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Abstract: Cancer is one of the most worldwide spread diseases and causes maximum death. Treat-
ment of cancer depends on the host immune system and the type of drugs. The inefficiency of conven-
tional cancer treatments as a result of drug resistance, nontargeted delivery, and chemotherapy-related
negative side effects has caused bioactive phytochemicals to come into focus. As a result, recent years
have seen an increase in research into screening and identifying natural compounds with anticancer
properties. Recent studies on the isolation and use of polysaccharides derived from various marine
algal species have revealed a variety of biological activities, including antioxidant and anticancer
properties. Ulvan is a polysaccharide derived from various green seaweeds of the Ulva species in the
family Ulvaceae. It has been demonstrated to have potent anticancer and anti-inflammatory proper-
ties through the modulation of antioxidants. It is vital to understand the mechanisms underlying
the biotherapeutic activities of Ulvan in cancer and its role in immunomodulation. In this context,
we reviewed the anticancer effects of ulvan based on its apoptotic effects and immunomodulatory
activity. Additionally, we also focused on its pharmacokinetic studies in this review. Ulvan is the most
conceivable candidate for use as a cancer therapeutic agent and could be used to boost immunity.
Moreover, it may be established as an anticancer drug once its mechanisms of action are understood.
Due to its high food and nutritive values, it can be used as a possible dietary supplement for cancer
patients in the near future. This review may provide fresh perspectives on the potential novel role of
ulvan, reveal a brand-new cancer-prevention strategy, and improve human health.

Keywords: ulvan; anticancer; cytotoxicity; antioxidant; immunomodulation; pharmacokinetics

1. Introduction

Cancer is a major public health concern [1]. Off-target toxicity, drug resistance, and
the financial burden of treatment costs pose potential obstacles in clinical oncology despite
advancements in diagnosis, prognosis, and conventional therapeutic treatments [2]. In
terms of global incidence and annual mortality, cancer has surpassed many other diseases
and is now the second leading cause of death worldwide [3]. Global cancer statistics
indicate that there were 9.6 million cancer-related deaths and an estimated 18.1 million
cancer cases in 2018. Radiation therapy, immunotherapy, chemotherapy, and surgical
methods have advanced to the clinical stage; however, despite extraordinary efforts over
the past decades to improve conventional therapeutic approaches, some patients still lack
treatment options [4,5]. The use of chemotherapy drugs at doses high enough to eradicate
all drug-resistant subpopulations is constrained by side effects, including cardio-, hepato-,
and neurotoxicity, along with nephron and life-threatening haematopoietic toxicity [6–9].
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Over the past seven decades, natural compounds have been the primary source of
innovative medication prospects [10,11]. Phytochemicals have emerged as prospective
anticancer treatments, either alone or in combination with other chemotherapeutic drugs,
due to their efficient tumour-targeting ability and low toxicity to normal tissues [10–13].
Phytochemicals act as chemopreventive and synergistic agents, increasing anticancer activ-
ity and decreasing chemotherapy-associated toxicity [14]. Pro-oxidative and antioxidative
properties of phytochemicals positively regulate the homeostasis of reactive oxygen species
(ROS), modifying apoptotic signals to prevent cancer [10,11]. In general, plant-derived
polyphenols dynamically alter apoptotic and autophagic cell death signalling in cancer
cells while blocking these signals in healthy organs surrounding the tumour to protect
them [10,11]. Although few novel phytochemicals have been extensively studied in clinical
settings, their potential to improve cancer therapy is promising [15].

Marine and freshwater ecosystems are rich in biodiversity and novel bioactive com-
pounds [16–31]. Ulvan is a primary polysaccharide found in green seaweeds of the genus
Ulva (family Ulvaceae). Ulva is a widely produced natural fiber and is considered an
important food source. It also contains additional ingredients for biomass fuel production
and therapeutic supplements [32]. Ulvan is a cell wall polysaccharide that makes up 9–36%
of the dry-weight biomass of Ulva species and is mainly composed of uronic acids such as
glucuronic acid, iduronic acid, sulfated rhamnose, and xylose [33]. Ulva species contain
three other cell wall polysaccharides (cellulose, xyloglucan, and glucuronan) that make
up to 45% of the dry-weight biomass when combined with ulvan [34]. Similar to ulvan,
xyloglucan and glucuronan are soluble polysaccharides; however, they constitute a very
small portion of cell wall polysaccharides [35]. Of the four polysaccharides found in the
genus Ulva, only ulvan contains both rhamnose and iduronic acid in its cell wall [36]. The
two primary repeating disaccharides are type A (A3S) and type B (B3S) ulvanobiuronic
acid 3-sulfate [37–39]. Ulvan is a common food ingredient, and various studies have inves-
tigated its therapeutic potential [40,41]. Therapeutic applications of ulvan polysaccharides
are gaining popularity in seaweed research [42]. The molecular structures of the chief
repeating disaccharide units comprising ulvan are shown in Figure 1.
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Figure 1. Structure of major repeating disaccharide units that comprise ulvan. The structure is drawn
in Chemdraw and adopted and modified from [33]. Ulvanobiuronic acid A3s contains glucuronic
acid attached to rhamnose 3-sulfate, while similar B3s also contain rhamnose 3-sulfate but have
iduronic acid in place of glucuronic acid. Ulvanobioses are composed of rhamnose 3-sulfate attached
to xylose. Xylose can contain a sulfate group, as seen in U2s, 3s.
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The increased use of artificial chemicals in cancer treatment has resulted in many side
effects and risks. Therefore, there is a global tendency to return to natural resources that are
therapeutically effective, socially acceptable, and economically accessible to those with a
lower socioeconomic status. As a result, Mondal many researchers have focused on finding
new anticarcinogenic compounds from algae and plants [43–45]. Algal-derived sulfated
polysaccharides have been shown to function as free-radical scavengers and antioxidants
in the prevention of oxidative damage in living organisms [46–50]. Therefore, we focused
on ulvan as an anticancer agent and investigated its possible role in various cancers. Its
antioxidant and immunomodulatory properties were also investigated. The study also
focused on its food and nutritive values as a possible dietary supplement for cancer patients.

2. Methods

According to traditional Indian, Korean, and Chinese medicine, seaweeds are rich in
bioactive molecules with diverse pharmacological activities. Using various search engines,
we identified ulvan, a polysaccharide primarily derived from green seaweeds. We gath-
ered information on ulvan and its potential immunomodulatory and anticancer activities
from databases such as Google Scholar, PubMed, Web of Science, Science Direct, and
Scopus. We used several keywords such as seaweed, ulva, ulvan, anticancer, antioxidant,
immunomodulation, cytotoxicity, and pharmacokinetics. In this review, we chose only
green seaweed-derived ulvan compounds with potential antioxidant, anti-inflammatory,
and anticancer properties. The time frame we used for this review is from 1997 to 2023.
Moreover, regarding the selection criteria, we focused particularly on ulvan with respect to
cancer research. Additionally, we focused on cytotoxicity, immunomodulatory, antioxidant,
pharmacokinetic, and apoptotic effects of ulvan.

3. Seaweeds: Potentially the Most Important Source of Bioactive Compounds

Lifestyle and dietary changes can prevent more than 33% of diseases such as cancer,
diabetes, and chronic diseases linked with inflammation [51,52]. Nutritional supplements
derived from natural sources may play important roles in disease prevention. Peptides,
polysaccharides, amino acids, sterols, fatty acids, lipids, carbohydrates, polyphenols, vi-
tamins, photosynthetic pigments, and minerals, found in marine algae, can act as potent
antioxidants, and have antidiabetic and chemotherapeutic benefits in a variety of dis-
eases [51,52].

3.1. Seaweeds as a Chief Source of Polysaccharides and Carbohydrates

Polysaccharides are abundant in seaweeds [53]. They make up about 4–76% of the
total dry weight of the algae. Sulfuric acid polysaccharides, sulfated xylans, and galactans
are examples of polysaccharides that are classified based on their chemical structures
and are generally found in green algae. Brown algae also contain alginic acid, laminarin,
fucoidan, and sargassan [54]. Red algae commonly contain agar, carrageenan, xylan, and
floridean [55]. Due to the bioactive nature of these algal polysaccharides, they can be used
as therapeutic candidates to address a wide range of human health issues [55]. For example,
sulfated galactans such as carrageenans are widely used in the pharmaceutical and food
industries. Brown seaweeds contain soluble fibers such as fucans, alginates, and laminarans,
while red seaweeds contain soluble fibers such as sulfated galactans (carrageenans and
agars), floridean starch, and xylans [56]. In addition to uronic acids, galactose, xylose,
rhamnose, and arabinose, green algae also contain polysaccharides containing mannans,
starches, xylans, and ionic sulfate groups.

Numerous polysaccharides are classified as dietary fibers and are divided into two
categories: insoluble and soluble [57,58]. In contrast to their dry weight, seaweeds contain
25–75% dietary fiber, which is a higher percentage than that found in vegetables and
fruits [59]. Algal dietary fibers have various health benefits, including antitumor, anticancer,
anticoagulant, and antiviral properties [60]. Brown macroalgae contain numerous fucoidans
in their cell walls [42,61]. Fucoidans have a wide range of biological effects, including
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antioxidant, anticancer, anti-inflammatory, antidiabetic, antiviral, antithrombotic, and
anticoagulant properties [62–65]. They also influence the human immune system [62–65].
Furthermore, laminarin, which is abundant in brown algae and acts as an inhibitor of
intestinal metabolism, is the second most abundant source of glucan [58].

3.2. Ulva and Its Food Value

Seaweed is increasingly being considered as a source of nutraceuticals and functional
foods, where it can perform a variety of roles ranging from simple nutrition to sophisticated
physiological mechanisms because it contains high levels of polysaccharides and natural
fibers. In this context, the green seaweed Ulva lactuca has been widely used as a food and
nutraceutical agent [66].

Ulva spp. are often rich in bioactive compounds known for their health-promoting
properties and are traditionally used as a source of functional or nutraceutical foods. These
products are sometimes consumed as whole foods or as dietary supplements. Seaweeds
are assumed to contain several physiologically active compounds that can be employed as
therapeutic agents in dietary supplements [67]. Ulva spp., such as U. linza, have evolved
into supplements that can be used to treat a variety of ailments and as food and biomedical
preservatives [68]. Numerous studies have established that U. compressa, U. rigida, and U.
intestinalis can be employed as healing agents in antioxidant, anticancer, anti-inflammatory,
antidiabetic, and antibacterial medicines [48,62,69–72].

4. Ulvan Has the Foremost Powerful Antioxidant Activity

In 2019 and 2020, several Ulva sp. sources were discovered to have antioxidant effects,
including U. rigida, U. australis, U. lactuca, and U. ohnoi [73–75]. The antioxidant ability
of ulvan was assessed using various in vitro methods, including DPPH (2,2-diphenyl-1-
picrylhydrazyl), superoxide, hydroxyl, ferric reducing antioxidant power (FRAP), and lipid
peroxidation inhibition experiments. Compared to other commonly used methods, such as
reducing power and superoxide anion radical scavenging activity, the DPPH assay is the
fastest approach for measuring antioxidant capabilities [74,76–79]. The antioxidant proper-
ties of ulvan from Ulva sp. have been associated with sulfate concentration and molecular
weight [76,80–82]. Seaweeds such as U. lactuca can provide antioxidants. This alga exhibits
antiradical properties by decreasing lipid peroxidation and enhancing antioxidant enzyme
activity [83]. The degree of substitution of sulfate groups along the polymeric backbone is
correlated with antioxidant activity [83].

Several studies have been conducted to compare methodologies and establish which
method is more sensitive. As a method for tracking changes in peroxide generation, ORAC
(Oxygen Radical Absorbance Capacity), FRAP, and β-carotene linoleic acid bleaching can
be used [84,85]. The antioxidant effectiveness of ulvan has been compared with that of other
substances such as BHA (Butylated hydroxyanisole), BHT (Butylated hydroxytoluene), and
tocopherol. Although peroxide inhibition with ulvan (54.9%) was lower than that with BHA
(73.20%) and BHT (69.40%), the differences were not statistically significant [77]. Ulvan
exhibits antioxidative potential, as shown by a comparison of the numerous methodologies
described above, according to an antioxidant testing study. To assess the antioxidant capa-
bilities of ulvan, animal products, such as erythrocytes, and 2,2-azobis(2-amidinopropane)
dihydrochloride (AAPH) tests have also been used [86,87]. Ulvan inhibits lipid peroxi-
dation and lowers ROS formation by AAPH, as measured by thiobarbituric acid reactive
substances (TBARS) in erythrocytes [86]. Sulfate and low-molecular-weight polysaccha-
rides are used for antioxidant action [88–90]. The latter inhibits choline stresses and may be
neuroprotective [38]. Malondialdehyde levels are reduced, whereas glutathione peroxidase
(GSH), catalase (CAT), superoxide dismutase (SOD), telomerase, and other antioxidants
are increased by oligosaccharide components [91,92]. Ulvan’s IC50 for radical activity is
623.58 µg/mL, whereas its IC50 for scavenging superoxide anions is 785.48 µg/mL. Pig-
ments (chlorophyll and carotenoids), essential oils, and low-molecular-weight polysaccha-
rides are the antioxidants found in U. lactuca [82].
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The antioxidant properties of ulvan are also affected by the extraction process. Methanol
extracts cause greater inhibition than water extracts, with a higher percent inhibition [93].
Furthermore, compared to acid extraction, enzymatic extraction results in a larger percent-
age of inhibition [94]. In addition to in vitro antioxidant studies, animals can be exposed
to radicals such as thiacloprid and then treated with an extract [39,95]. Ulvan decreased
oxidative stress in hypercholesterolemic mice by boosting the activity of antioxidant en-
zymes (110% for CAT, 77% for GPx, and 23% for SOD) and the levels of nonenzymatic
antioxidants (GSH-stressed mice were treated with ulvan, which prevented abnormal
lipid metabolism, controlled hepatic antioxidant defence mechanisms, and decreased lipid
peroxidation) [96,97].

5. The Intricate Role of Ulvan as an Anticancer Agent

Cancer is a multistep process triggered by endogenous and external stimuli that fre-
quently result in oxidative DNA damage and mutations that disrupt the usual regulatory
pathways between cell differentiation, proliferation, and apoptosis [98]. Sulfated polysac-
charides from green, brown, and red seaweeds, have sparked much interest in this context
because of their anticancer properties [50]. In Swiss mice, a sulfated polysaccharide from
C. feldmannii demonstrated anticancer efficacy in vitro and in vivo. This strengthens the im-
mune system by increasing the production of OVA-specific antibodies (ovalbumin-specific
antibodies) [99]. The anticancer properties of fucoidans have been demonstrated in several
cancers, including lung, stomach, breast, and liver [62]. Fucoidans from Fucus vesiculosus
demonstrate potent anticancer activity against HeLa G-63 and HepG2 cells. Fucoidan was
also effective against HepG2 human liver cancer cells [100]. In this context, ulvan has
received more attention than fucoidans and other sulfated polysaccharides.

The anticancer efficacy of ulvan has been studied in several ways. For example,
ulvan can be used as a chemopreventive agent against liver cancer [74,101,102]. Ulvan
contains sulfated polysaccharides that suppress hepatocellular carcinoma proliferation
and induce apoptosis. The anticancer effect of ulvan has recently been discovered in
U. lactuca, U. australis, U. compressa, U. rigida, and U. ohnoi [74,101,102]. HepG2 (hepato-
cellular carcinoma), MCF7 (human breast cancer), and HeLa (cervical cancer) are among
the cell lines that have been tested [103]. Ulvan functions as an antiproliferative agent
and causes apoptosis in malignant cells. Ulvan from U. pertusa, U. lactuca, U. intesti-
nalis, U. tubulosa, U. prolifera, and U. fasciata [89,103–109] displayed anticancer activities
in a range of cancer models, including murine sarcoma cancer cell line S180 [110], MCF7
(human breast cancer) [103,107], human cancer cell lines (e.g., HepG2 (hepatocellular car-
cinoma) [103,111,112], HeLa (cervical cancer) [103], MKN45 (human gastric cancer) [108],
HCT-116 (human colon carcinoma), Caco-2 (human colon carcinoma) [111,113], AGS (hu-
man gastric carcinoma) [105,106], DLD1 (human colon carcinoma) [106,108], HT-29 (human
colon carcinoma) [111,113], and some cancers in animal models (e.g., mice) [110]. However,
human clinical trials have not been conducted to date. Ulvan, obtained from different
sources, has varying degrees of anticancer activity. U. lactuca has been shown to be cytotoxic
to several human cancer cell lines, including HepG2 (hepatocellular carcinoma), MCF7
(breast cancer), and HeLa (hepatocellular carcinoma) [103]. Ulvan reduced the in vitro
viability of all three cancer cell lines to zero percent at a dose of 100 µg/mL. Similar investi-
gations into the antitumor effects of ulvan in HepG2 and MCF-7 cell lines revealed increased
expression of the proapoptotic tumour suppressor p53 and decreased expression of the
antiapoptotic protein Bcl-2, supporting the theory that ulvan promotes apoptosis [113,114].
The anticancer activities of ulvan are listed in Table 1.
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Table 1. Ulvan anticancer activity.

Sl. No. Source Cell Lines Test Type Activity IC 50 µg/mL References

1 U. lactuca HepG2 cells In Vitro Cytotoxicity activity 29.67 ± 2.87 [103]
2 U. lactuca Human breast cancer cells In Vitro Cytotoxicity activity 25.09 ± 1.36 [103]
3 U. lactuca Cervical cancer cells In Vitro Cytotoxicity activity 36.33 ± 3.84 [103]
4 U. lactuca MCF-7 cells In Vitro Anticancer activity with low IC50 21 [115]
5 U. lactuca Colorectal HCT-116 cells In Vitro Anticancer activity with low IC50 99 [115]
6 U. lactuca Noncancerous baby hamster kidney (BHK) cells In Vitro In Vitro cytotoxicity and proapoptotic activity - [101]
7 U. lactuca Caco-2 cells (human colon cancer) In Vitro Anticancer activity with low IC50 - [115]
8 U. lactuca and E. intestinalis LS174 cells (human colon carcinoma) In Vitro Cytotoxicity activity 74.73 to 155.39 [82]

9 Ulva lactuca and
Enteromorpha intestinalis A549 cells (human lung carcinoma) In Vitro Cytotoxicity activity 74.73 to 155.39 [82]

10 Ulva lactuca and
Enteromorpha intestinalis Fem-x cells (malignant melanoma) In Vitro Cytotoxicity activity 74.73 to 155.39 [82]

11 Ulva lactuca and
Enteromorpha intestinalis K562 cells (chronic myelogenous leukaemia) In Vitro Cytotoxicity activity 74.73 to 155.39 [82]

12 Ulva lactuca NCI-H292 cells (human lung mucoepidermoid
carcinoma) In Vitro Cytotoxicity activity - [80]

13 Ulva lactuca HeLa cells In Vitro Displayed cytotoxicity activity - [103]
14 Ulva lactuca L929 cells (mouse lung) In Vitro Displayed in vitro cytotoxicity activity - [116]
15 Ulva lactuca Mammalian L6 cells In Vitro Cytotoxicity activity - [117]
16 Ulva lactuca HaCaT Keratinocytes In Vitro Cytotoxicity activity - [86]
17 Ulva lactuca 3T3 fibroblasts In Vitro Cytotoxicity activity - [86]
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5.1. Anticancer Properties of Ulvan via Apoptosis

The tumour suppressor protein p53 and the antiapoptotic protein Bcl-2 are implicated
in most human cancers [118]. p53 triggers an apoptotic process that prevents the growth
of cells with damaged DNA or cancer cells by acting via either extrinsic or intrinsic apop-
totic pathways involving p21 and Bax [119]. Bcl-2 functions primarily by inhibiting the
apoptotic pathway [120]. The Bcl-2 gene product is a negative regulator of apoptosis that
combines with Bax to counteract proapoptotic effects [121]. Bcl-2 is a crucial clinical prog-
nostic marker for breast cancer [122,123]. Sulfated polysaccharides from algae increased
p53 expression while decreasing Bcl-2 expression in mice with lung cancer [124]. The
overall process by which ulvan modulates apoptosis for cancer prevention is shown
in Figure 2.
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Figure 2. Ulvan modulates apoptosis to prevent cancer. Ulvan inhibits the expression of the antiapop-
totic proteins Bcl-xl and Bcl-2 via intracellular oxidative stress, which in turn causes mitochondrial
dysfunction. Like this, they increase Bax expression to promote apoptosis through cytochrome-C
release, which causes the formation of an apoptosome, inducing procaspase-9 and caspase-9 and -3,
resulting in apoptotic cell death. Moreover, it also induces procaspase-8 and caspase-8 and -3, and
shows a caspase-dependent apoptotic cell death. Additionally, it triggers apoptosis via induction p21
and p53.

Papillary cyst adenoma, hyperplasia of the ductal epithelial lining, intraluminal
necrotic materials, and calcifications were observed in the breast tissues of the DMBA-
administered group [114]. The DMBA-treated (2,4-Dimethoxybenzaldehyde) group that
received ulvan polysaccharides did not develop these lesions [114]. DMBA-administered
rats were treated with ulvan polysaccharides, which significantly increased the expres-
sion of the proapoptotic protein p53 and decreased the expression of the antiapoptotic
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marker Bcl-2 in the breast tissue, according to immunohistochemistry [114]. In the DMBA-
administered control, ulvan polysaccharide treatment significantly decreased the elevated
lipid peroxidation and suppressed antioxidant enzyme activity. Compared to the DMBA-
administered control, DMBA-administered rats treated with ulvan polysaccharides had
significantly decreased levels of the inflammatory cytokine’s tumour necrosis factor and
nitric oxide. Ulvan polysaccharides may have chemopreventive effects during the initial
and later stages of breast cancer. Increased apoptosis, decreased oxidative stress and in-
flammation, and a strengthened antioxidant system can exert these protective effects [114].

Ulvan polysaccharides reduce cell proliferation in Ehrlich ascites in a mouse model of
Ehrlich Ascites Carcinoma (EAC). According to researchers, some EAC cells degenerate,
while a large majority show phenotypic apoptotic signs, such as cell shrinkage, irregu-
lar shape, plasma membrane blebbing, cytoplasmic azurophilic lytic vesicles, apoptotic
bodies, and fragmented nuclei [113]. In addition, an in vitro assay showed that U. lactuca
polysaccharides significantly increased breast carcinoma cell lines’ (MCF-7) cytotoxicity
and anticancer effects as concentrations increased from 25 to 200 µg/mL [114]. Recently,
Ahmed and Ahmed found that U. lactuca polysaccharides (HCT116) were extremely toxic
to EAC cells, hepatoma cell lines (HepG2), and colon carcinoma cell lines [113].

Ulvan from the seaweed Ulva lactuca has an antiproliferative effect on rat hepatocytes
and lowers the levels of proliferating cell nuclear antigen (PCNA), suggesting that lower
proliferation is accompanied by lower DNA replication [89]. Notably, in comparison
with typical chemotherapy medications, numerous studies have found extremely low-to-
moderate cytotoxic activity [105,109,110,125]. For instance, in human gastric carcinoma
(AGS) and human colon cancer (DLD-1) cell lines, ulvan from U. prolifera showed only weak
anticancer activity, inhibiting AGS cell growth by 10–26% at doses of 200–1000 µg/mL [106].
In addition, ulvan from U. intestinalis had no cytotoxic effects on sarcoma 180 tumour cells
in vitro at concentrations of 50 to 800 g/mL but decreased tumour weight by 61 to 71% in
mice when given at 100 to 400 mg/kg [110]. However, these findings do not rule out the
possibility of using ulvan as an anticancer therapy.

When treated with ulvan, the thymus and spleen volumes increased, suggesting
that the antitumor activity of this polysaccharide resulted from its immunomodulatory
function. In conclusion, the anticancer effects of ulvan appear to be mediated by one or
more of the following mechanisms: cancer cell death, decreased cancer cell proliferation,
and stimulation of the innate immune response. Furthermore, the source and/or structure
of ulvan affect the affected pathways [106,109,111,125].

According to preliminary findings, ulvan’s anticancer efficacy is influenced by both
its molecular weight and degree of sulfation [106,109,111,125]. However, no definitive
conclusions can be drawn regarding the effect of the structure of ulvan on its anticancer
action. Owing to its broad-spectrum chemo preventative activities and low antiproliferative
activity, ulvan is unlikely to replace known chemotherapy medications. However, its broad-
spectrum chemopreventive activities mean that ulvan may be used as a combination ther-
apy (e.g., antioxidant, anticancer, and immunomodulatory) [114,126]. Ulvan has intriguing
prospective applications for cancer therapy. For example, pH-responsive polysaccha-
ride nano systems suppress angiogenesis, and selenium-enriched polysaccharide–protein
complexes are used for cancer treatment [127–129]. Ulvan bioavailability must first be
established, and whether it has an additive effect on conventional chemotherapy drugs
when used in combination therapies, before it can be used as a cotreatment or adjunct in
anticancer therapies.

5.2. Cytotoxicity Activity of Ulvan: The Key to Anticancer Activity and Drug Discovery

Cancer is caused by the abnormal development of cells and tissues in the body. Cancer
is caused by various endogenous and exogenous factors that frequently induce oxidative
DNA damage, resulting in mutations that impair cell proliferation, differentiation, and
death pathways [98]. Therefore, there is an urgent need to develop new drugs that are
both economically and environmentally beneficial. Toxicity is a major concern during
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drug development. Ulvan has the potential to be used as a supplementary, therapeutic,
and nutraceutical agent [98]. The cytotoxicity and therapeutic effects within this dose
range (6.25–50 µg/mL) must be studied. In vitro with cells or in vivo with tested animals,
cytotoxicity testing is performed [116,130].

A toxicity test must be performed and considered when establishing the stability
and effectiveness of the product. Cytotoxicity tests were performed on cells in vitro and
experimental animals in vivo [116,130]. Other toxicity experiments were performed us-
ing rat lung cells (L929), mammalian L6 cells [116,117,131], 3T3 fibroblasts, and HaCaT
keratinocytes [86]. The most popular technique for toxicity testing is the MTT assay (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) [86,132]. Toxicity studies have
used rat lung cells (L929), mammalian L6 cells, HaCaT keratinocytes, and 3T3 fibrob-
lasts [116].

Before ulvan can be developed for biomedical applications, food, and supplements,
it must have a low level of toxicity with no side effects. In a study on human L929 cells
after 72 h of exposure, ulvan was metabolically active and showed no signs of reduced
viability [116]. Several studies have examined ulvan’s anticancer activity in terms of
toxicity and cell viability, specifically for anti-breast cancer, anti-colon, and anti-cervical
cancer properties [103,115,133]. Ulvan has been tested in vitro on a variety of cancer
cell lines, including HepG2, Caco-2 (human colon cancer), LS174 (human colon cancer),
A549 (human lung carcinoma), Fem-x (malignant melanoma), K562 (chronic myelogenous
leukaemia), HEp-2 (laryngeal epidermoid carcinoma), NCI-H292 (human colon cancer),
and NCI-H292 (human colon cancer). It was also tested in rat cancer models such as diethyl-
nitrosamine (DENA, 200 mg/kg intraperitoneally) and 7,12-dimethylbenz[a]anthracene
(DMBA) [89,101,103,115].

Ulvan extraction from Ulva sp. was shown to be safe for mammalian L6 cells as a
control, with no cytotoxicity (IC50 less than 90 mg/mL) even at the highest concentra-
tions (10,000 mg/mL) in 3T3 cells [86]. Ulvan from U. ohnoi was tested on liver cells and
found to be nontoxic [134]. Ulvan had weaker cytotoxic activity in cells A459 and LS174
(IC50 > 200 mg/mL), but it was more effective in preventing moderate cytotoxicity in Fem-x
and K562 cells (IC50 74.73 and 82.24 mg/mL, respectively) [82]. Ulvan was found to have
an anticancer effect in MCF-7 and HCT-116 cells, with IC50 values ranging from 21 to
99 g/mL [115]. This appears to be due to the presence of sulfated polysaccharides with
strong ligand interactions [88]. Moreover, a study concluded that the anticancer activity
is also structural dependent and molecular weight dependent [103]. Ulvan was com-
posed of rhamnose, galactose, xylose, manose, glucose (with a mole ratio of Rha: Gal:
Xyl: Man: Glu equal to 1: 0.03: 0.07: 0.01: 0.06), uronic acid (21.5%), and sulfate con-
tent (18.9%) with a molecular weight of 347,000. This ulvan mainly consists of disac-
charide [→4)-β-D-GlcA-(1→4)-α-L-Rha3S-(1→] and another minor disaccharide β-GlcA-
(1→2)-α-Xyl and β-GlcA-(1→2)-α-Rha [103]. Ulvan suppressed hepatocellular carcinoma
(IC50 29.67 ± 2.87 µg/mL), human breast cancer (IC50 25.09 ± 1.36 µg/mL), and cervical
cancer (IC50 36.33 ± 3.84 µg/mL). Ulvan has highly effective cytotoxic properties against
hepatocellular carcinoma, human breast cancer, and cervical cancer [103]. The viability of
HepG2, MCF7, and HeLa cells is directly related to the increase in ulvan concentration [103].
Human L929 cells are metabolically active and do not lose viability after 72 h of ulvan
exposure [135].

Ulvan extracts have been shown to be safe for use as a control in mammalian L6 cells
because they do not cause cytotoxicity (IC50 less than 90 mg/mL). Ulvan is not toxic to 3T3
cells at 10,000 mg/mL [86]. According to the results of a cytotoxicity test, ulvan from U. lac-
tuca reduced cancer cell viability without affecting the viability of healthy cells [86]. Further-
more, low-molecular-weight polysaccharides (less than 5000 Da), typically oligosaccharides,
inhibit Caco-2 cell proliferation [101]. Ulvan derived from albumin nanoparticles (NPs) has
antiproliferative properties in MCF7 and HepG2 cells. Furthermore, they demonstrated the
induction of apoptosis by increasing caspase-8 and caspase-9 levels [101]. Sulfated polysac-
charides reduce oxidative stress and protect the liver from DNEA-induced damage [89].
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They also improved the health of DMBA-treated (7,12-dimethylbenz[a]anthracene) mice
by increasing apoptosis, decreasing oxidative stress and inflammation, and enhancing the
antioxidant system [114].

6. Immunomodulating Activity of Ulvan

Humans use the immune system as a defence against invading agents. The modula-
tion of the immune system is critical for disease management in humans. The importance
of the immune system stems from the need to eliminate and control pathogenic and non-
pathogenic microbes that can disrupt the body’s ability to maintain homeostasis [136]. For
example, seaweed can be used to boost the immune system. Ulva sp. has immunomodula-
tory properties, and ulvan is its active constituent. Over the last five years, various Ulva
species, most notably Ulva intestinalis, have been studied for their potential as immunomod-
ulators. U. intestinalis, for instance, possesses both biochemical and immunomodulatory
properties including in J774A macrophage cells where it increases the production of nitric
oxide (NO) and of proinflammatory cytokines such as tumour necrosis factor (TNF-α) and
interleukin-1β (IL-1β) [130]. Other studies support the in vitro findings that ulvan from
U. ohnoi has immunomodulatory properties. To quantify ulvan’s in vitro immunomod-
ulatory effect, the ability of the ulvan fraction to moderate inflammation produced by
LPS-stimulated murine macrophages RAW264.7 was measured at the molecular level. All
ulvan fractions showed no toxicity to RAW 264.7 cells at doses less than 100 g/mL for more
than 48 h. The higher molecular weight ulvan fractions of interleukin-10 and prostaglandin
E2 have anti-inflammatory properties at 100 g/mL [77]. Water-soluble sulfated polysaccha-
rides were extracted from U. intestinalis and fractionated using a DEAE Sepharose rapid
flow column to determine their molecular characteristics and macrophage cell-stimulating
activity [137]. U. ohnoi’s immunomodulatory effects on Senegalese soles have also been
studied in the fields of nutraceuticals and aquaculture (Solea senegalensis).) [134]. Further-
more, ulvan extracted from U. ohnoi to obtain fractions of various molecular weights (7,
9, 13, 21, and 209 kDa) demonstrated immunomodulatory activity [77]. Ulvan extracted
from U. ohnoi displayed multiple immune system signalling pathways that were activated
in different tissues as a result of intraperiotnean injection of ulvan into Senegalese sole
juveniles, according to gene expression profiles [134]. Furthermore, ulvan modulates im-
mune system pathways after challenge, and Phdp is a potential candidate nutraceutical
and/or vaccine adjuvant for aquaculture [134]. In S. senegalensis macrophages, ulvan has a
stimulatory effect that is enhanced when delivered via nanoparticles. Ulvan nanoparticles
have the potential to act as macrophage activators and an immune stimulant in marine
fish feed [138]. Dietary ulvan supplementation from U. clathrata increases the immune
response in Nile tilapia [139]. The ulvan diet provides numerous health benefits against
F. columnare by increasing antioxidant capacity, improving growth rate, innate–adaptive
defence mechanisms, and modulating immune-antioxidant-related gene expression. Ulvan
influences the innate–adaptive defence mechanism and expression of antioxidant genes
in fish [140]. Supplementation with green macroalgae (Ulva intestinalis) increases the
expression of immune-related genes such as lysozyme (Lyz) and interleukin 1 beta (IL-1β).
Gutweed treatment significantly increased the expression of antioxidant-related genes
(SOD and CAT) and growth hormone (GH) and insulin-like growth factor-I (IGF-1). Fur-
thermore, dietary U. intestinalis improved immunity, and the same effects were observed on
antioxidant and growth-related gene expression in zebrafish [141]. The Molecular weight
of ulvan influences the inflammatory response of murine macrophages in vitro [142].

7. Pharmacokinetics: The Prevailing Study of Drug Discovery

Orally administered molecules with pharmacological activity or as nutrients must
be released from the drug delivery system, absorbed from the gastrointestinal mucosal
epithelium, delivered to the target cell or tissue after entering systemic circulation, and
finally excreted from the body, either intact or in metabolite form. As they have β (1 β 4)
connections, humans cannot digest ulvan polysaccharides from U. lactuca. Ulvan passes
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through the small intestine unmetabolized and is partially fermented by colon bacteria
into short-chain fatty acids (SCFA) [143–145]. Ulvan has been shown to be beneficial to
humans due to its immunostimulatory properties and ability to alter the human intestine
microbiome. Ulvan is a soluble dietary fiber. Owing to their high inherent viscosity,
aqueous media can slow digestion, reduce the bioavailability of minerals and other critical
elements by chelation, and increase the quantity of Bifidobacterium and Lactobacillus in
the caecum and large intestine, respectively. According to published data, ulvan is not
destroyed in the human digestive system but is selectively absorbed in certain organs and
tissues, with no obvious signs of harm to normal cells. The literature contains no data on
absorption, distribution, metabolism, or excretion; however, cytotoxicity has been reported.
Several active carbohydrate enzymes have been discovered that can hydrolyse or convert
ulvan into oligomers [143–145]. More pharmacokinetics studies are required to conclude
ulvan as an anticancer drug.

8. Conclusions and Future Perspectives

Ulvan, a polysaccharide derived from the green seaweed of the Ulva family, is a natural fiber
with numerous health benefits. Ulvan has been studied in vitro and in vivo for its antioxidant,
anti-inflammatory, antibacterial, anticancer, antiviral, and cytotoxic properties. Ulvan can
be used as a polymer in pharmaceutical formulations to create smart films for bone-tissue
engineering. However, the integrity of the ulvan structure must be preserved. Ulvan exhibited
potent anticancer and immunomodulatory properties, among other biological functions.

Ulvan inhibits the abnormal proliferation of tumour cells while repairing cellular atypia
and immune system damage caused by tumours. Owing to its potentially high medicinal value,
ulvan merits further development as a biomaterial for human medical applications. However,
its bioavailability must be investigated before it can be used for therapy. There is also a need to
characterise the refining process. Several studies have investigated the biological activities and
health benefits of ulvan. Therefore, elucidating the precise mechanism of action in animal models
should be a priority in future studies. The distinct structure of ulvan meets the requirements
of specific anticancer activities and processes for targeted applications. Furthermore, ulvan
can be chemically modified to attach to functional groups and enhance its anticancer activity.
Well-designed clinical trials are required to assess efficacy and safety in humans. Similarly,
extensive clinical investigations of the pharmacokinetics, safety, and health benefits are required.
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