparison with the authentic sample [58] (Figure 
18). The formation of a high percentage of 37 resulted due to the steric bulk around the 
reacting carbon in starting substrate 25c; thus, С-О coupling was more probable than C-C 
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Figure 16. Calculated relative Gibbs energy of the possible dihydrobinaphthofurantetraones
32a, 32a′, 32a′′ derived from the S*,S*-diastereoisomer 34a and 33a, 33a′, 33a′′ derived from the
R*,S*-diastereoisomer 35a [44,56]. (Values of the calculated energy of hybocarpone (10), its R*,S*-
diastereoisomer 36 and other diastereomeric furan systems are presented in parentheses).

These observations were used as the basis for the synthesis of hybocarpone (10).
Methylcristazarin (31b) is a more available substrate for this purpose. As in the case of
31a, the oxidative coupling of hydroxynaphthazarin (31b), on treatment with Pb(Oac)4 in
benzene, gave two products. One of them, according to the spectral data, was hybocarpone
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dimethyl ether 32b (Figure 14). The other product was the isomer 33b bearing a sin
relationship of the two ethyl groups at the junction joining the two monomeric units.

Dimethyl ethers 32b and 33b were deprotected with AlCl3 in EtSH-CH2Cl2 to af-
ford 10 and 36 (Figure 17). Synthetic 10 exhibited spectral data (1H and 13C NMR, mass
spectrometry) identical to those reported for natural hybocarpone, a cytotoxic metabolite
isolated from L. hybocarpa lichen [29].
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It should be noted that in the previous report [47], the course of the reaction through
the S*,S* hexaketone intermediate 27 (Scheme 4) was only postulated, and the possibility
of R*,S* diastereomer formation was not discussed; thus, we compared our results for the
oxidative dimerization of dihydrolapachole 25c with Pb(Oac)4 in benzene [57] to those
previously reported using CAN in MeCN [47].

Oxidative dimerization of dihydrolapachole 25c upon treatment with Pb(OAc)4 in
benzene yielded three products following chromatographic purification [57]. A yellow
product established as 24b by Nicolaou [47]was determined to be 3-(naphthoquinone-
2-yloxy)naphthalenetrione 37 (42%) based on its spectral data (1H, 13C NMR and mass
spectrometry) and comparison with the authentic sample [58] (Figure 18). The formation
of a high percentage of 37 resulted due to the steric bulk around the reacting carbon in
starting substrate 25c; thus, C-O coupling was more probable than C-C coupling.
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Figure 18. Products of oxidative coupling reaction of dihydrolapachole 25c.

Two colorless products were determined to be pentacyclic compounds 24b (24%) and
24c (21%) based on the spectral data and comparison of its 1H and 13C NMR data with
spectral data of derivatives 32a,b and 33a,b. We found that the same mixture was obtained
upon exposure of the monomeric unit 25c to CAN in MeCN under the previously reported
conditions [47].

In general, 2-hydroxy-3-alkylnaphthazarins and 2-hydroxy-3-alkyl-1,4-naphthoquinones
undergo oxidative dimerization upon treatment with lead tetraacetate or cerium ammo-
nium nitrate in aprotic media to give diastereomeric 5aS*,6aS*,12aS*,12bS*- and 5aS*,6aR*,
12aR*,12bS*-dihydrobinaphthofurantetraones in a ratio of ca. 1:1. The ratio of arising
compounds is determined by the equally possible formation of the corresponding S*,S*
and R*,S* hexaketone intermediates.
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2.3. Diene Condenstion Compounds

Among natural partially methylated derivatives of echinochrome, there are no exam-
ples of structures that simultaneously contain 2-hydroxy and 3-(1-hydroxyethyl) groups
in one core [1–3]. This is obviously due to the instability of such compounds. Indeed,
attempts to synthesize 2-hydroxy-3-(1-hydroxyethyl) naphthazarin 38 by alkaline hydroly-
sis of lomazarin (39a), its 1′-bromo- (39b) and 1′-acetoxy- (39c) derivatives are invariably
resulted in spinochrome D dimethyl ether 5 (Figure 19). Most likely, 1′,2-dihydroxy-3-
ethylnaphthazarin 38, formed from starting compounds 39a–c under basic conditions, is
converted to dimethyl ether 5 via the mechanism of retroaldol decomposition of intermedi-
ate keto form 40 [24,25].
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Figure 19. The conversion of 39a–c→38→5 via retroaldol decomposition of keto form 40.

Our attempts to synthesize compound 38 by bromination of echinochrome dimethyl
ether 41 and subsequent hydrolysis of 1′-bromo derivative 42 already at the first stage led
to an unexpected result. The final and main product of the reaction was 2-naphthoquinonyl-
benzo[g]chromendione 43 (up to 80%) (Scheme 6) [59].
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When this work was in progress, a previously unknown pigment was detected in the 
extracts of the sea urchins Mesocentrotus nudus and Strongylocentrotus intermedius by 
HPLC-MS method (Figure 21) [60]. The retention time, UV, and mass spectra of the de-
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Scheme 6. The conversion of 41→42→43 via heterodiene condensation of enone 44 and
dienophile 45.

The formation of benzo[g]chromene-5,10-dione 43 likely occurs via the mechanism
of heterodiene condensation (Scheme 6). The 1′-bromoethyl derivative 42 formed during
the reaction loses HBr, giving the enone 44 (heterodiene), which are isomerized to the
corresponding vinylquinone 45 (dienophile). The isomerization of 44→45 is reversible,
since at the end of the reaction the starting diene and dienophile are not found in the
mixture. It should be noted that 1′-bromoethyl derivative 42 are labile compounds. In
acidified solutions of chloroform, acetone, or on the surface of H+-silica gel, they are
rapidly converted into the corresponding benzo[g]chromene-5,10-dione 43. The structure
of product 43 and stereochemistry of its asymmetric centers are unambiguously determined
by analysis of their 1H and 13C NMR spectra [59]. Hydrolysis of benzo[g]chromedione 43
gave product 46 (Figure 20).

When this work was in progress, a previously unknown pigment was detected in
the extracts of the sea urchins Mesocentrotus nudus and Strongylocentrotus intermedius by
HPLC-MS method (Figure 21) [60]. The retention time, UV, and mass spectra of the detected
product coincided with those of synthesized compound 46 [59].
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Thus, the discovered product, which was named mesocentroquinone, has the structure
6,7,8,9-tetrahydroxy-4-methyl-2-(3,5,6,7,8-pentahydroxy-1,4-dioxo-1,4-dihydronaphthalen-
2-yl)-3,4-dihydro-2H-benzo[g]chromene-5,10-dione. In fact, it can be considered as a dimer
of dehydro derivative of echinochrome (47) obtained by diene condensation.

3. The Tautomerism of Hydroxynaphthazarins

NMR spectroscopy is among the most used methods for the structural study of hy-
droxynaphthazarins [1–3]. The phenomenon of tautomerism inherent in the naphthazarin
system leaves an imprint on the nature of the spectra of substituted naphthazarins, includ-
ing its hydroxy derivatives [61]. Due to the rapid (on the NMR time scale) tautomerism, in
the spectra of naphthazarin and its derivatives, the signals of protons and carbon atoms en-
tering the quinoid and benzenoid cycles are indistinguishable in pairs. Thus, in the 1H NMR
spectrum of mompain monomethyl ether 48 (CDCl3), the signals of protons adjacent to the
hydroxy and methoxy groups of tautomers Q and B are indistinguishable (Figure 22) [54].
Thus, on the NMR scale, mompain monomethyl ether is an individual compound.

1 

Figure 22. Tautomerism of hydroxynaphthazarins.

IR spectroscopy is a much faster method when compared to nuclear magnetic reso-
nance spectroscopy, in which there is usually no temporal averaging of spectral parameters.
Therefore, the IR spectrum of mompain monomethyl ether 48 taken in CDCl3 showed that



Mar. Drugs 2023, 21, 407 15 of 18

this compound is a mixture of 1,4-naphthoquinoid tautomers 48(Q) and 48(B), and in com-
mensurate proportions (70% and 30%, respectively) [62,63]. In addition, quantum chemical
calculations, using the example of 1′-hydroxyalkyl naphthazarin 6 [64], showed that the en-
ergy barrier for a process of type 49(Q1.4)
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49(Q1.5) (Figure 22) is less than 5 kcal/mol [64],
which makes possible the existence of corresponding 1,5-naphthoquinoid forms. Later, it
was shown by IR spectroscopy that in aprotic organic solvents, 1′-hydroxyalkyl naphthaz-
arins are in the form of a mixture of 1,4- and 1,5-naphthoquinoid tautomers [65].

Thus, due to the easily reversible conversion of specified tautomers, it is impossible
to isolate any component of the mixture in an individual form. This is also true for
dimeric (poly)hydroxynaphthazarins, which are in no way different from monomers in this
respect. At the same time, recent studies have reported the isolation of several tautomers in
individual form by the HPLC method and the establishment of their structure by NMR
spectroscopy [18,19,66]. The most likely reason for this misunderstanding was the ability
of (poly)hydroxynaphthazarins to give stable crystal solvates and chelate-type derivatives,
which ultimately led to erroneous conclusions about the structure of the isolated products.
This misconception has a long history, the beginning of which lies in the first messages
about the allocation of (poly)hydroxynaphthazarins from natural objects [67–69].

4. Conclusions

This review provides information on the establishment of the structure of natural
dimeric (poly)hydroxynaphthazarins, metabolites of echinoderms and lichens. Due to
the relatively low content of these products in natural objects, and for several other rea-
sons, the establishment of their structure has encountered certain difficulties. Success in
overcoming this issue was achieved by using modern physico-chemical research methods
and counter synthesis. The results of these studies were the revisions of the structures
and syntheses of metabolites of lichens Cetraria ‘olothuri, C. islandica, deep-sea holothuria
Psychropotes longicauda, and a representative of the genus Benthodytes. The structure of
islandoquinone, a metabolite of the lichen C. islandica, the backbone of which is diox-
abenzo[a]tetracenetetraone, underwent a serious correction. Mesocentroquinone, the struc-
ture of which is based on benzo[g]chromedione, was synthesized earlier than it was isolated
from the sea urchins Mesocentrotus nudus and Strongylocentrotus intermedius. In addition,
the review provides information on clarifying the direction and mechanism of reactions in
the synthesis of some natural dimeric (poly)hydroxynaphthazarins. This refers to the con-
version of ethylidene-bis(trihydroxynaphthazarin) to linear dibenzo[b,i]xanthenetetraone,
both of which are metabolites of the sea urchin Spatangus purpureus. Relatively recently,
it was found that, as a result of this reaction, the angular dibenzo[b,h]xanthenetetraone,
mirabiquinone was also formed, which was isolated from the sea urchin Scaphechinus
mirabilis and synthesized later. Another example is also the clarification of the mechanism
of the key synthesis reaction of hybocarpone, a metabolite of the lichen Lecanora hybocarpa.
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