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Abstract: In this study, we investigate the ameliorating functions of QDYD (MSP2), ARW (MSP8),
DDGGK (MSP10), YPAGP (MSP13) and DPAGP (MSP18) from monkfish swim bladders on an FFA-
induced NAFLD model of HepG2 cells. The lipid-lowering mechanisms revealed that these five
oligopeptides can up-regulate the expression of phospho-AMP-activated protein kinase (p-AMPK)
proteins to inhibit the expression of the sterol regulatory element binding protein-1c (SREBP-1c)
proteins on increasing lipid synthesis and up-regulating the expression of the PPAP-α and CPT-1 pro-
teins on promoting the β-oxidation of fatty acids. Moreover, QDYD (MSP2), ARW (MSP8), DDGGK
(MSP10), YPAGP (MSP13) and DPAGP (MSP18) can significantly inhibit reactive oxygen species’
(ROS) production, promote the activities of intracellular antioxidases (superoxide dismutase, SOD;
glutathione peroxidase, GSH-PX; and catalase, CAT) and bring down the content of malondialdehyde
(MDA) derived from lipid peroxidation. Further investigations revealed that the regulation of these
five oligopeptides on oxidative stress was achieved through activating the nuclear factor erythroid
2-related factor 2 (Nrf2) pathway to raise the expression levels of the heme oxygenase 1 (HO-1)
protein and downstream antioxidant proteases. Therefore, QDYD (MSP2), ARW (MSP8), DDGGK
(MSP10), YPAGP (MSP13) and DPAGP (MSP18) could serve as candidate ingredients to develop
functional products for treating NAFLD.

Keywords: monkfish (Lophius litulon); swim bladders; antioxidant peptide; nonalcoholic fatty liver
disease (NAFLD); AMPK/Nrf2 pathway

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by steatosis, liver inflamma-
tion, hepatocellular damage and progressive fibrosis and is the main reason for increasing
chronic liver disease in world [1–3]. As the commonest chronic hepatism, NAFLD se-
riously affects people’s health and is closely relevant to metabolic disturbance, such as
hyperglycemia, central obesity, insulin resistance, lipid metabolism disorder, adult-onset
diabetes, hypertension and persistent abnormal liver functions [3–5]. Therefore, the global
prevalence of NAFLD is presumed to be approximately 25%, increasing from 13% in Africa
to 42% in Southeast Asia [5–7]. The prevalence of NAFLD is predicted to increase by up to
56% in China, the United Kingdom, Germany, the United States and Japan by 2030 [1].
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There is a kinetic equilibrium relation between lipid synthesis and degradation in the
liver, and it will result in a large accumulation of lipids if this balance relation is disrupted,
giving rise to oxidative stress and hepatic steatosis [8,9]. The imbalance between antioxidant
contents and reactive oxygen species’ (ROS) production in vivo and the high lipid content
in livers gives rise to a variety of metabolic dysfunctions [8,10]. Therefore, inhibiting lipid
synthesis and/or increasing lipid degradation are taken as effective methods for lowering
lipid accumulation in livers. In addition, inhibition or elimination of ROS-induced oxidative
injury also plays a key role in reducing NAFLD incidence [11–13]. Therefore, it is vital to
reduce oxidative stress levels and balance the lipid metabolism to reduce NAFLD incidence.

In addition to adjusting personal lifestyles, such as losing weight, physical exercise
and a Mediterranean diet, some synthetic drugs including Fenofibrate and Pioglitazone are
considered to treat NAFLD, but these drugs have caused some side effects [8,10,14]. There-
fore, there is a strong need to find safer and more effective alternative drugs for NAFLD.
Compared to synthetic drugs, some natural ingredients, such as curcumin, carotenoid,
quercetin, resveratrol, gastrodigenin, berberine and peptides, demonstrate remarkable
antioxidant, anti-diabetic and anti-hyperlipidemia properties and are considered to serve
as dietary additives to treat NAFLD [14–17].

Bioactive peptides (BPs) comprise 3–30 amino acid residues with molecular weights
(MWs) ranged from 500 to 1850 Da and are generated from diversified protein resources by
enzymatic hydrolysis, chemical degradation and microbial fermentation methods [18–21].
In addition to their widely accepted nutritional value, BPs have also been proven to have
important applications in promoting human health due to their significant physiological
and pharmacological functions [22–25]. What is more noteworthy is that some BPs have
remarkable lipid-lowering and antioxidant activities and show significant superiority in
curing NAFLD [26–28]. For example, the murine peptide hormone of metabolitin (MTL)
can greatly improve the clinical symptoms of NAFLD via controlling lipid metabolism and
insulin resistance [27]; VIAPW and IRWWW from the muscle hydrolysate of Miichthys miiuy
can decrease the levels of intracellular triglyceride (TG) content © and total cholesterol
(TC) [11]; tetra peptide (VHVV) from soy has exhibited a high preventive effect on the liver
dysfunction caused by hyperglycemia [29]; and hydrolysates of sea cucumber gonads [30],
Octopus vulgaris [31] and Mucuna pruriens [32] have presented anti-hyperlipidemic effects.
Peptide fraction (MW < 1 kDa) from monkfish muscles can increase the antioxidant ability
in livers to prevent NAFLD progression mainly by modulating the intestinal flora and
AMPK/Nrf2 pathways [33,34]. Therefore, BPs have attractive potential in functionality
foods, nutraceutical supplements and pharmaceutical products for treating NAFLD [35–37].

Monkfish (Lophius litulon) belongs to the members of the genus Lophiidae and is found
mainly in the Northwest Pacific Ocean [38]. Presently, BPs from monkfish muscles and
its processing by-products showed significant bioactivities, such as radical scavenging
activities [38,39], cytoprotection for H2O2-damaged HepG2 cells [40], enhancing the im-
mune regulatory effect [41], ameliorating high-fat-diet-induced nephrotoxicity [34], anti-
fatigue effects [42], antihypertensive abilities [43] and protection against chronic kidney
injuries [44]. In addition, eighteen antioxidant peptides (MSP1–MSP18) were purified from
the swim bladder hydrolysate of monkfish and identified as Tyr-Asp-Tyr-Asp (YDYD,
MSP1); Gln-Asp-Tyr-Asp (QDYD, MSP2); Ala-Gly-Pro-Ala-Ser (AGPAS, MSP3); Gly-Pro-
Gly-Pro-His-Gly-Pro-Ser-Gly-Pro (GPGPHGPSGP, MSP4); Gly-Pro-Lys (GPK, MSP5); His-
Arg-Glu (HRE, MSP6); Gly-Arg-Trp (GRW, MSP7); Ala-Arg-Trp (ARW, MSP8); Gly-Pro-Thr-
Glu (GPTE, MSP9); Asp-Asp-Gly-Gly-Lys (DDGGK, MSP10); Ile-Gly-Pro-Ala-Ser (IGPAS,
MSP11); Ala-Lys-Pro-Ala-Thr (AKPAT, MSP12); Tyr-Pro-Ala-Gly-Pro (YPAGP, MSP13);
Asp-Pro-Thr (DPT, MSP14),; Phe-Pro-Gly-Pro-Thr (FPGPT, MSP15); Gly-Pro-Gly-Pro-Thr
(GPGPT, MSP16); Gly-Pro-Thr (GPT, MSP17); and Asp-Pro-Ala-Gly-Pro (DPAGP, MSP18),
respectively [45]. As a consequence, the objective of this investigation was to research
and illuminate the ameliorating functions and mechanisms of these isolated antioxidant
peptides (MSP1–MSP18) from monkfish swim bladders on NAFLD using free fatty acid
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(FFA)-induced HepG2 cells. Thus, it provides a theoretical basis for monkfish swim bladder
antioxidant peptides as antioxidants in NAFLD health promotion products.

2. Results
2.1. Establishment of FFA-Induced NAFLD Model of HepG2 Cells

Figure 1A indicates that the viability of HepG2 cells showed a slow upward trend with
FFA concentration, ranging from 0 to 1.0 mM. However, the viability of HepG2 cells treated
with 1.5 mM FFA decreased to 67.82 ± 3.30%, markedly different from that of the blank
group (p < 0.001). This demonstrates that excess FFA lead to the apoptosis of HepG2 cells.
Therefore, the FFA concentration ranged from 0.25 to 1.0 mM was chosen for establishing
the NAFLD model of HepG2 cells.
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Figure 1. Influences of free fatty acids (FFA) on cell viability (A), intracellular lipid accumulation
(B), triglyceride (TG) content (C) and total cholesterol (TC) content (D) in HepG2 cells. All data are
presented as the mean ± SD of triplicate results. *** p < 0.001, ** p < 0.01 and * p < 0.05 vs. blank
control group.

The effects of FFA (0–1.0 mM) on lipid accumulation in HepG2 cells were analyzed by
employing the Oil red O staining method (Figure 2).

These morphological characteristics of HepG2 cells indicate that a small number of red
lipid droplets were present in the blank control group, while the number of intracellular
red lipid droplets increased significantly when the FFA concentration increased from 0.25
to 1.0 mM. After quantifying the images of Figure 2, it was found that the intracellular
lipid contents in the 0.25, 0.50 and 1.0 mM FFA groups were markedly (p < 0.001) higher
than the blank control group and were 1.45-, 1.80- and 2.28-fold of that in the blank group
(Figure 1B).

Figure 1C,D show that the TG and TC contents in the HepG2 cells were raised
gradually with the FFA concentration. When the FFA concentration was 1.0 mM, the
TG content in the HepG2 cells increased to 0.20 ± 0.014 mmol/gprot, which was about
4-fold that of the blank group (0.054 ± 0.012 mmol/gprot), and the TC content increased to
0.20 ± 0.0037 mmol/gprot, which was about 2-fold of that in the blank group
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(0.10 ± 0.01 mmol/gprot). The data indicate that 0.25–1.0 mM FFA can significantly in-
crease the TG and TC contents in HepG2 cells, resulting in lipid accumulation. Therefore,
1.0 mM FFA was selected to establish the NAFLD model of the HepG2 cells.
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Figure 2. Effects of FFA (0–1.0 mM) on morphological characteristics of HepG2 cells (×20): (A) blank
control; (B) FFA (0.25 mM); (C) FFA (0.50 mM); (D): FFA (1.0 mM).

2.2. Screening the Peptides with High Hypolipidemic Activity from MSP1–MSP18

In a previous report, antioxidant peptides from the protein hydrolysate of monkfish
swim bladders presented a significantly cytoprotective function to H2O2-induced HepG2
cells by increasing cell viability at 200 µmol/L [45]. Therefore, a peptide concentration of
200 µM was used for researching the effects of MSP1–MSP18 on the viability of HepG2
cells (Figure 3A). At 200 µM, the viability of HepG2 cells treated with MSP1, MSP5, MSP6,
MSP9 and MSP12 was lower than those of the blank control. The viability of HepG2 cells
treated with MSP2 was 104.47 ± 2.03%, which was the maximum cell viability among
the blank control and eighteen peptides group. What is more, there were no significant
differences between the blank control group and peptides groups (p > 0.05). Therefore, the
eighteen isolated Aps (MSP1–MSP18) display the possibility for developing liver-protective
products due to their minimal effects on the proliferation of HepG2 cells.

Figures 3B and 4 show that the amount and absorbance of red lipid droplets in the
model group were significantly higher than that in the blank group (p < 0.001), demonstrat-
ing a successful establishment of the NAFLD cell model. Treating with MSP1–MSP18,
the amount of red lipid droplets in the MSP1, MSP2, MSP7, MSP8, MSP10, MSP13,
MSP14, MSP16 and MSP18 groups decreased significantly compared with the model group
(p < 0.001, p < 0.01 or p < 0.05), but the contents of the red lipid droplets in the remaining
nine peptide groups displayed no significant difference compared with the model group
(p > 0.05).

Figure 3C,D show that the influences of MSP1–MSP18 on the TG and TC contents in
the FFA-induced NAFLD model of HepG2 cells and the TG and TC contents in 1.0 mM
FFA-treated HepG2 cells were significantly increased by 2.23 and 0.77 times compared
with the blank control group (p < 0.001). After incubation with MSP1–MSP18, the TG
contents in the FFA-induced HepG2 cells showed a decreasing trend, except for MSP4,
MSP6 and MSP16 (Figure 3C). In addition, MSP1, MSP2, MSP7, MSP8, MSP9, MSP10,
MSP12, MSP13, MSP14, MSP17 and MSP 18 can significantly lower the TG content of
FFA-induced HepG2 (p < 0.001). Figure 3D indicates that MSP1–MSP18 can reduce the
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contents of TC in FFA-induced HepG2 cells, and the TC contents in the MSP1, MSP2, MSP6,
MSP8, MSP10, MSP13, MSP14 and MSP 18 groups were significantly lower than that in the
model group (p < 0.001, p < 0.01 or p < 0.05). Therefore, MSP2, MSP8, MSP10, MSP13 and
MSP 18 were selected to investigate the amelioration function and mechanism on NAFLD
using the FFA-induced HepG2 model.
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2.3. Hypolipidemic Activity of MSP2, MSP8, MSP10, MSP13 and MSP18 in FFA-Induced
NAFLD Model of HepG2 Cells

The effects of low (50 µM), medium (100 µM) and high (200 µM) concentrations of
MSP2, MSP8, MSP10, MSP13 and MSP18 on the lipid accumulation in the FFA-caused
HepG2 cells were photographed and calculated by employing the Oil red O staining
method (Figures 5 and 6A). The absorbance of red lipid droplets in the model group was
1.45-fold of that in the blank group, demonstrating a successful establishment of the NAFLD
cell model. In contrast to the model group, the intracellular lipid droplet amount in the
peptide-treated groups was brought down with the rising of the peptide concentrations,
indicating that the general tendency of lipid accumulation in HepG2 cells was gradually
declining as the concentration increased in the MSP2, MSP8, MSP10, MSP13 and MSP18
groups. Moreover, MSP2 (100 µM) and MSP13 (100 and 200 µM) showed the strongest
ability to reduce lipid accumulation in the FFA-induced NAFLD model of HepG2 cells
(p < 0.001), followed by MSP8 (200 µM) and MSP10 (200 µM) (p < 0.01). In addition, MSP13
at 200 µM showed the same lipid-lowering ability as NAC.

The effects of low (50 µM), medium (100 µM) and high (200 µM) concentrations of
MSP2, MSP8, MSP10, MSP13 and MSP18 on the TG and TC contents in FFA-induced
HepG2 cells were measured and are displayed in Figure 6B,C. The TG and TC contents
were 0.209 ± 0.005 and 0.210 ± 0.008 mmol/gprot in the FFA-induced HepG2 cells, which
were 2.83- and 1.75-fold of those in the blank group. Within the measured concentrations,
the intracellular TG and TC contents in the MSP2, MSP8, MSP10, MSP13 and MSP18 groups
gradually decreased. Compared to the model group, MSP2, MSP8, MSP10, MSP13 and
MSP18 at high (200 µM) concentrations and MSP18 at medium (100 µM) concentrations
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showed the strongest ability to reduce the TG content of the FFA-induced HepG2 cells
(p < 0.001), followed by MSP8 at medium (100 µM) concentrations (p < 0.01). In addition,
MSP2 (100 and 200 µM), MSP8 (200 µM), MSP10 (100 and 200 µM), MSP13 (200 µM)
and MSP18 (200 µM) showed the strongest ability to reduce the TC content of the FFA-
induced HepG2 cells (p < 0.001), followed by MSP8 (100 µM), MSP13 (100 µM) and MSP18
(100 µM) (p < 0.01). However, the lowering ability on the TC and TG quantity of MSP2,
MSP8, MSP10, MSP13 and MSP18 was lower than that of NAC.

Mar. Drugs 2023, 21, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 3. Effects of eighteen antioxidant peptides (MSP1–MSP18) on the viability of HepG2 cells (A) 
and intracellular lipid accumulation (B), and the TG (C) and TC (D) contents in FFA-induced 
NAFLD model of HepG2 cells after 24 h of treatment. NAC at 200 µM was served as the positive 
control. All data are presented as the mean ± SD of triplicate results. ### p < 0.001 vs. blank control 
group; *** p < 0.001, ** p < 0.01 and * p < 0.05 vs. FFA-induced NAFLD model of HepG2 cells. 

Figures 3B and 4 show that the amount and absorbance of red lipid droplets in the 
model group were significantly higher than that in the blank group (p < 0.001), demon-
strating a successful establishment of the NAFLD cell model. Treating with MSP1–MSP18, 
the amount of red lipid droplets in the MSP1, MSP2, MSP7, MSP8, MSP10, MSP13, MSP14, 
MSP16 and MSP18 groups decreased significantly compared with the model group (p < 
0.001, p < 0.01 or p < 0.05), but the contents of the red lipid droplets in the remaining nine 
peptide groups displayed no significant difference compared with the model group (p > 
0.05).  

 
Figure 4. Effects of antioxidant peptides (MSP1–MSP18) on morphological characteristics of FFA-
induced non-alcoholic fatty liver disease (NAFLD) model of HepG2 cells (20×). N-Acetyl-L-cysteine
(NAC) was used as a positive control.

2.4. Antioxidant Activity of MSP2, MSP8, MSP10, MSP13 and MSP18 in FFA-Induced NAFLD
Model of HepG2 Cells

The influences of MSP2, MSP8, MSP10, MSP13 and MSP18 on the ROS levels in the
FFA-induced NAFLD model of HepG2 cells are displayed in Figures 7 and 8A. Com-
pared with the blank group (Figure 8A), the fluorescence intensity and area increased
significantly due to the lipid accumulation in the model group (Figure 7B), illustrating
a significant increase of intracellular ROS levels. Conversely, the increased fluorescence
area and intensity induced by FFA was reduced by MSP2, MSP8, MSP10, MSP13 and
MSP18, indicating a notable reduction in intracellular ROS production. Figure 8A precisely
quantifies the effects of MSP2, MSP8, MSP10, MSP13 and MSP18 on the ROS levels in the
FFA-induced NAFLD model of HepG2 cells. The results indicate that ROS levels were
significantly reduced by MSP2, MSP8, MSP10, MSP13 and MSP18 pretreatment at medium
(100 µM) and high (200 µM) concentrations in comparison to the model group (p < 0.001).
At high concentrations, the ROS levels of the MSP2, MSP8, MSP10, MSP13 and MSP18
groups at 200 µM decreased from 158.97 ± 2.38 to 123.590 ± 13.28%, 128.950 ± 2.48%,
133.430 ± 5.89%, 125.830 ± 9.8% and 121.120 ± 9.52% of the control group, respectively.

Figure 8B,D show that the activity of intracellular antioxidases (SOD, GSH-Px and
CAT) in the FFA-induced HepG2 cells incubated with MSP2, MSP8, MSP10, MSP13 and
MSP18 strengthened gradually with peptide concentrations ranging from 50 µM to 200 µM.
At 200 µM, the SOD activity in the MSP2, MSP8, MSP10, MSP13 and MSP18 groups in-
creased significantly from 48.48 ± 1.51 U/mg prot to 65.30 ± 1.16, 67.39 ± 0.69, 61.28 ± 1.02,
64.76 ± 0.23 and 67.19 ± 1.19 U/mg prot, respectively (p < 0.001); the GSH-Px activ-
ity in the MSP2, MSP8, MSP10, MSP13 and MSP18 groups increased significantly from
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119.77 ± 4.17 U/mg prot to 146.10 ± 0.74, 155.69 ± 1.82, 148.75 ± 1.14, 151.88 ± 1.63
and 140.99 ± 2.60 U/mg prot, respectively (p < 0.001); and the CAT activity in the MSP2,
MSP8, MSP10, MSP13 and MSP18 groups increased significantly from 11.20 ± 1.24 U/mg
prot to 16.74 ± 0.66, 17.41 ± 1.09, 15.39 ± 0.86, 16.79 ± 0.54 and 15.39 ± 0.67 U/mg prot,
respectively (p < 0.001).
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Figure 5. Effects of MSP2, MSP8, MSP10, MSP13 and MSP18 at 50, 100 and 200 µM on intracellular
lipid accumulation in FFA-induced NAFLD model of HepG2 cells for 24 h (20×): (A) blank control;
(B) FFA-induced cell model; (C) positive control (NAC); (D1–D3) MSP2 with the concentrations
of 50, 100 and 200 µM, respectively; (E1–E3) MSP8 with the concentrations of 50, 100 and 200 µM,
respectively; (F1–F3) MSP10 with the concentrations of 50, 100 and 200 µM, respectively; (G1–G3)
MSP13 with the concentrations of 50, 100 and 200 µM, respectively; (H1–H3) MSP18 with the
concentrations of 50, 100 and 200 µM, respectively.
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Figure 6. Effects of MSP2, MSP8, MSP10, MSP13 and MSP18 at 50, 100 and 200 µM on intracellular
lipid accumulation (A), and the TG (B) and TC (C) contents in FFA-induced NAFLD model of HepG2
cells for 24 h. NAC at 200 µM was served as the positive control. All data are presented as the
mean ± SD of triplicate results. ### p < 0.001 vs. blank control group; *** p < 0.001, ** p < 0.01 and
* p < 0.05 vs. FFA-induced NAFLD model of HepG2 cells.

Figure 8E shows that the production of MDA of the FFA-induced HepG2 cells in the
MSP2, MSP8, MSP10, MSP13 and MSP18 groups gradually decreased with concentrations
ranging from 50 µM to 200 µM. At 200 µM, the production of the MDA of the FFA-induced
HepG2 cells in the MSP2, MSP8, MSP10, MSP13 and MSP18 groups decreased to 1.95 ± 0.10,
1.97 ± 0.06, 2.01 ± 0.04, 1.98 ± 0.08 and 1.97 ± 0.03 nmol/mg prot, respectively, which
were significantly less than the MDA production in the model group (2.27 ± 0.07 nmol/mg
prot) (p < 0.001). Under the treatment of MSP2, MSP8, MSP10, MSP13 and MSP18, the
ROS and MDA content in the NAFLD model cells decreased significantly, and intracellular
antioxidant enzyme activity increased significantly. This result indicates that MSP2, MSP8,
MSP10, MSP13 and MSP18 can effectively inhibit the oxidative stress response of cells and
achieve the effect of interfering with NAFLD.

2.5. Effects of MSP2, MSP8, MSP10, MSP13 and MSP18 on the Protein Expression Related to
Intracellular Lipid Metabolism and Antioxidant System
2.5.1. Effects of MSP2, MSP8, MSP10, MSP13 and MSP18 on Proteins Expression Related to
Lipid Metabolism

AMP-activated protein kinase (AMPK) is a key regulator of biological energy metabolism
and plays an important role in mediating liver adipogenesis. When AMPK is phospho-
rylated, the expression level of sterol regulatory element binding proteins (SREBPs) can
be directly inhibited, thus reducing the regeneration of endogenous fat and reducing the
lipid accumulation in liver. In addition, the peroxisome proliferator-activated receptor α
(PPAR-α) and carnitine palmitoyltransferase 1 (CPT-1) can be regulated to promote the β-
oxidation of fatty acids, thus reducing the level of intracellular lipids [11,46,47]. Resultantly,
the expression of lipid metabolism-linked proteins including p-AMPK, SREBP-1c, PPAR-α
and CPT-1 was investigated in the FFA-induced NAFLD model of HepG2 cells to further
explore the molecular mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18 inhibiting
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lipid accumulation (Figure 9). In the FFA-induced NAFLD model of HepG2 cells, the
expression levels of the p-AMPK, PPAR-α and CPT-1 proteins significantly decreased, but
the expression level of the SREBP-1c proteins significantly increased in comparison to the
blank group (p < 0.05). What is exciting is that the expression of the lipid metabolism-linked
proteins in 200 µM of MSP2, MSP8, MSP10, MSP13 and MSP18-pretreated HepG2 cells was
significantly reversed, which elucidates the underlying mechanism of the hypolipidemic
effects of MSP2, MSP8, MSP10, MSP13 and MSP18 (Figure 9). Compared with the model
group, MSP2 and MSP8 can dramatically reduce the relative expression of the p-AMPK
protein (p < 0.001); MSP2, MSP8, MSP13 and MSP18 can significantly reduce the relative
expression of the SREBP-1c protein (p < 0.001); and MSP2, MSP8 and MSP10 can signifi-
cantly enhance the relative expression of the PPAR-α protein (p < 0.01). In addition, all the
peptides increased the expression of the CPT-1 protein, but MSP8 showed the strongest
ability to increase the expression of CPT-1 proteins among the five peptides (p < 0.001)
(Figure 9).
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Figure 7. Determination of ROS levels in HepG2 cells by DCFH-DA staining (20×): (A) blank control;
(B) FFA-induced cell model; (C) positive control (NAC); (D1–D3) MSP2 with the concentrations
of 50, 100 and 200 µM, respectively; (E1–E3) MSP8 with the concentrations of 50, 100 and 200 µM,
respectively; (F1–F3) MSP10 with the concentrations of 50, 100 and 200 µM, respectively; (G1–G3)
MSP13 with the concentrations of 50, 100 and 200 µM, respectively; (H1–H3) MSP18 with the
concentrations of 50, 100 and 200 µM, respectively.
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Figure 8. Effects of MSP2, MSP8, MSP10, MSP13 and MSP18 on ROS (A), SOD (B), GSH-PX (C), CAT
(D) and MDA (E) levels of FFA-induced NAFLD model of HepG2 cells at 50, 100 and 200 µM. NAC
at 200 µM was served as the positive control. All data are presented as the mean ± SD of triplicate
results. ### p < 0.001 vs. blank control group; *** p < 0.001, ** p < 0.01 and * p < 0.05 vs. FFA-induced
NAFLD model of HepG2 cells.

2.5.2. Effects of MSP2, MSP8, MSP10, MSP13 and MSP18 on the Protein Expression
Related to Intracellular Antioxidant System

Nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the important antioxidant
stress-signaling pathways in vivo, and heme oxygenase-1 (HO-1) is the downstream target
protein regulated by Nrf2, which plays an important role in the occurrence and develop-
ment of liver diseases. In addition, the expression of downstream antioxidative enzymes
(CAT, SOD, GSH-PX, etc.) is up-regulated according to the accumulation of Nrf2 in the nu-
cleus. Figure 10 indicates that the expression of the Nrf2 protein was significantly lowered
in the FFA-induced NAFLD model of HepG2 cells (p < 0.001), which further led to a sharp
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drop in the heme oxygenase 1 (HO-1) protein (p < 0.001). However, the decrease in the
expression of Nrf2 and HO-1 proteins could be significantly reversed by adding 200 µM of
MSP2, MSP8, MSP10, MSP13 and MSP18 into the FFA-induced NAFLD model of HepG2
cells. In addition, MSP8 and MSP18 presented the strongest ability to promote Nrf2 and
HO-1 protein expression, respectively.

Mar. Drugs 2023, 21, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 9. The effects of MSP2, MSP8, MSP10, MSP13 and MSP18 at a concentration of 200 µM on 
the expression of lipid metabolism-related proteins in FFA-induced NAFLD model in HepG2 cells. 
NAC at 200 µM was served as the positive control. All data are presented as the mean ± SD of trip-
licate results. (A) Expression levels of lipid metabolism related proteins; (B) p-AMPK/GAPDH ratio; 
(C) SREBP-1c/GAPDH ratio; (D) PPAR-α/GAPDH ratio; (E) CPT-1/GAPDH ratio. ### p < 0.001 vs. 
blank control group; *** p < 0.001, ** p < 0.01 and * p < 0.05 vs. FFA-induced NAFLD model of HepG2 
cells. 

2.5.2. Effects of MSP2, MSP8, MSP10, MSP13 and MSP18 on the Protein Expression  

Related to Intracellular Antioxidant System 
Nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the important antioxidant 

stress-signaling pathways in vivo, and heme oxygenase-1 (HO-1) is the downstream tar-
get protein regulated by Nrf2, which plays an important role in the occurrence and devel-
opment of liver diseases. In addition, the expression of downstream antioxidative en-
zymes (CAT, SOD, GSH-PX, etc.) is up-regulated according to the accumulation of Nrf2 
in the nucleus. Figure 10 indicates that the expression of the Nrf2 protein was significantly 
lowered in the FFA-induced NAFLD model of HepG2 cells (p < 0.001), which further led 
to a sharp drop in the heme oxygenase 1 (HO-1) protein (p < 0.001). However, the decrease 
in the expression of Nrf2 and HO-1 proteins could be significantly reversed by adding 200 
µM of MSP2, MSP8, MSP10, MSP13 and MSP18 into the FFA-induced NAFLD model of 
HepG2 cells. In addition, MSP8 and MSP18 presented the strongest ability to promote 
Nrf2 and HO-1 protein expression, respectively. 

Figure 9. The effects of MSP2, MSP8, MSP10, MSP13 and MSP18 at a concen-
tration of 200 µM on the expression of lipid metabolism-related proteins in FFA-
induced NAFLD model in HepG2 cells. NAC at 200 µM was served as the
positive control. All data are presented as the mean ± SD of triplicate results.
(A) Expression levels of lipid metabolism related proteins; (B) p-AMPK/GAPDH ratio;
(C) SREBP-1c/GAPDH ratio; (D) PPAR-α/GAPDH ratio; (E) CPT-1/GAPDH ratio. ### p < 0.001
vs. blank control group; *** p < 0.001, ** p < 0.01 and * p < 0.05 vs. FFA-induced NAFLD model of
HepG2 cells.



Mar. Drugs 2023, 21, 360 12 of 20
Mar. Drugs 2023, 21, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 10. The effects of MSP2, MSP8, MSP10, MSP13 and MSP18 at 200 µM on the expression of 
antioxidant-system-related proteins in FFA-induced NAFLD model in HepG2 cells. NAC at 200 µM 
was served as the positive control. All data are presented as the mean ± SD of triplicate results. (A) 
Expression levels of antioxidant-system-related proteins; (B) Nrf2/GAPDH ratio; (C) HO-1/GAPDH 
ratio. ### p < 0.05 vs. blank control group; *** p < 0.01, ** p < 0.01 and * p < 0.05 vs. FFA-induced NAFLD 
model of HepG2 cells. 

3. Discussion 
NAFLD is a complex disease whose pathogenesis has not been fully elucidated. Pres-

ently, the “two-hit” model is one of the dominant theories to discuss NFALD [48]. In brief, 
lipid deposition in a liver causes hyperglycosemia and hyperlipemia, and the hepatic cells 
initially develop steatosis, which is called the “first hit”. The “second hit” is thought to be 
the subsequent oxidative stress, inflammation and fibrosis it causes. Modern unhealthy 
lifestyles, especially high-fat diets and a lack of exercise, lead to a large accumulation of 
lipids in the human body. The excess FFAs overloaded in the body are transferred from 
the bloodstream to the liver, which result in continuous lipid accumulation and a disorder 
of lipid synthesis and metabolism in the liver, and thereby facilitate the development of 
non-alcoholic fatty livers [4,8]. Moreover, the accumulation of excess FFA in the liver in-
duces consecutive oxidative stress reactions, leading to a production of excess ROS, im-
mune cell polarization infiltration and a massive release of inflammatory cytokines [8,49]. 
As a consequence, heightened oxidative stress and immune/inflammatory responses fur-
ther cause liver cell damage and liver cirrhosis and even develop into NAFLD. Thus, re-
ducing lipid deposition and oxidative stress levels in the liver is essential for ameliorating 
NAFLD [8,50]. Therefore, according to the “two-hit” model, we designed this experiment 
to discuss the mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18 in ameliorating 
NAFLD from the aspect of lowering lipid accumulation and oxidative stress levels. 

3.1. Mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18 on Ameliorating Lipid Metabo-
lism 

Hepatocyte steatosis is an important cause of fatty liver. The main cause of hepatic 
steatosis is that the oxidation rate of lipid is far less than the synthesis rate, and a large 
amount of lipid is accumulated in the liver, resulting in a disorder of lipid metabolism, 
steatosis and ultimately the generation of a fatty liver [8,11]. Therefore, we established the 
FFA-induced NAFLD model of HepG2 cells using 1.0 mM FFA for exploring the amelio-
rating activity and mechanisms of MSP1–MSP18 on NAFLD. 3-(4,5-dimethylthiazolyl-2)-
2, 5-diphenyltetrazolium bromide (MTT), O staining and the TG and TC content-determi-
nation assays proved that the FFA-induced NAFLD model of HepG2 cells is suitable for 

Figure 10. The effects of MSP2, MSP8, MSP10, MSP13 and MSP18 at 200 µM on the expression of
antioxidant-system-related proteins in FFA-induced NAFLD model in HepG2 cells. NAC at 200 µM
was served as the positive control. All data are presented as the mean ± SD of triplicate results. (A)
Expression levels of antioxidant-system-related proteins; (B) Nrf2/GAPDH ratio; (C) HO-1/GAPDH
ratio. ### p < 0.05 vs. blank control group; *** p < 0.01, ** p < 0.01 and * p < 0.05 vs. FFA-induced
NAFLD model of HepG2 cells.

3. Discussion

NAFLD is a complex disease whose pathogenesis has not been fully elucidated.
Presently, the “two-hit” model is one of the dominant theories to discuss NFALD [48].
In brief, lipid deposition in a liver causes hyperglycosemia and hyperlipemia, and the
hepatic cells initially develop steatosis, which is called the “first hit”. The “second hit” is
thought to be the subsequent oxidative stress, inflammation and fibrosis it causes. Mod-
ern unhealthy lifestyles, especially high-fat diets and a lack of exercise, lead to a large
accumulation of lipids in the human body. The excess FFAs overloaded in the body are
transferred from the bloodstream to the liver, which result in continuous lipid accumula-
tion and a disorder of lipid synthesis and metabolism in the liver, and thereby facilitate
the development of non-alcoholic fatty livers [4,8]. Moreover, the accumulation of excess
FFA in the liver induces consecutive oxidative stress reactions, leading to a production of
excess ROS, immune cell polarization infiltration and a massive release of inflammatory
cytokines [8,49]. As a consequence, heightened oxidative stress and immune/inflammatory
responses further cause liver cell damage and liver cirrhosis and even develop into NAFLD.
Thus, reducing lipid deposition and oxidative stress levels in the liver is essential for
ameliorating NAFLD [8,50]. Therefore, according to the “two-hit” model, we designed
this experiment to discuss the mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18
in ameliorating NAFLD from the aspect of lowering lipid accumulation and oxidative
stress levels.

3.1. Mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18 on Ameliorating
Lipid Metabolism

Hepatocyte steatosis is an important cause of fatty liver. The main cause of hepatic
steatosis is that the oxidation rate of lipid is far less than the synthesis rate, and a large
amount of lipid is accumulated in the liver, resulting in a disorder of lipid metabolism,
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steatosis and ultimately the generation of a fatty liver [8,11]. Therefore, we established the
FFA-induced NAFLD model of HepG2 cells using 1.0 mM FFA for exploring the ameliorat-
ing activity and mechanisms of MSP1–MSP18 on NAFLD. 3-(4,5-dimethylthiazolyl-2)-2, 5-
diphenyltetrazolium bromide (MTT), O staining and the TG and TC content-determination
assays proved that the FFA-induced NAFLD model of HepG2 cells is suitable for studying
the activity and mechanisms of MSP1–MSP18 (Figures 2 and 3A). The effects of MSP1–
MSP18 on lipid accumulation in the NAFLD cell model were investigated, and MSP2,
MSP8, MSP10, MSP13 and MSP18 presented significant lipid lowering effects, demonstrat-
ing the significantly ameliorating functions of MSP2, MSP8, MSP10, MSP13 and MSP18 on
FFA-induced HepG2 cells (Figures 5–7).

AMPK is a cellular energy sensor that plays a vital role in maintaining human energy
homeostasis [51]. AMPK is a serine/threonine protein kinase that is activated by low energy
states. Consequently, the activated AMPK pathway can catalyze the production of large
amounts of ATP to replenish consumption during anabolic processes and restore the energy
balance of cells [52]. In addition, the biological activity of AMPK is regulated by the phos-
phorylation or dephosphorylation of upstream kinases and phosphatases [53]. In livers,
AMPK phosphorylation (p-AMPK) can regulate lipid-related transcription factors, such as
SREBP-1c, PPAR-α and CPT-1, to reduce lipid accumulation [54]. Thus, the AMPK pathway
is involved in positive lipid regulation in livers and is identified as a key therapeutic target
for NAFLD. As an important regulator of lipid homeostasis, SREBPs play a key role in de
novo fat synthesis and are tightly relevant to the occurrence of NAFLD [55]. SREBP-1c
is one of the subtypes of SREBPs and is mainly expressed in the liver and adipose tissue.
Overexpression of SREBP-1c can promote the expression of downstream target genes, thus
up-regulating TG synthesis and promoting the occurrence of steatosis [56,57]. PPAR-α
is mainly expressed in tissues with high fatty acid catabolism, including the liver, heart
and kidney. PPAR-α is involved in fatty acid oxidation in the liver through significantly
up-regulated gene expression and can affect the development of NAFLD and NASH [58,59].
CPT-1 is a downstream protein of PPAR-α and a key rate-limiting enzyme of fatty acid
oxidation in the liver. CPT-1 can promote β-oxidation to reduce intracellular FFA and
inhibit the secretion of cellular pro-inflammatory factors [60,61]. Therefore, regulating
lipid metabolism through the AMPK pathway is considered a feasible therapeutic strat-
egy to prevent the occurrence and development of NAFLD. In order to further elucidate
lipid-lowering mechanisms, we determined the effects of MSP2, MSP8, MSP10, MSP13 and
MSP18 on the expression of the p-AMPK, SREBP-1c, PPAR-α and CPT-1 proteins. The West-
ern blot results proved that MSP2, MSP8, MSP10, MSP13 and MSP18, especially MSP2 and
MSP8, can significantly promote AMPK phosphorylation, inhibiting the expression level of
the lipid synthesis factor of SREBP-1c to reduce the production of lipids. Moreover, MSP2,
MSP8, MSP10, MSP13 and MSP18, especially MSP2, MSP8 and MSP10, can significantly
promote the expression of the PPAR-α and CPT-1 proteins to accelerate the β-oxidation of
fatty acids (Figure 11). These results demonstrate that the lipid lowering mechanisms of
MSP2, MSP8, MSP10, MSP13 and MSP18 are involved in the regulation of lipid metabolism
via regulating the AMPK pathway and its downstream protein factors on lipid synthesis
(SREBP-1c) and degradation (PPAR-α and CPT-1) (Figure 11).

3.2. Mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18 on Regulating Intracellular
Antioxidant System

Oxidative stress is an important mechanism of the NAFLD transmission of liver in-
juries [48]. In NAFLD patients, oxidized FFAs enter the liver and destroy the mitochondrial
electron transport chain and intracellular antioxidant system, which further leads to the de-
crease of the activities of intracellular antioxidant enzymes, promotes the mass production
of ROS, increases the production of lipid peroxide MDA and causes oxidative stress [6,49].
The produced MDA further induces the cross-linking polymerization of macromolecules
and has a toxic effect on cells. In addition, oxidative stress can also activate inflammatory
pathways and cause mitochondrial dysfunction. These destructive effects lead to the deteri-
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oration of NAFLD into NASH [49,62]. Therefore, we determined the activity of intracellular
antioxidant protease (CAT, SOD and GSH-PX) and the content of lipid peroxides (MDA).
The findings show that MSP2, MSP8, MSP10, MSP13 and MSP18 can significantly reduce
ROS content, significantly increase SOD, GSH-PX and CAT levels and reduce the MDA
content in FFA-induced HepG2 cells (Figures 7 and 8). It was proven that MSP2, MSP8,
MSP10, MSP13 and MSP18 had strong cytoprotection for HepG2 cells against FFA-induced
oxidative damage.
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The Nrf2 pathway is the most important endogenous antioxidant stress pathway,
which can regulate the expression of antioxidants and detoxification enzymes and is the
main regulatory factor of antioxidants [63,64]. Nrf2 has also been proven to be a potential
target for curing NAFLD [65,66]. The literature shows that Nrf2 agonists can regulate the
expression of the downstream product HO-1 protein by activating the Nrf2 pathway and
then up-regulate the activities of antioxidant proteases to remove excess ROS and reduce
oxidative stress damage and further affect the liver lipid metabolism and inflammatory
response to avoid liver damage and prevent the occurrence of NASH [49]. Therefore, HO-1
has also been considered as an important target for treating metabolic diseases [67]. In
order to clarify the antioxidant mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18,
we determined the expression levels of the oxidative stress-related proteins Nrf2 and HO-1.
The present findings show that MSP2, MSP8, MSP10, MSP13 and MSP18 can up-regulate
the expression of Nrf2 and HO-1 proteins to activate the Nrf2 pathway, which further
regulates the expression of downstream antioxidant protease (SOD, GSH-PX and CAT) to
remove excess ROS, reduce the content of MDA and eventually alleviate cellular oxidative
stress response (Figure 11).

4. Materials and Methods
4.1. Materials and Reagents

The Dulbecco’s Modified Eagle Medium (DMEM), protein Marker (11–180 KDa),
penicillin-streptomycin solution, L-Glutamine, glutathione (GSH), phosphate buffered
saline (PBS), RPMI-1640, fetal bovine serum (FCS), MTT and trypsin-EDTA assay kit were
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purchased from Beijing Solarbio Technology Co., Ltd. (Beijing, China). Antibodies of
p-AMPK, SREBP-1c, PPAR-α and CPT-1 were purchased from Affinity Biopharmaceutical
Co., Ltd. (Shanghai, China). Antibodies of HO-1, Nrf2 and GAPDH were purchased from
Proteintech Group, Inc. (Wuhan, China). Assay kits for measuring the activity of SOD, CAT
and GSH-Px and contents of TG, TC, BCA, ROS and MDA were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). Oil red O solution, NAC, palmitic acid
(PA), oleic acid (OA) and β-actin were purchased from Sigma-Aldrich (Shanghai, China)
Trading Co., Ltd. (Shanghai, China). Eighteen antioxidant peptides (MSP1–MSP18) (>98%)
were synthesized by Shanghai Apeptide Co., Ltd. (Shanghai, China).

4.2. HepG2 Cell Culture and Establishment of NAFLD Cell Model

The FFA-induced NAFLD cell model was established according to previous meth-
ods [68,69]. HepG2 cells were cultured in DMEM containing 10% FBS and 1% penicillin-
streptomycin at 37 ◦C and 50 mL/L CO2 in a 95% humidified sterile environment.

HepG2 cells in the logarithmic growth phase were seeded into 96-well plates and
cultivated continuously for 24 h. The cell medium was replaced after the cell density
increased to 80% in different concentrations (0.25, 0.5, 1.0, 1.5 and 2.0 mM) of FFA solution
(PA and OA mixture with a molar ratio of 1:2 containing 1% BSA), amidst a 200 mL culture
medium for each well. After culturing for 24 h, the cultured HepG2 cells were observed
and photographed using a microscope.

4.3. Cells Viability Determination

Cells’ viability was determined using an MTT assay [21]. In brief, 100 µL of the peptide
sample at designed concentrations (50, 100, or 200 µM) and 100 µL of growth media were
joined in the HepG2 cells. The cultures in the blank control group were replaced by PBS
without peptides. Cell viability (% of blank control) was determined after HepG2 cells
were incubated for 24 h.

4.4. Oil Red O Staining Assay

The assay was carried out according to the manufacturer’s instructions of the Oil red O
staining kit [11]. HepG2 cells were fixed on 96-well plates with 4% formaldehyde for 0.5 h
and cleaned with PBS twice. After that, HepG2 cells were rinsed with 60% isopropanol for
10 min, and the isopropanol was cleared up. Then, 3% Oil red O solution was added into
96-well plates and incubated with the HepG2 cells for 1 h, and the cells were rinsed with
PBS three times to clear away the free dye. Finally, stained cells were added to DMSO, and
the absorbance at 358 nm was measured. The stained cells were photographed using an
inverted microscope, Olympus IX71 (Olympus Co., Ltd., Shinjuku, Japan).

4.5. Protein Extraction of HepG2 Cells

HepG2 cells were washed by PBS two times and dealt with a lysis buffer (1% Triton
X-100, 1% deoxycholate and 0.1% SDS) on ice for 20 min. Subsequently, the mixed solution
was centrifuged at 12,000× g at 4 ◦C for 20 min. The BCA protein assay kit was used to
measure protein concentration according to the manufacturer’s instructions.

4.6. Intracellular TC, TG, MDA, and Antioxidant Enzymes Level Analysis

HepG2 cells were seeded into 96-well plates and treated with the processes described
in Sections 4.3–4.5. Intracellular TC and TG contents were measured using their assay kits
according to the manufacturer’s instructions [11].

The levels of SOD, GSH-Px, CAT and MDA were determined following the instructions
of the manufacturers [70,71].

4.7. Intracellular ROS Level Analysis

The ROS level was determined by the DCFH-DA staining method [72,73]. Briefly, the
cells were treated according to the above method (4.3 to 4.5) and washed with PBS three
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times. After that, the HepG2 cells were incubated with 10 µM DCFH-DA for 30 min at
37 ◦C. After washing with PBS two times, the morphology of the HepG2 cells was observed
and photographed using an inverted microscope (Nikon Corporation, Kyoto, Japan), and
the fluorescence of the cells was monitored at 485 nm excitation (535 nm emission).

4.8. Western Blot Assay

The procedure of Western blotting was performed according to reported methods [25,74].
The BCA protein assay kit was used to measure the protein concentration according to the
manufacturer’s instructions. Extracted proteins were loaded onto 12% SDS-PAGE and, in
the next step, were transferred onto a PVDF membrane. After incubating with primary and
secondary antibodies, protein bands were visualized with enhanced chemiluminescence
(ECL), photographed and analyzed quantitatively with the FluorChem FC3 software (Bio-
Techne, Minneapolis, MN, USA).

4.9. Statistical Analysis

All the data are expressed as the mean ± SD (n = 3). The experimental data were
analyzed by an ANOVA test using SPSS 19.0. Significant differences were determined by
Duncan’s multiple range test (p < 0.05, 0.01, and 0.001).

5. Conclusions

In summary, we systematically studied the alleviating functions and mechanisms of
MSP2, MSP8, MSP10, MSP13 and MSP18 on an FFA-induced NAFLD model of HepG2 cells
through inhibiting lipid accumulation and oxidative stress. The lipid-lowering mechanisms
of MSP2, MSP8, MSP10, MSP13 and MSP18 firstly demonstrated that they can ameliorate
lipid metabolic disorders in vitro through regulating the AMPK pathway and its down-
stream protein factors on lipid synthesis (SREBP-1c) and degradation (PPAR-α and CPT-1).
In addition, the mechanisms of MSP2, MSP8, MSP10, MSP13 and MSP18 on inhibiting
cellular oxidative stress response revealed that they can remove excess ROS and reduce the
content of MDA by activating the Nrf2 pathway to up-regulate the expression levels of the
HO-1 protein and downstream antioxidant protease (SOD, GSH-PX and CAT). Therefore,
the present findings provide a good perspective on antioxidant peptides with monkfish
swim bladders acting as antioxidant ingredients applied in health-promoting products
on NAFLD.
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