
Citation: Li, L.; Cao, S.; Zhu, B.; Yao,

Z.; Zhu, B.; Qin, Y.; Jiang, J. Efficient

Degradation of Alginate and

Preparation of Alginate

Oligosaccharides by a Novel

Biofunctional Alginate Lyase with

High Activity and Excellent

Thermophilic Features. Mar. Drugs

2023, 21, 180. https://doi.org/

10.3390/md21030180

Academic Editor: Azizur Rahman

Received: 26 February 2023

Revised: 11 March 2023

Accepted: 13 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

marine drugs 

Article

Efficient Degradation of Alginate and Preparation of Alginate
Oligosaccharides by a Novel Biofunctional Alginate Lyase with
High Activity and Excellent Thermophilic Features
Li Li 1, Shengsheng Cao 1, Benwei Zhu 1,* , Zhong Yao 1, Bo Zhu 2, Yimin Qin 2 and Jinju Jiang 2

1 College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
2 Key Laboratory of Seaweed Fertilizers, Ministry of Agriculture and Rural Affairs, Qingdao Brightmoon

Seaweed Group Co., Ltd., Qingdao 266400, China
* Correspondence: zhubenwei@njtech.edu.cn

Abstract: The enzymatic degradation of seaweed polysaccharides is gaining interest for its potential
in the production of functional oligosaccharides and fermentable sugars. Herein, a novel alginate
lyase, AlyRm3, was cloned from a marine strain, Rhodothermus marinus DSM 4252. The AlyRm3
showed optimal activity (37,315.08 U/mg) at 70 ◦C and pH 8.0, with the sodium alginate used as
a substrate. Noticeably, AlyRm3 was stable at 65 ◦C and also exhibited 30% of maximal activity at
90 ◦C. These results indicated that AlyRm3 is a thermophilic alginate lyase that efficiently degrades
alginate at high industrial temperatures (>60 ◦C). The FPLC and ESI−MS analyses suggested that
AlyRm3 primarily released disaccharides and trisaccharides from the alginate, polyM, and polyG
in an endolytic manner. In the saccharification process of sodium alginate (0.5%, w/v), the AlyRm3
yielded numerous reducing sugars (1.73 g/L) after 2 h of reaction. These results indicated that
AlyRm3 has a high enzymatic capacity for saccharifying the alginate, and could be used to saccharify
the alginate biomass before the main fermentation process for biofuels. These properties make
AlyRm3 a valuable candidate for both fundamental research and industrial applications.

Keywords: alginate; alginate lyase; high catalytic activity; thermal stability; biofuels

1. Introduction

Alginate is a linear polysaccharide composed by (1→4)-linked β-D-mannuronic acid
(M) and α-L-guluronic acid (G) residues [1]. It linked these units in three kinds of different
blocks, namely poly β-D-mannuronic acid (polyM), poly α-L-guluronic acid (polyG), and
the heteropolymer (polyMG). Alginate is widely found in brown algae, and its content is
approximately 30–60% dry weight. In addition, alginate also exists in some red algae and
can be produced by several bacteria, such as the genera Azotobacter and Pseudomonas [2].
The abundance of these species has made alginate an attractive and important source of
renewable biomass for biofuel production [3]. Today, alginate is mainly utilized for biomedi-
cal (e.g., 3D-hydrogels and 2D membranes for soft tissue regeneration), environmental (e.g.,
sponges for water purification), and food (e.g., rheological additives) applications [4–8].
Thus, the enzymatic degradation of alginate is of significant biotechnological importance.

Alginate lyases discovered to date have been isolated, cloned, and characterized
from marine and/or soil bacteria and fungi, Chlorella viruses, marine algae, and marine
invertebrates [9]. In the Carbohydrate-Active enZYmes database (http://www.cazy.org/,
accessed date: 10 September 2022), alginate lyases belong to fourteen PL families: PL5, 6, 7,
8, 14, 15, 17, 18, 31, 32, 34, 36, 39, and 41 [10], implying substantial structural diversity of
catalytic sites [11]. Most alginate lyases show different substrate specificity for four different
glycosidic bonds (M-M, G-G, M-G, and G-M) in alginate molecules. As per this feature,
alginate lyases can be categorized into three classes: polyM-specific (EC 4.2.2.3), polyG-
specific (EC 4.2.2.11), and bifunctional lyases (EC 4.2.2.-) [10]. Alternatively, alginate lyases
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can also be divided into endo- and exo-type lyases based on their action patterns. Endo-
type lyases degrade the inside-chain glycosidic bonds to create alginate oligosaccharides
(AOS) with various DPs, while exo-type lyases can only produce monomers or dimers by
gradual degradation from the end of alginate polymers [12].

Concerns about bioethanol production due to its impact on the food chain, in recent
years, have driven the search for more sustainable production of bioethanol based on
non-food biomass, such as lignocellulosic or algal biomass. Brown algae are considered a
renewable biomass for biofuel ethanol production due to their high growth rate and high
sugar content [13]. The collection of brown algal biomass is relatively easy due to the lack of
lignin. Bioethanol from algal biomass is receiving growing interest in relation to the search
for more sustainable processes of renewable energy production [14]. The realization of con-
verting alginate into fuels requires two processes: (1) alginates are depolymerized efficiently
into AOS; (2) metabolically engineered microorganisms assimilate alginate degradation
products into biofuels [15]. Alginate lyases from marine extremophiles are among the
most promising biocatalysts due to their resistance to temperature, salt concentration, and
contaminants. In the process of alginate lyase catalysis, the catalytic reaction can be carried
out at higher temperatures due to the existence of thermal stability, and the viscosity of the
reaction mixture is reduced and the enzymatic activity is improved, thereby promoting the
conversion of the substrate [14]. Therefore, alginate lyase with good thermal stability is of
great value for the enzymatic production of alginate oligosaccharides. Magnus Ø. Arntzen
et al. have described a novel, thermostable exolytic alginate lyase (AMOR_PL17A), whose
gene was retrieved from a metagenomic data set collected from the Arctic Mid-Ocean Ridge
(AMOR). They showed that the enzyme has a broad pH optimum in the region of pH 5.0
to 6.0, and it was stable for 24 h at 60 ◦C. This enzyme is promising for the production of
biofuels since it afforded high yields of alginate degradation [16].

In this study, we have cloned and expressed a novel, thermostable exolytic alginate
lyase-AlyRm3 from Rhodothermus marinus DSM 4252, which can degrade alginate into
alginate oligosaccharides with high efficiency. The biochemical characterization and action
pattern of AlyRm3 were investigated. Compared to other alginate lyases, AlyRm3 exhibited
excellent high thermal stability and high capability for saccharifying the sodium alginate,
releasing high amounts of di-, tri-, and tetra-saccharides from sodium alginate. This study
is expected to provide efficient enzymes for the degradation of alginate and the production
of biofuels from algal crops.

2. Results
2.1. Sequence Analysis

The open reading frame (ORF) of AlyRm3 (GenBank accession. CP001807) consists of a
2613 bp gene encoding 870 amino acids with a theoretical molecular weight of 96.62 kDa and
a 16-amino acid signal peptide at the N-terminus. As shown in Figure S1a, the full-length
enzyme contains two domains: a Hepar_II_III domain (His397-Thr585, pfam07940) and an
FlgD-ig domain (Ser793-Ala861, pfam13860). The PL39 alginate lyase Dp0100 (GenBank
accession no. MK628724.1) from Defluviitalea phaphyphila suggests that the catalytic site of
AlyRm3 is a block of sequence similar to the Hepar_II_III region of the heparinase II/III
enzymes [17]. Transmembrane helices have been predicted in AlyRm3 to adopt the topology
shown in Figure S1b. The phylogenetic tree was constructed and it exhibited AlyRm3
clusters with several alginate lyases of the PL39 family (Figure S1c).

As the sequence alignments are shown in Figure S2, AlyRm3 has the highest sequence
identity (40%) with Dp0100 [17]. Additionally, AlyRm3 contained the conserved regions
such as “ADNH”, “PRPHNH”, “RYLLF”, and “YREG”, which were involved in substrate
binding and catalytic activity. Two key residues Y244 and H405 in the catalytic mechanism
predicted to be involved in the catalytic process based on sequence alignment were also
conserved in PL39 alginate lyases.
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2.2. Expression and Purification of AlyRm3

After heterologously expressed and purified by Ni-NTA Sepharose affinity chro-
matography, the recombinant AlyRm3 was obtained and then analyzed by SDS-PAGE. As
shown in Figure 1, the band of the target protein AlyRm3 is located between 70 kDa and
100 kDa, which is consistent with the predicted molecular mass of 96.62 kDa. The alginate
lyase activity of AlyRm3 was verified with an enzymatic activity assay, demonstrating that
AlyRm3 is an alginate lyase.
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Figure 1. SDS-PAGE analysis of the molecular mass and purification effect of AlyRm3. Lane M
protein: restrained marker (Vazyme, Nanjing, China); lane 1: induced cell lysate of E. coli-pET21a-
AlyRm3; lane 2: renatured purified AlyRm3; lane 3: binding buffer during purification; lane 4: wash
buffer during purification; lane 5: elution buffer during purification.

Currently, in the CAZY database, Dp0100, belonging to the PL39 family, is the only
enzyme that does not contain an alginate lyase domain but still has alginate lyase activity. Ji
et al. constructed a series of Dp0100 cutting mutants and demonstrated that the combination
of the DUF4962 domain and Hepar_II_III region were necessary for the alginate lyase
activity of Dp0100 [17]. Thus, it can speculate reasonably that the Hepar_II_III domain
plays a key role in AlyRm3 to require for alginate lyase activity. AlyRm3 is a novel alginate
lyase with no alginate lyase domain.

Three different substrates (0.5% sodium alginate, 0.5% polyM, and 0.5% polyG) were
applied to determine the activities of AlyRm3. As shown in Table 1, the AlyRm3 exhib-
ited higher activities towards sodium alginate (37,315.08 U/mg) than towards polyM
(28,814.31 U/mg), and polyG (21,329.21 U/mg). Thus, AlyRm3 is a new PL39 alginate
lyase with a preference for sodium alginate, and can degrade polyG and polyM with
the same activity. Furthermore, the Km values of AlyRm3 with sodium alginate, polyM,
and polyG as substrates were 15.6738, 7.3264, and 5.3961 mM, respectively. Additionally,
the Kcat values of AlyRm3 toward alginate, polyM, and polyG were 141.69, 2323.78, and
212.07 s−1, respectively. AlyRm3 is considered to have the strongest affinity for the G-G
blocks. It suggested that AlyRm3 exhibits a higher catalytic efficiency towards M-blocks
than that towards G-blocks and MG-blocks. Although the activities of AlyRm3 on polyG
and polyM are only half of that on sodium alginate, the catalytic efficiency is higher. The
characteristics of some alginate lyases with high activity are summarized (Table S1).
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Table 1. Substrate specificity and kinetics of AlyRm3.

Substrate Sodium Alginate PolyM PolyG

Activity (U/mg) 37,315.08 28,814.31 21,329.21
Km(mM) 15.6738 7.3264 5.3961

Vmax (mol/s) 0.3285 0.5446 0.0497
kcat (s−1) 141.69 2323.78 212.07

kcat/Km (s−1/mM) 89.4288 317.1783 39.3006

2.3. Biochemical Characterization of AlyRm3

AlyRm3 exhibits surprising thermophilic features, showing maximum activity at
70 ◦C (Figure 2a) and retaining almost all of its maximum activity after 1 h incubation
at 60 ◦C (Figure 2b). Moreover, enzymes with high-temperature stability and high activity
are rarely reported. To highlight the potential superiority of AlyRm3 application under
high-temperature industrial conditions, several thermophilic enzymes were compared
(Table S2). So far, there are few studies on the thermostability mechanism of alginate lyase.
According to previous reports, the thermostability of rNitAly is related to the disulfide bond
formed between Cys80 and Cys232 [18]. The thermal stability of AlgC-PL7 from Cobetia sp.
NAP1 may be related to the α-helix [19]. The thermal stability of AlyM may be related to
the compactness of the enzyme [20]. The thermostability of AMOR-PL17A may be related
to the more prolines, arginines, phenylalanines, and glutamines in the protein sequence and
have a more overall positive charge [16]. Based on the analysis of the protein sequence and
secondary structure of AlyRm3, it is speculated that the reason for the thermostability of
AlyRm3 may be that its α-helix supports the rigid structure of the protein.
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Figure 2. Biochemical characterization of AlyRm3. (a) The optimal temperature of AlyRm3. (b) The
temperature stability of AlyRm3. All reactions in (a,b) were carried out at pH 8.0 (Tris-HCl buffer).
(c) The optimal pH of AlyRm3. (d) The pH stability of AlyRm3.

The optimal pH of AlyRm3 is 8.0 (Tris-HCl buffer) (Figure 2c), but its activity decreased
sharply in the acidic and strongly alkaline range. AlyRm3 retained almost all of its maximal
activities after being incubated at the same pH for 24 h (Figure 2d).
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2.4. Effect of Metal Ions on AlyRm3

A study on the effect of metal ions on the enzymatic activity of AlyRm3 has also been
completed (Figure 3a). K+, Ca2+, Mg2+, Co2+, and Fe3+ can significantly activate the activity
of AlyRm3, while Zn2+ and Cu2+ inhibit the activity of AlyRm3. In summary, AlyRm3
showed good tolerance to metal ions compared with other alginate lyases.
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In order to adapt to the high sodium environment of the ocean, many alginate lyases
possess salt tolerance and/or salt activation properties. For example, rTsAly7A derived
from Thalassomonas sp. LD5 has shown the highest activity at 100 mM NaCl and was
twice as active as it was at 0m NaCl [21]. One study has shown that the salt activation
mechanism of AlyC3 is to preserve a dimeric quaternary structure. Salt activation of
AlyPM from Pseudoalteromonas sp. SM0524 is due to the enhanced affinity of the substrate
for NaCl [22]. The reason for the salt-activating properties of AlgM4 may be that NaCl
alters its secondary structure, eventually leading to substrate affinity and resistance to
thermal denaturation [23]. As shown in Figure 3b, recombinant AlyRm3 showed weak
enzymatic activity at 0 M NaCl. As the NaCl concentration increased, the enzymatic activity
showed first a sharp increase (0–0.2 M), and showed the highest activity at 0.4 M NaCl.
Finally, when the concentration of NaCl > 0.7 M, the enzymatic activity started to decrease
slowly. The above experimental data demonstrated that AlyRm3 is a novel salt-activated
alginate lyase. The optimum NaCl concentration is 0.4 M. This result is consistent with
the optimum growth environment of Rhodothermus marinus DSM 4252. More studies are
required to explore the salt activation mechanism of AlyRm3.

2.5. Products Distribution and Action Pattern of AlyRm3

Degradation products of AlyRm3 at various times (0–72 h) were analyzed by Fast
protein liquid chromatography (FPLC). As shown in Figure 4a–c, AlyRm3 could degrade
the three substrates into tetrasaccharide, trisaccharide, and disaccharide during the initial
stage of the reaction. However, tetrasaccharide was degraded into trisaccharide and
disaccharide after incubation for 72 h.

ESI-MS was used to analyze the composition of the end products (Figure 4d,e). When
sodium alginate, polyM, and polyG are used as substrates, oligomers of trisaccharide and
disaccharide (Signals of 351.05 m/z [∆DP2-H]−, and 527.08 m/z [∆DP3-H]−) are released
as end products. We further confirmed the action mode of AlyRm3 by studying the
degradation products (48 h) of AlyRm3 on sodium D-mannuronic acid with different
degrees of polymerization (DP2-7) using FPLC. The results showed that AlyRm3 could
degrade oligosaccharides (DP > 2) into trisaccharides and disaccharides (Figure 5). As
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can be seen from the above results, AlyRm3 can efficiently degrade three substrates into
trisaccharide and disaccharide with endo mode.
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2.6. Molecular Modeling

The three-dimensional model of AlyRm3 was constructed with PHYRE2 based on the
homologous structure of Dp0100 (PDB: 6JPN) of Defluviitalea phaphyphila. The sequence
identity between AlyRm3 and Dp0100 was high (40%). Correspondingly, the protein model
was successfully constructed with a confidence level of 100%. As shown in Figure 6a, the
overall structure of AlyRm3 can be divided into three domains. The N-terminal structural
domain is predominantly helical in structure, formed by an incomplete (α/α)6 toroid
(Figure 6b). The central structural domain consists of 16 antiparallel β-strands arranged
in two β-sheets with a twisted α-helix. (Figure 6c). The C-terminal structural domain
is a typical β-sandwich that consists of two anti-parallel β-sheets including 12 β-strands
(Figure 6d). The two faces of the central structural domain are immediately adjacent to the
N-terminal structural domain and C-terminal structural domain, respectively, and form a
four-layered β-sheet stack with the C-terminal structural domain (Figure 6a).

Analysis of the structure of the complex with ∆MG shows that the oligosaccharide
was bound in a long cleft formed between the N-terminal domain and the central domain
(Figure 7a). One side of the substrate binding groove is made up of the loop between β3
and β4 (Figure 7b). The other side is the loop between β5 and α14. We note that the open
ends of the substrate-binding cleft give it a grooved appearance, so that the enzyme can
accommodate longer chains of oligosaccharide molecules more easily. (Figure 7a). Crucial
interactions between the AlyRm3 and the oligosaccharide involve the recognition of the C5
carboxyl moiety on each of the uronic acid residues, which alternately direct to the opposite
side of the substrate-binding site (R438, R437, T442, D406, H405, and Y244) (Figure 7c). In
particular, H405 and Y244 act as the catalytic base and catalytic acid, respectively.
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Figure 7. The substrate-binding groove of AlyRm3. (a) Surface representation of the binding site of ∆MG
in AlyRm3 (indicated by the stick, drawn in blue). (b) Schematic representation of the binding site in ∆MG
(shown as sticks, drawn in yellow) and surrounding secondary structures (colored as in Figure 6). (c) Key
residues (drawn in green) interacting with the ∆MG (shown as sticks and drawn in yellow).

2.7. Saccharification of Alginate by AlyRm3

Saccharification sodium alginate using AlyRm3 was used to evaluate the potential
of industrial preparation of alginate oligosaccharides by AlyRm3 (Figure 8). During the
reaction, the viscosity of sodium alginate decreased sharply within the first 60 min and then
maintained at about 75 mPa·s (Figure 8a). The concentration of reducing sugar reached its
maximum when the reaction had been going on for two hours and then remained constant
(Figure 8b). In addition, by analyzing the products of the saccharification experiments, the
products after 6 h were mainly disaccharides, trisaccharides, and tetrasaccharides, and the
content of the three oligosaccharides was basically the same (Figure 8c,d). It demonstrated
that AlyRm3 is a powerful tool for the industrial production of alginate oligosaccharides.
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the AlyRm3 degradation reaction. (c) FPLC analysis was performed on the degradation products of
saccharified alginate for 12 h. (d) ESI−MS analysis was performed on the degradation products of
saccharified alginate for 12 h.

3. Discussion

Extreme enzymes, which are enzymes produced by microorganisms living in extreme
environments, have attracted a lot of attention in recent years, due to their wide range of
applications in various fields such as the food and pharmaceutical industries, bioenergy
(ethanol, hydrogen), and bioremediation of contaminated areas. As marine extreme en-
zymes have adapted themselves to harsh environmental conditions, they can retain activity
in many typical industrial environments, such as extreme temperatures and pH, high salt
concentrations, and in the presence of metal ions and organic solvents. It is foreseeable
that marine extreme enzymes will become important biological tools for various industrial
fields in the future.

Due to the great diversity of marine microorganisms, extreme alginate lyases have not
been fully explored to date. Therefore, the identification of novel enzyme-producing species
and novel extreme alginate lyases is a key issue for the utilization of alginate lyases in
modern biotechnology. In this study, we report on a novel thermophilic alginate lyase and
explain its degradation mode for efficient production of alginate oligosaccharides. AlyRm3
is the second enzyme in the PL39 family to be reported and has the highest homology of
40% with Dp0100. AlyRm3 has a typical PL39 family (α/α)n barrel + antiparallel β-fold
structure. We predicted that the conserved motifs “ADNH”, “PRPHNH”, “RYLLF”, and
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“YREG” may play a catalytic and substrate binding role in the PL39 family alginate lyases.
The AlyRm3 showed optimal activity at 70 ◦C and pH 8.0. Noticeably, AlyRm3 was stable at
65 ◦C and also showed some activity at 90 ◦C. Compared with other thermostable alginate
lyases that have been characterized so far (Table S2), the optimum temperature of AlyRm3
is comparable to that of rNitAly. However, AlyRm3 is second only to AMOR_PL17A, and
far superior to other lyases in terms of temperature stability. More remarkably, AlyRM3
showed an enzymatic activity of up to 37,315.08 U/mg against sodium alginate. Among
the characterized alginate lyases that have been introduced as having a high activity
(Table S1), AlyRm3 has an enzymatic activity several times or even tens of times higher
than other alginate lyases for the same definition of activity. AlyRm3 shows little activity in
the absence of Na+. Therefore, AlyRm3 is a typical Na+ activating enzyme. AlyRm3 has a
good tolerance to metal ions, and many common metal ions, such as K+, Ca2+, Mg2+, Co2+,
and Fe3+, can promote the activity of AlyRm3. To the best of our knowledge, AlyRm3 is
the most active thermophilic type of alginate lyase found to date and maintains its activity
in the presence of a variety of metal ions, making it advantageous as an industrial enzyme.
A medium-scale experiment of saccharification of sodium alginate using AlyRm3 yielded
alginate oligosaccharides at a concentration of 1.73 g/L in just two hours of reaction time.
The results of the saccharification experiments further demonstrated the industrial value of
AlyRm3 for the production of alginate oligosaccharides.

In addition, AlyRm3 uses the endo-mode to degrade alginate. AlyRm3 preferentially
degrades alginate but also shows high polyM (28,814.31 U/mg) and polyG (21,329.21 U/mg)
degradation activity compared to other alginate lyases. The enzyme kinetic constants (Kcat,
Km, and Vmax) of AlyRm3 demonstrated that this lyase has the strongest affinity for the
G-blocks and the highest catalytic efficiency for the M-blocks. Early in the reaction, the
three substrates can be degraded into tetrasaccharides, trisaccharides, and disaccharides,
and as the progress of the reaction, the tetrasaccharides can be degraded into trisaccharides
and disaccharides. Based on the homology model and sequence alignment, we can observe
that the substrate-binding cleft is open at both ends, such that longer chain polysaccharides
can be accommodated by the enzyme, which we speculate may be one of the factors
contributing to its high enzymatic activity. The excellent thermophilicity and temperature
stability of AlyRm3 are speculated to be due to the structural rigidity supported by the
α-helix in its structure. A more in-depth study of AlyRm3, especially the structural basis,
will provide a solid foundation for the analysis and understanding of the thermo-stable
mechanism. With the increasing demand for alginate oligosaccharides in the market,
alginate lyase with high stability and high enzymatic activity will be the preferred tool for
the industrial production of alginate oligosaccharides. In summary, the excellent enzymatic
properties of AlyRm3 make it a potentially promising biological tool that is well-suited for
tailoring alginate oligosaccharides.

4. Experimental Materials and Methods
4.1. Sequence Analysis

The structural domain of AlyRm3 was analyzed using CD-Search Results in NCBI
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi accessed date: 23 November 2022).
Multiple sequence alignment of the full sequence of AlyRm3 with the already character-
ized alginate lyases was performed using Vector NTI. A phylogenetic tree of related pro-
tein sequences from PL 6, 17, and 39 families was constructed using the MEGA 6.0 soft-
ware. According to the structure of alginate lyase Dp0100 from Defluviitalea phaphyphila
(PDB: 6JPN), the three-dimensional structure of AlyRm3 was constructed through SWISS-
MODEL (https://swissmodel.expasy.org/ accessed date: 23 November 2022). All structures
appearing in this paper were visualized by the PyMOL software (PyMOL2.5, Schrödinger).

4.2. Cloning, Heterologous Expression, and Purification of AlyRm3

The gene AlyRm3 (GenBank accession. CP001807) was synthesized by GENEWIZ
(Suzhou, China), based on the predicted sequence of the alginate lyase gene from Rhodother-

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://swissmodel.expasy.org/
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mus marinus DSM 4252. This gene was ligated into the pET-21a (+) vector. The synthetic
plasmid was obtained and transformed into receptor cells E. coli BL21 (DE3). The recom-
binant strain was grown in Luria-Bertani (LB) including 100 µg/mL ampicillin and was
incubated at 37 ◦C for 10–12 h, and it induced expression of the AlyRm3 at 22 ◦C for
36–48 h after the addition of 0.1 mM IPTG. After protein expression was completed, the
AlyRm3 expressed by the bacterium was collected and the crude enzyme solution obtained
was purified by Ni-NTA sepharose column (GE Healthcare, Uppsala, Sweden) and Amicon
Ultra-15mL, 50 kDa Centrifugal Filter Unit (Millipore, Shanghai, China) [24]. SDS-PAGE
was applied to analyze the purity of the recombinant AlyRm3. Furthermore, the Coomassie
brilliant blue G-250 (Beyotime Institute of Biotechnology, Nantong, China) was used to test
the concentration of proteins.

4.3. Substrate Specificity and Enzyme Kinetic Constants

The activity of AlyRm3 was investigated using the ultraviolet absorption method
described by Cao [25]. The 10-fold dilution of 50 µL purified proteins was incubated with
150 µL 0.5% (w/v) of three substrates dissolved in 10 mM Tris-HCl buffer pH 8.0 at 27 ◦C
for 15 min. These three substrates are the sodium alginate from Macrocystis pyrifera which
was purchased from Sigma-Aldrich (M/G ratio 77/23, viscosity ≥ 2000 Cp, St. Louis, MO,
USA), PolyM and polyG (purity: about 95%, M/G ratio: 97/3 and 3/97, respectively),
which were purchased from Qingdao BZ Oligo Biotech Co., Ltd. (Qingdao, China). This
paper defined one-unit enzymatic activity as the amount of enzyme required to increase
the absorbance at 235 nm (extinction coefficient: 6150 M−1·cm−1) by 0.1 per min. The
kinetic constants of AlyRm3 towards three substrates were investigated by measuring the
degradation activity of AlyRM3 on different concentrations (0.2–10 mg/mL) of substrates.
The enzyme kinetic constants (Kcat, Km, and Vmax values) of AlyRm3 were calculated as
reported by Zhu et al. [26].

4.4. Biochemical Characterization of AlyRm3

To determine the optimal temperature and the thermal stability of AlyRm3, reactions
were carried out at 35–90 ◦C. Additionally, the recombinant AlyRm3 was incubated at
65–80 ◦C for 0–60 min and the remaining enzymatic activity was tested to investigate the
thermostability of the enzyme. The effect of pH on the enzymatic activity of AlyRm3 was
investigated by testing the activity of AlyRm3 present in different pH buffers (50 mM
Na2HPO4-citric acid buffer (pH 3.0–5.0), 50 mM NaH2PO4-Na2HPO4 (pH 6.0–8.0), 50 mM
Tris-HCl (pH 8.0–9.0), 50 mM glycine-NaOH (pH 9.0–10.0), and 50 mM Na2HPO4-NaOH
(pH 11.0–12.0)). Moreover, the purified AlyRm3 was incubated with different pH buffers
at 4 ◦C for 24 h, and the pH stability of the AlyRm3 was characterized by measuring the
residual activity of the AlyRm3 after incubation. Furthermore, to investigate the effects
of metal ions on the enzymatic activities of AlyRm3, the purified AlyRm3 was mixed
with 0.5% sodium alginate at a ratio of 1:3, and various metal ions at a final concentration
of 1mM were added to the reaction system. The reaction was performed at 70 ◦C for
30 min, and the residual activity of AlyRm3 was measured. The reaction system without
adding any metal ions was used as the control group (100%). To ensure the accuracy of the
experiments, all experiments were performed with three replicates.

4.5. Products Distribution and Action Pattern Analysis of AlyRm3

To determine the smallest substrate of AlyRm3, AlyRm3, and OligoM (10 mg/mL) with
different DPs (DP2–7) purchased from Qingdao BZ Oligo Biotech Co., Ltd. (Qingdao, China)
were mixed in 10 mM Tris-HCl buffer (pH 8.0) and reacted at 70 ◦C for 24 h. In addition, to
explore the action pattern and degradation products of AlyRm3, 100 µL purified AlyRm3
(0.9058 mg/mL) was incubated with 300 µL 0.5% (w/v) three substrates (sodium alginate,
polyM, and polyG) at 70 ◦C for 0–72 h and sampled after 0, 5, 15, 30 min, 1, 2, 6, 12, 24,
48 h, and 72 h, respectively. The degradation products of AlyRm3 were analyzed by using
fast protein liquid chromatography equipped with Superdex peptide 10/300 GE Column
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(GE Health), as reported by Li et al. [27]. In addition, ESI−MS analyzed the end products of
AlyRm3 in a positive-ion mode using the following settings, as previously reported [27].

4.6. Saccharification of Alginate by AlyRm3

To determine the saccharification potential of AlyRm3 on alginate, the purified enzyme
(0.2981 mg/mL) was added to the buffer (10 mM Tris-HCl, 300 mM NaCl, pH 8.0) at a
ratio of 1% (v/v), followed by sodium alginate solid particles at a ratio of 0.5% (w/v).
The saccharification reaction was carried out at 200 rpm and 70 ◦C. Samples were taken
respectively after reaction for 30, 40, 50, 60, 80, and 120 min, and the viscosity of the samples
was measured with SNB-3 digital viscometer (Shjingmi, Shanghai, China). Samples were
taken after reaction for 1, 2, 3, 4, 6, 8, 10, and 12 h, respectively, and the reducing sugar
content of the samples was measured through 3,5-dinitrosalicylic acid (DNS) colorimetry
using glucose as the standard [28].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21030180/s1. The sequence analysis of AlyRm3 is shown in
Figures S1 and S2. The summary of some alginate lyases with high activity is shown in Table S1. The
summary of some alginate lyases with thermophilic features is shown in Table S2. References [29–40]
are cited in the supplementary materials.
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