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Abstract: Mangrove actinomycetia have been proven to be one of the promising sources for discov-
ering novel bioactive natural products. Quinomycins K (1) and L (2), two rare quinomycin-type
octadepsipeptides without intra-peptide disulfide or thioacetal bridges, were investigated from
the Maowei Sea mangrove-derived Streptomyces sp. B475. Their chemical structures, including
the absolute configurations of their amino acids, were elucidated by a combination of NMR and
tandem MS analysis, electronic circular dichroism (ECD) calculation, advanced Marfey’s method,
and further unequivocally confirmed by the first total synthesis. The two compounds displayed no
potent antibacterial activity against 37 bacterial pathogens and had no significant cytotoxic activity
against H460 lung cancer cells.

Keywords: Maowei Sea; Streptomyces sp.; quinomycin; octadepsipeptide; total synthesis

1. Introduction

As a unique ecosystem with extreme conditions and high biodiversity, mangrove
is becoming a rich source for discovering new actinomycetia and novel pharmaceutical
compounds. A multitude of bioactive compounds, including the promising compounds
salinosporamide A, xiamycins, and indolocarbazoles, have been isolated from mangrove
actinomycetia [1–4]. The Beibu Gulf is located in the northwestern continental shelf area of
the South China Sea, from the Leizhou Peninsula, Qiongzhou Strait, and Hainan Island to
Vietnam and northward to Guangxi. The mangrove species in this region are very rich, and
mangrove in the region is ranked as the second-largest area and accounts for more than
37% of the total mangrove area in China [5]. Recently, our group has discovered many new
actinomycetia taxa along with novel bioactive compounds from mangroves in the Beibu
Gulf, such as the Maowei Sea [6,7], Beilun Estuary [8–10], and Leizhou Peninsula [11].

In our previous study, five putative new quinomycin analogues were found by
MS/MS-based molecular networking analysis [7]. However, due to a limited amount
of sample, only two compounds, quinomycins K (1) and L (2), were obtained (1, 3.2 mg; 2,
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1.8 mg) (Figure 1). Quinomycins are cyclic octadepsipeptides that belong to the quinoxaline
family of antibiotics, exhibiting significant antibacterial and antitumor activities due to the
bisintercalation of the two quinoxaline rings into DNA [12]. The isolation and synthesis of
quinomycins, such as echinomycin and triostin A, have attracted tremendous attention due
to their fascinating skeletons and a wide range of biological activities [13–15]. In this paper,
we present the isolation and complete structural elucidation of quinomycins K (1) and L (2)
based on the combination of spectroscopic analyses, ECD calculations, Marfey’s methods,
and the first total synthesis.
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Figure 1. The structures of quinomycins K (1) and L (2), and known compounds echinomycin and
triostin A.

2. Results and Discussion

Quinomycin K (1) was obtained as a white amorphous powder. Its molecular formula
was deduced as C52H68N12O12 by HR-ESI-MS measurement (m/z 1053.5165 [M + H]+,
calcd for C52H69N12O12, 1053.5158), indicating 24 degrees of unsaturation. The IR spectrum
suggested the presence of amine or hydroxy (3375 or 3303 cm−1), ester carbonyl (1742 cm−1),
amide carbonyl (1644 cm−1), and phenyl (1517 and 1459 cm−1) functionalities. The UV
maximum absorption wavelength at 242 nm and 317 nm in methanol indicated the presence
of a quinoxaline-2-carboxylic acid chromophore [16,17].

The 1H NMR data (Table 1) of 1 showed the presence of two exchangeable NH protons
(δH 8.70, 8.24), the characteristic signal of quinoxaline-2-carboxylic acid (δH 9.53, 7.97–8.02,
8.19–8.22), two methylamino proton signals (δH 2.92 and 2.85). The SCH3 (δH≈2.10) [18]
and SCH2 (δH≈3.60) [14] signals were absent in the 1H NMR spectrum. The 13C NMR
spectra, with the aid of 2D NMR, showed the presence of 26 carbons, including four
carbonyls (δC 171.4, 170.0, 169.3, 167.9), a quinoxaline-2-carboxylic acid moiety carbon
(δC 162.6, 129.0–143.4), one oxygenated methylene (δC 64.4), four aliphatic α-amino carbons
(δC 62.1, 54.4, 50.9, 47.2), two methylamino carbons (δC 31.2, 29.5). The number of carbons
in the molecular formula has twice as much as those in the 13C NMR, indicating that 1
should be a symmetrical dimer with eight amino acid residues. Comparison of NMR
spectra of 1 and triostin A [14,19], showed they were similar except for the loss of the
Cys residue signal in 1, suggesting that this Cys residue was replaced by another amino
acid group without the intra-peptide disulfide bridge. After examining the NMR data
of amino acid residues in 1, it was inferred that the new amino acid residue was N-Me-
2-aminobutyric acid (NMe-Abu) [20], which was further confirmed by the 1H-1H COSY
correlations of H-5 (δH 5.36)/H2-17 (δH 1.66-1.82) and H2-17/ H3-18 (δH 0.80), and the
HMBC correlations from H3-18 to C-17 (δC 21.1) and C-5 (δC 54.4), from H3-19 (δH 2.85)
to C-7 (δC 171.4) and C-5, and from H3-16 (δH 2.92) to C-4 (δC 170.0) and C-2 (δC 62.1)
(Figure 2). The analysis of MS/MS fragmentation patterns provided additional data to
support this assignment (Table 2, Figures 3 and 4). Therefore, the planar structure of 1 was
established, as shown in Figure 1.
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Table 1. The 1H (600 MHz, DMSO-d6) and 13C (150 MHz, DMSO-d6) NMR data of natural- and
synthetic-1.

Position
Natural-1 Synthetic-1

δH (multi, J, Hz) δC δH (multi, J, Hz) δC

QXA/QXA′

23/23′ 143.1 143.1
24/24′ 9.53 (s) 143.4 9.53 (s) 143.4
26/26′ 8.19–8.22 (m) 129.0 8.18–8.21 (m) 129.0
27/27′ 7.97–8.02 (m) 132.0 7.96–8.02 (m) 132.1
28/28′ 7.97–8.02 (m) 131.6 7.96–8.02 (m) 131.6
29/29′ 8.19–8.22 (m) 129.2 8.18–8.22 (m) 129.2

25a/25a′ 143.1 143.1
29a/29a′ 139.4 139.4

22/22′ 162.6 162.5
Ser/Ser′

21-NH/21′-NH 8.70 (d, 8.4) 8.69 (d, 8.4)
11/11′ 4.98 (m) 50.9 4.99 (m) 50.9
12/12′ 4.43 (m) 64.4 a 4.43 (m) 64.4
10/10′ 167.9 167.9

Ala/Ala′

9-NH/9′-NH 8.24 (m) 8.23 (m)
8/8′ 4.61 (m) 47.2 a 4.62 (m) 47.4 a

20/20′ 1.29 (d, 7.2) 16.5 1.29 (d, 6.6) 16.5
7/7′ 171.4 171.4

NMe-Abu/
NMe-Abu′

19/19′ 2.85 (s) 29.5 2.85 (s) 29.5
5/5′ 5.36 (m) 54.4 5.37 (m) 54.5

17a/17a′ 1.66–1.74 (m) 21.1 1.66–1.74 (m) 21.1
17b/17b′ 1.74–1.81 (m) 1.74–1.82 (m)

18/18′ 0.80 (t, 7.2) 9.5 0.80 (t, 7.2) 9.5
4/4′ 170.0 170.1

NMe-Val/
NMe-Val′

16/16′ 2.92 (s) 31.2 2.92 (s) 31.2
2/2′ 4.86 (d, 10.8) 62.1 4.87 (d,10.8) 62.1

13/13′ 2.28–2.35 (m) 26.3 2.28–2.35 (m) 26.3
14/14′ 0.95 (d, 6.6) 19.9 0.96 (d, 6.6) 19.9
15/15′ 0.70 (br s) 18.3 0.70 (d, 6.6) 18.3

1/1′ 169.3 169.2
a: Observed in 2D NMR.
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The relative configuration of 1 was determined by the ROESY spectrum. The key
ROESY cross-peak between H3-20 (δH 1.29) and H-5, H-13 (δH 2.28-2.35), H3-14 (δH 0.95) and
H-21′ (δH 8.70) indicated that they were in the same spatial orientation. Thus, two possible
isomers (2S,5S,8S,11R,2′S,5′S,8′S,11′R)-1 (1a) and its enantiomer (2R,5R,8R,11S,2′R,5′R,8′R,
11′S)-1 (1b) were concluded. To clarify the absolute configurations of 1, ECD calculation



Mar. Drugs 2023, 21, 143 4 of 19

based on the simplified time-dependent density functional theory approach (sTD-DFT) was
used, which allowed fast computation of electronic ultraviolet (UV) or circular dichroism
(CD) spectra of very large molecules with up to 1000 atoms, such as peptides and pro-
teins [21]. As shown in Figure 5, the calculated ECD spectrum of 1a was in good agreement
with the experimental ECD of 1, which established the assignment of the absolute configu-
ration of 1 as 2S,5S,8S,11R,2′S,5′S,8′S,11′R. In addition, the advanced Marfey’s analysis of 1
was performed to determine the absolute configurations of amino acid residues [22]. The
presence of D-Ser, L-Ala, L-NMe-Abu, and L-NMe-Val was unambiguously confirmed by
comparison with authentic standards (Table 3, Figure 6 and Figure S11 in Supplementary
Materials), which was consistent with the structure of 1a.

Table 2. The HRESIMS/MS fragmentation analysis of Compounds 1 and 2.

Compound 1 Compound 2

Meas m/z Calc. m/z mDa ppm Formula Meas m/z Calc. m/z mDa ppm Formula

962.4108 962.4137 −2.9 −3.0 C46H57N11NaO11 1037.4832 1037.4845 −1.3 −1.3 C51H65N12O12
863.3412 863.3453 −4.1 −4.7 C41H48N10NaO10 964.3925 964.3929 −0.4 −0.4 C45H55N11NaO12
739.4117 739.4143 −2.6 −3.5 C37H55N8O8 865.3262 865.3245 1.7 2.0 C40H46N10NaO11
640.3446 640.3459 −1.3 −2.0 C32H46N7O7 863.3428 863.3453 −2.5 −2.9 C41H48N10NaO10
626.3304 626.3302 0.2 0.3 C31H44N7O7 642.3270 642.3251 1.9 3.0 C31H44N7O8
527.2615 527.2618 −0.3 −0.6 C26H35N6O6 628.3102 628.3095 0.7 1.1 C30H42N7O8
428.1935 428.1934 0.1 0.2 C21H26N5O5 610.2996 610.2989 0.7 1.1 C30H40N7O7
414.1781 414.1777 0.4 1.0 C20H24N5O5 529.2429 529.2411 1.8 3.4 C25H33N6O7
396.1681 396.1672 0.9 2.3 C20H22N5O4 527.2623 527.2618 0.5 0.9 C26H35N6O6

511.2306 511.2305 0.1 0.2 C25H31N6O6
428.1939 428.1934 0.5 1.2 C21H26N5O5
416.1592 416.1570 2.2 5.3 C19H22N5O6
414.1778 414.1777 0.1 0.2 C20H24N5O5
398.1472 398.1464 0.8 2.0 C19H20N5O5
396.1679 396.1672 0.7 1.8 C20H22N5O4
380.1367 380.1359 0.8 2.1 C19H18N5O4
337.0923 337.0913 1.0 3.0 C15H14N4NaO4
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Table 3. The UPLC-MS analysis of L-FDLA and D-FDLA derivatives of the hydrolysates of 1–2 and
amino acid standards.

Samples L-FDLA (RT; m/z) D-FDLA (RT; m/z) Configuration

L-NMe- Ser 8.91 min; 412 [M − H]− 9.44 min; 412 [M − H]−

D-Ser 9.74 min; 398 [M − H]− 9.11 min; 398 [M − H]−

L-Ala 10.83 min; 382 [M − H]− 13.17 min; 382 [M − H]−

L-NMe-Abu 13.85 min; 410 [M − H]− 15.21 min; 410 [M − H]−

L-NMe-Val 15.03 min; 424 [M − H]− 17.31 min; 424 [M − H]−

Ser from hydrolysates of 1 9.74 min; 398 [M − H]− 9.11 min; 398 [M − H]− D
Ala from hydrolysates of 1 10.83 min; 382 [M − H]− 13.15 min; 382 [M − H]− L

NMe-Abu from hydrolysates of 1 13.85 min; 410 [M − H]− 15.19 min; 410 [M − H]− L
NMe-Val from hydrolysates of 1 15.01 min; 424 [M − H]− 17.31 min; 424 [M − H]− L
NMe-Ser from hydrolysates of 2 8.90 min; 412 [M − H]− 9.44 min; 412 [M − H]− L

Ser from hydrolysates of 2 9.75 min; 398 [M − H]− 9.11 min; 398 [M − H]− D
Ala from hydrolysates of 2 10.85 min; 382 [M − H]− 13.17 min; 382 [M − H]− L

NMe-Abu from hydrolysates of 2 13.85 min; 410 [M − H]− 15.21 min; 410 [M − H]− L
NMe-Val from hydrolysates of 2 15.03 min; 424 [M − H]− 17.31 min; 424 [M − H]− L
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Quinomycin L (2) was obtained as a white amorphous powder. It possessed a molec-
ular formula of C51H66N12O13 by the HRESIMS ion at m/z 1055.4930 [M + H]+ (calcd for
C51H67N12O13, 1055.4951), two mass units more than compound 1. According to the char-
acteristics of MS/MS molecular networking [23,24] and our previous study [7], compounds
1 and 2 were neighbor nodes in one cluster, indicating that they had the identical or similar
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structural fragments in their structure. Therefore, the planar structure of 2 was deduced
by analyzing the relationship of MS/MS fragmentation ions between 1 and 2 (Table 2,
Figures 3, 7 and 8). Three same fragment ions (863.3412/863.3428, 527.2615/527.2623,
and 396.1681/396.1679) existed in 1 and 2, indicating that the fragment of QXA-(Ser-Ala-
NMe-Abu-NMe-Val-NMe-Val′)-QXA′ in 1 was also present in 2. In addition, the fragment
ions at m/z 1037.4832 formed by loss of 18 Da neutral mass in the MS/MS spectrum of 2,
indicated the presence of an hydroxyl group in 2. Lastly, three pairs of ions (∆ = 2 Da) of
m/z 865.3262/863.3428, 529.2429/527.2623, 398.1472/396.1679 in the ion fragments of 2, led
to speculating that the methyl group (15 Da) in the NMe-Abu′ residue of 1 was replaced
by a hydroxyl group (17 Da), turning it into an NMe-Ser residue in 2. The NMR data
with δH 5.27 (d, J = 7.2 Hz), 3.70–3.74 (m), 2.69 (s), and δC 59.0, 59.3 also supported the
presence of the NMe-Ser residue [25]. In addition, this residue was further confirmed by the
cross-peaks of H-5′ (δH 5.27)/H-17′ (δH 3.70–3.74) in the 1H-1H COSY spectrum, and the
HMBC correlations of H-5′ with C-17′ (δC 59.3), C-19′ (δC 29.6), and C-4′ (δC 168.7), H3-19′

(δH 2.69) with C-7′ (δC 172.7), C-5′ (δC 59.0), and H3-16′ (δH 3.20) with C-4′, C-2′ (δC 61.9).
The absolute configuration of compound 2 was determined by amino acid analysis using
the advanced Marfey’s method. Comparison of FDLA derivatives of the hydrolysates of
2 with those of appropriate standard amino acids using UPLC-MS techniques indicated
L from Ala, NMe-Abu, NMe-Ser, and NMe-Val, and D from Ser in compound 2 (Table 3,
Figure 9).
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solution-phase synthetic procedure described herein will contribute to the development of
the synthesis of compounds 1 and 2. We retrosynthetically disconnected the macrocycle 1
and 2 at the amide bonds linking D-Ser and L-Ala residues (Scheme 1). The intermediate
tetrapeptide compound 4 could be accomplished via a sequential peptide coupling approach.
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Scheme 1. Retrosynthetic analysis of compounds 1 and 2.

As shown in Scheme 2, The total synthesis started with the synthesis of Cbz-D-Ser(Boc-
MeVal)-OAll (5) according to an optimized procedure previously reported by Nagaswa
et al. [14,15]. Compound 5 was subsequently condensed with N-Boc-methyl-Abu-OH
affording the tripeptide 6. The next step involved the conjugation of N-Boc-L-Ala-OH with
6 to give tetradepsipeptide 7 in 60% yield over four steps. Half of the obtained compound
7 was then deallylated to give 8. Subsequently, N-Boc deprotection of 7 was followed
by condensation with compound 8 using HATU to afford a linear octadepsipeptide 9.
Compound 9 obtained by deallylation of 8 was subjected to intramolecular amide bond
formation to produce cyclic peptide 10. N-Cbz deprotection of 10 was condensed with
quinoxaline-2-carboxylic acid to obtain the target compound 1 in 55% yield. The synthetic
procedure for compound 2 was similar to compound 1, except for the O-Bn-N-Boc-methyl
-Ser-OH instead of N-Boc-methyl-Abu-OH (Scheme 3). All the spectroscopic data (1H and
13C NMR, HRESI-MS, UV, IR, and specific rotation) and UPLC-UV-MS retention times (two
different eluting conditions) of the synthetic-1 and -2 matched those of the isolated natural
products, respectively (Tables 1 and 4, Figures S31–S38 and Table S1).
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Table 4. The 1H (600 MHz, DMSO-d6) and 13C (150 MHz, DMSO-d6) NMR data of natural- and
synthetic-2.

Position
Natural-2 Synthetic-2

δH (Multi, J, Hz) δC δH (Multi, J, Hz) δC

QXA/QXA′

23/23′ 143.1/143.1 143.1/143.1
24/24′ 9.51(s)/9.52(s) 143.4/143.4 9.50 (s)/9.52 (s) 143.3/143.3
26/26′ 8.14–8.22 (m) 129.1/129.0 8.13–8.24 (m) 129.1/129.0
27/27′ 7.98–8.06 (m) 132.1/132.2 7.98–8.06 (m) 132.1/132.2
28/28′ 7.98–8.06 (m) 131.5/131.6 7.98–8.06 (m) 131.5/131.6
29/29′ 8.14–8.22 (m) 129.4/129.6 8.13–8.24 (m) 129.4/129.6

25a/25a′ 143.1/143.1 143.1/143.1
29a/29a′ 139.6/139.7 139.6/139.7

22/22′ 162.1/162.1 162.2/162.2
Ser/Ser′

21-NH/21′-NH 8.83 (d, 7.8)/8.56 (d, 7.8) 8.83 (d, 7.8)/8.55 (d, 7.2)
11/11′ 4.90–4.99 (m)/5.04–5.10 (m) 51.0/51.0 4.90–4.99 (m)/5.04–5.10 (m) 51.0/51.0

12a/12′a 4.46–4.54 (m)/4.56–4.60(m) 64.5/65.1 a 4.46–4.54
(m))/4.55–4.60(m) 64.3/65.0 a

12b/12′b 4.32–4.38 (d, 10.8)/4.46–4.54
(m)

4.32–4.38 (d,
10.2)/4.46–4.54 (m)

10/10′ 167.9/167.9 167.9/167.9
Ala/Ala′

9-NH/9′-NH - -
8/8′ 4.83–4.88 (m) 45.0/46.4 4.83–4.88 (m) 45.0/46.5

20/20′ 1.20 (d, 7.2)/1.42 (d, 7.2) 17.3/18.1 1.20 (d, 6.6)/1.42 (d, 6.6) 17.4/18.1
7/7′ 172.1/172.7 172.2 /172.7
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Table 4. Cont.

Position
Natural-2 Synthetic-2

δH (Multi, J, Hz) δC δH (Multi, J, Hz) δC

NMe-Abu
19 3.27 (s) 30.2 3.28 (s) 30.2
5 5.04–5.10 (m) 54.4 5.04–5.10 (m) 54.4

17a 1.35–1.50 (m) 21.7 1.35–1.50 (m) 21.7
17b 1.62–1.75 (m) 1.62–1.75 (m)
18 0.64 (m) 10.0 0.64 (m) 10.0
4 169.2 169.2

NMe-Ser
19′ 2.69 (s) 29.6 2.69 (s) 29.6
5′ 5.27 (d, 7.2) 59.0 5.27 (d, 7.8) 59.0

17a′ 3.70–3.74 (m) 59.3 3.70–3.74 (m) 59.3
17b′ 3.70–3.74 (m) 3.70–3.74 (m)

18′-OH - - - -
4′ 168.7 168.7

NMe-Val/NMe-Val′

16/16′ 2.94 (s)/3.20 (s) 31.2/31.3 2.94 (s)/3.20 (s) 31.2/31.4
2/2′ 4.81 (d, 12.0)/4.70 (d, 10.8) 62.1/61.9a 4.81 (d, 12.6)/4.70 (d, 10.8) 62.0/62.0a

13/13′ 2.38–2.48 (m)/2.10–2.26 (m) 26.4/27.4 2.38–2.48 (m)/2.10–2.26 (m) 26.3/27.4
14/14′ 0.94 (d, 6.6)/0.90 (m) 19.9/19.7 0.94 (d, 6.6)/0.90 (d, 6.6) 20.0/19.8
15/15′ 0.68 (d, 6.6)/0.75 (m) 18.4/19.0 0.68 (m)/0.75 (m) 18.4/19.1

1/1′ 169.4/170.3 169.4/170.4
a: Observed in 2D NMR; -: Not determined.

Compounds 1–2 were evaluated for antibacterial against 37 different bacterial pathogens
and cytotoxicity against the H460 lung cancer cells. Compared with the positive control
echinomycin, no prominent antibacterial (MIC > 32 µg/mL) and cytotoxic (IC50 > 1000 nM)
activities were observed in compounds 1–2 (Tables S2 and S3), indicating that the cross-linking
through a bridge bond may play a key role in the biological effects of quinomycin-type
depsipeptides. This result was consistent with the findings from the previous report [15].

3. Materials and Methods
3.1. General Experimental Procedures

Specific rotations were measured in ACN using a Rudolph Research Analytical Au-
topol V automatic polarimeter (Rudolph, New Jersey, NJ, USA). ECD spectra were obtained
on a JASCO J-815 spectropolarimeter (JASCO, Tokyo, Japan). UV spectra were recorded on
a UV-2550 UV/vis spectrophotometer (Shimadzu, Tokyo, Japan). IR spectra were acquired
on a Nicolet 5700 FT-IR microscope spectrometer (Thermo Fisher, Madison, WI, USA).
NMR spectra were recorded on a Bruker AV III HD 600 NMR instrument (1H: 600 MHz,
13C: 150 MHz) with TMS as the internal standard (Bruker, Karlsruhe, Germany). HRESIMS
and MS/MS data were obtained on a Waters Xevo G2-XS QTof mass spectrometer equipped
with ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) (Waters, Milford, MA,
USA). HPLC-MS analysis was performed on a Shimadzu Prominence UFLC-LCMS 2020
system with a YMC-Pack ODS-A column (4.6 × 150 mm, 5 µm). Column chromatography
(CC) was carried out on Sephadex LH-20 (Pharmacia, Uppsala, Sweden). MPLC was
performed on Biotage Isolera One System (Biotage, Uppsala, Sweden) with a pre-packed
column (Yamazen Ultra Pack ODS-SM-50B, 26 × 300 mm, 50 µm). Semi-preparative HPLC
was carried out using a Shimadzu LC-20A instrument with an SPD-M20A detector using a
semi-preparative YMC-Pack ODS-A column (10 × 250 mm, 5 µm). Unless otherwise noted,
reagents and solvents were purchased at the highest commercial quality and used with-
out further purification. In experiments requiring dry solvents, dichloromethane (DCM)
and tetrahydrofuran (THF) were purchased from Beijing Yinuokai Technology Co., Ltd.
as “Dehydrated”.
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3.2. Actinomycetia Material

The strain Streptomyces sp. B475 was isolated from soil collected from the Maowei Sea
Mangrove Reserve, Qinzhou City, Guangxi Zhuang Autonomous Region, China, in July
2017. The 16s rRNA gene sequence data were submitted to GenBank with accession NO.
MN199475. Its sequence was similar to that of Streptomyces seoulensis NRRL B-24310T (iden-
tity: 99.93%). Accordingly, this strain was identified at the genus level as Streptomyces sp.
The strain was deposited at the Department of Microbial Chemistry, Institute of Medicinal
Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College.

3.3. Fermentation, Extraction, and Isolation

The strain was grown and maintained on an agar plate with ISP2 medium (glucose
4 g/L, yeast extract 4 g/L, malt extract 10 g/L, distilled water 1 L, pH = 7.2) at 28 ◦C
for 7–10 days. The spores of the strain were inoculated into 500 mL Erlenmeyer flasks
containing 100 mL of ISP2 medium at 28 ◦C for three days with shaking at 180 rpm. The
6 L (60 × 100 mL) of fermentation broth was centrifuged at 4300 rpm for 20 min, and the
supernatant was extracted three times with ethyl acetate (6 L/time) to give an organic
extract. After 20 fermentations, the combined organic extract (8.4 g) was subjected to MPLC
column chromatography eluted with MeOH-H2O (10:90, 30:70, 50:50, 70:30, 90:10, 100:0,
v/v) to obtain seven subfractions (Fr.01–Fr.07) based on HPLC-MS analysis. Fr.05 (170 mg)
was subjected to Sephadex LH-20 with CH2Cl2: MeOH (1:1, v/v) as the mobile phase to
yield five subfractions (Fr.05a–Fr.05e). The fraction Fr.05b was separated by preparative
HPLC with a gradient of ACN-H2O (55:45, v/v, 0–20 min; 55:45 to 60:40, v/v, 20–30 min,
2.0 mL/min) to yield compound 1 (3.2 mg) and the mixture of compound 2. The mixture of
2 was further separated by preparative HPLC using a gradient of MeOH-H2O (63:37, v/v,
0–30 min; 63:37 to 70:30, v/v, 30–45 min, 2.0 mL/min) to obtain compound 2 (1.8 mg).

Quinomycin K (1): white amorphous powder; [α]25
D −110.0◦ (c 0.08, ACN); UV (MeOH)

λmax (log ε) 242 (4.92), 317 (4.21) nm; ECD (c 1.90 × 10−5M) λmax (∆ε) 234 (−35.08); IR vmax:
3375, 3303, 2968, 2936, 2877, 1742, 1644, 1517, 1492, 1459, 1408, 1180, 1126, 1014 cm−1; 1H
NMR (DMSO-d6, 600 MHz) and 13C NMR (DMSO-d6, 150 MHz), see Table 1; HRESIMS:
m/z 1053.5165 [M + H]+ (calcd for C52H69N12O12, 1053.5158).

Quinomycin L (2): white amorphous powder; [α]25
D −152.0◦ (c 0.05, ACN); UV (MeOH)

λmax (log ε) 241 (4.59), 323 (3.91) nm; ECD (c 1.70 × 10−5M) λmax (∆ε) 235 (−4.42); IR vmax:
3351, 2918, 2850, 1740, 1637, 1578, 1538, 1492, 1465, 1409, 1260, 1097, 1025 cm-1; 1H NMR
(DMSO-d6, 600 MHz) and 13C NMR (DMSO-d6, 125 MHz), see Table 4; HRESIMS: m/z
1055.4930 [M + H]+ (calcd for C51H67N12O13, 1055.4951).

3.4. ECD Calculation of Compound 1

Conformational search and geometry optimizations for 1a were performed on Molclus
1.9.9 program [26] by invoking xtb 6.3.3 program [27], Gaussian 16 packages [28], and
ORCA 4.2.1 program [29] as described previously [30–32]. Firstly, the original structure
was used to perform molecular dynamics (MD) simulations in the xtb 6.3.3 program with
GFN0-xTB [33], the thermostat temperature was set at 400 K, and the total run time of
simulation was 150 ps. These conformers were subjected to semi-empirical geometry
optimization using the GFN0-xTB and GFN2-xTB [34] with the GBSA model in the MeOH
method successively, the xTB geometries with a difference of distance geometries and
energies within 0.5 were clustered by the isostat module in the Molclus program. Then,
the clustered geometries within an energy window of 3 kcal/mol were subjected to a DFT
geometry optimization and frequency analyses at B3LYP-D3(BJ)/6-31G level of theory
with DFT-D3 dispersion correction [35] using Gaussian 16 program, and subsequently
subject to ORCA program for calculating high precision single point energy at RI-PWPB95-
D3(BJ)/def2-TZVPP level with SMD solvent model in MeOH. Conformer’s clustering, their
relative Gibbs Free Energy, and Boltzmann distribution in room temperature (298.15 K)
were obtained from the isostat module in the Molclus program. Those conformers with
Boltzmann distribution over 2% population were subjected to subsequent calculations.
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ECD calculation was performed using the simplified time-dependent density func-
tional theory (sTD-DFT) approach [21] at the wB97X-D3/def2-SV(P) level of theory in
MeOH with the SMD model in the ORCA program. The calculated ECD curves of each
conformer and their Boltzmann-weighed ECD curves were generated using Multiwfn
3.7 software [36]. Finally, the ECD of its enantiomer 1b was generated and plotted to-
gether with the experimental ECD of 1, calculated ECD of 1a using Origin 2018 software
(OriginLab, Northampton, MA, USA).

3.5. Advanced Marfey’s Analysis of Compounds 1-2

Analysis was carried out following the published method [22]. Samples of 1–2 (each
0.12 mg) were dissolved in 6M HCl (0.2 mL) and heated to 110 ◦C in a sealed vial for 16 h.
The hydrolysates were concentrated under dry N2 at 40 ◦C, dissolved in 0.1 mL H2O, and
divided into two portions (each 50 µL). Each portion was treated with 20 µL of 1M NaHCO3,
and then we added 100 µL of 1% L-FDLA and 1% D-FDLA in acetone, respectively. The
mixtures were vortexed and incubated at 37 ◦C for 1 h. After cooling to room temperature,
the reaction mixture was quenched by adding 20 µL of 1M HCl and diluted with 200 µL
of CH3CN. A total of 20 µL of the resulting solutions were diluted again with 800 µL of
CH3CN and then centrifuged at 12,000 rpm for 10 min. The supernatants (1 µL) were
analyzed by UPLC-HRESI-MS using an ACQUITY UPLC BEH C18 column (2.1 × 100 mm,
1.7 µm, 0.3 mL/min) with gradient elution (solvent A: water with 0.1% acetic acid; solvent
B: CH3CN containing 0.1% acetic acid; 5% B, 0–3 min, 20–60% B, 3–23 min, UV detection:
340 nm; column temperature: 40 ◦C). The MS scanned m/z range 250–1100 in negative
mode. Commercial standards of D-Ser, L-Ala, L-NMe-Abu, L-NMe-Ser, and L-NMe-Val
were derivatized and analyzed in the same way. The absolute configurations of amino acids
were established by comparison of the retention times of the L- and D-FDLA derivatives of
corresponding amino acids.

3.6. The Synthesis of 1 and 2
3.6.1. N-Cbz-D-Ser[N-Boc-N-Me-L-Abu -N-Me-L-Val]-OAll (6)

The N-Cbz-D-Ser(N-Boc-N-Me-L-Val)-OAll 5 (1.18 g, 2.4 mmol, 1.1 equiv) was dis-
solved in 4 M HCl/dioxane (10 mL, 60 mmol) at 0 ◦C. Then the resulting solution was
warmed to room temperature and stirred at that temperature for 2 h. The mixture was
diluted with EtOAc (200 mL) and sat. NaHCO3 aq. (100 mL). The two layers were sep-
arated, and the organic layer was washed with brine (100 mL) and dried over Na2SO4,
and the solvent was removed under reduced pressure to obtain the residue as a white
solid. 1H NMR (500 MHz, CDCl3) δH 9.87 (s, 1H), 9.64 (s, 1H), 7.37–7.26 (m, 5H), 6.88
(d, J = 8.2 Hz, 1H), 5.87 (ddt, J = 16.5, 11.0, 5.7 Hz, 1H), 5.31 (d, J = 17.2 Hz, 1H), 5.22 (d,
J = 10.4 Hz, 1H), 5.10 (s, 2H), 4.74 (dd, J = 11.2, 4.1 Hz, 1H), 4.69 (dt, J = 7.5, 3.2 Hz, 1H),
4.62 (d, J = 5.7 Hz, 2H), 4.36 (dd, J = 11.1, 2.9 Hz, 1H), 3.52 (s, 1H), 2.65 (s, 3H), 2.57–2.44
(m, 1H), 1.07 (d, J = 6.8 Hz, 4H), 1.04 (d, J = 6.7 Hz, 3H). 13C NMR (125 MHz, CDCl3) δC
168.9, 165.9, 156.4, 136.4, 131.3, 128.5, 128.1, 128.0, 119.3, 67.4, 67.0, 66.7, 65.6, 53.0, 33.0, 29.7,
19.6, 17.8.

Then, to a solution of the residue (4 g, 10.19 mmol), N-Boc-N-Me-L-Abu -OH (2.21 g,
10.19 mmol, 1 equiv), and DIEA (1.86 g, 11.21 mmol) in DMF (25 mL) was added HATU
(0.91 g, 3.3 mmol, 1.5 equiv) at 0 ◦C and stirred at room temperature overnight. The mixture
was diluted with EtOAc (150 mL) and water (150 mL). The two layers were separated,
and the organic layer was washed with HCl (1 mol/L, 100 mL) and brine (100 mL) and
dried over Na2SO4. The solvent was removed under reduced pressure, and the residue
was purified by flash column chromatography on silica gel eluted with n-hexane: EtOAc
(80:20, v/v) to afford the target compound 6 as a colorless oil (5 g, 82.9% yield). 1H NMR
(500 MHz, CDCl3) δH 7.06 (q, J = 12.8, 9.0 Hz, 5H), 6.17-5.99 (m, 1H), 5.62 (ddt, J = 18.7, 12.5,
6.8 Hz, 1H), 5.10–4.78 (m, 4H), 4.72–4.48 (m, 1H), 4.46–4.13 (m, 4H), 2.80–2.69 (m, 2H), 2.63
(dd, J = 16.5, 11.7 Hz, 1H), 2.59-2.29 (m, 7H), 2.04–1.83 (m, 1H), 1.50 (dddt, J = 30.8, 22.6,
15.1, 7.9 Hz, 2H), 1.26–1.07 (m, 9H), 0.79–0.67 (m, 3H), 0.66–0.49 (m, 7H).
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3.6.2. N-Cbz-D-Ser[N-Boc-L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val]-OAll (7)

To a solution of N-Cbz-D-Ser[N-Boc-N-Me-L-Abu-N-Me-L-Val]-OAll 6 (4 g, 6.76 mmol)
in DCM (9 mL) was added TFA (3 mL) at 0 ◦C. Then the resulting solution was warmed to
room temperature and stirred for 1 h. The solvent was removed under reduced pressure,
then the residue was diluted with EtOAc (200 mL) and sat. NaHCO3 aq. (100 mL). The
two layers were separated, and the organic layer was washed with brine (100 mL) and
dried over Na2SO4; the solvent was removed under reduced pressure to get the residue as
a white solid. 1H NMR (500 MHz, CDCl3) δH 6.65–6.54 (m, 5H), 6.31 (d, J = 7.7 Hz, 1H),
5.58 (d, J = 7.5 Hz, 1H), 4.84-4.76 (m, 1H), 4.59 (d, J = 8.2 Hz, 1H), 4.36 (q, J = 7.8, 5.2 Hz, 2H),
4.01–3.92 (m, 1H), 3.88–3.74 (m, 2H), 3.71–3.59 (m, 1H), 1.49 (dtt, J = 19.1, 12.6, 5.9 Hz, 1H),
0.94 (d, J = 6.6 Hz, 1H), 0.74–0.61 (m, 9H), 0.50 (dt, J = 22.6, 5.7 Hz, 3H), 0.30–0.02 (m, 8H).
13C NMR (125 MHz, CDCl3) δC 172.2, 169.9, 169.6, 168.8, 161.3, 154.8, 154.0, 135.5, 127.0,
126.6, 126.5, 64.9, 62.7, 60.9, 53.1, 52.9, 52.0, 45.4, 34.8, 29.9, 29.6, 28.4, 26.8, 25.8, 20.2, 18.4,
17.5, 16.3, 8.4.

Then, to a solution of the residue (2.5 g, 5.09 mmol), N-Boc-N-L-Ala-OH (1.06 g,
5.09 mmol, 1 equiv), and DIEA (1.01mL, 6.01 mmol) in DMF (15 mL) was added HATU
(2.12 g, 5.59 mmol) at 0 ◦C and stirred at room temperature overnight. The mixture was
diluted with EtOAc (150 mL) and water (150 mL). The two layers were separated, and the
organic layer was washed with HCl (1 mol/L, 100 mL) and brine (100 mL) and dried over
Na2SO4. The solvent was removed under reduced pressure, and the residue was purified
by flash column chromatography on silica gel eluted with n-hexane: EtOAc (50:50, v/v) to
afford the target compound 7 as a white solid (2.8 g, 83.1% yield).

3.6.3. N-Cbz-D-Ser[N-Boc-L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val]-OH (8)

To a solution of N-Cbz-D-Ser[N-Boc-L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val]-OAll 7
(1 g, 1.51 mmol), Pd(PPh3)4 (3.5 mg) in DCM (10 mL) was added morpholine (0.46 ml,
5.28 mmol) and stirred at room temperature for 1 h. Then the mixture was diluted with
EtOAc (100 mL) and sat. NH4Cl aq. (100 mL). The two layers were separated, and the
water layer was extracted with AcOEt (100 mL). The combined organic layers were washed
with brine (100 mL) and dried over Na2SO4. The solvent was removed under reduced
pressure, and the residue was purified by flash column chromatography on silica gel eluted
with DCM: MeOH (100:1, v/v) to afford the target compound 8 as a white solid (800 mg,
85.2% yield).

3.6.4. N-Cbz-D-Ser[N-Cbz-D-Ser(N-Boc-L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val)-L-Ala-N-
Boc-N-Me-L-Abu-N-Me-L-Val]-OAll (9)

The N-Cbz-D-Ser[N-Boc-L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val]-OAll 7 (1 g, 1.51 mmol)
in TFA:DCM (1:3, 12 mL) at 0 ◦C. Then the resulting solution was warmed to room tem-
perature and stirred for 1 h. The solvent was removed under reduced pressure. Then to
a solution of the residue (737 mg, 1.13 mmol), N-Cbz-D-Ser[N-Boc-L-Ala-N-Boc-N-Me-L-
Abu-N-Me-L-Val]-OH 8 (700 mg, 1.13 mmol), and DIEA (0.17 mL, 1.13 mmol) in DMF
(10 mL) was added HATU (427 mg, 1.13 mmol) at 0 ◦C and stirred at room temperature
overnight. The mixture was diluted with EtOAc (150 mL) and water (150 mL). The two lay-
ers were separated, and the organic layer was washed with HCl (1 mol/L, 100 mL) and brine
(100 mL) and dried over Na2SO4. The solvent was removed under reduced pressure. The
residue was purified by flash column chromatography on silica gel with DCM: MeOH (100:1,
v/v) as the mobile phase to afford the target compound 9 as a white solid (1 g, 70.4% yield).

3.6.5. Cbz-Cyclic Peptide (10)

To a solution of N-Cbz-D-Ser[N-Cbz-D-Ser(N-Boc-L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-
Val)- L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val]-OAll 9 (1 g, 1.51 mmol), Pd(PPh3)4 (3.5 mg) in
DCM (10 mL) was added morpholine (0.46 mL, 5.28 mmol) and stirred at room temperature
for 1 h. Then the mixture was diluted with EtOAc (100 mL) and sat. NH4Cl aq. (100 mL).
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The two layers were separated, and the water layer was extracted with EtOAc (100 mL).
The combined organic layers were washed with brine (100 mL) and dried over Na2SO4; the
solvent was removed under reduced pressure. The residue was dissolved in TFA: DCM
(1:3, 12 mL) at room temperature and stirred for 1 h. The solvent was removed under
reduced pressure. The residue was dissolved in DMF: DCM (1:9, 100 mL) and adjusted to
pH 7 with DIEA. The HOAt (60.8 mg, 0.446 mmol) and EDCI (85.7 mg, 0.446 mmol) were
added to the mixture at 0 ◦C and then warmed to room temperature and stirred for 24 h.
The mixture was washed with HCl (1 mol/L, 100 mL), sat. NaHCO3 (100 mL) and brine
(100 mL) and dried over Na2SO4. The solvent was removed under reduced pressure, and
the residue was purified by flash column chromatography on silica gel using DCM: MeOH
(100:1, v/v) as the mobile phase to afford the target compound 10 as a colorless oil (200 mg,
40.6% yield).

3.6.6. Cyclic Peptide (1)

A solution of Cbz-cyclic peptide 10 (50 mg, 0.05 mmol) and 20% Pd(OH)2/C (5 mg,
10 wt %) in MeOH (5 mL) was stirred at room temperature under an H2 atmosphere (1 atm)
for 12 h. Then, the mixture was filtered, and the filtrate was concentrated under reduced
pressure. To a solution of 2- quinoxalinecarboxylic acid (17 mg, 0.1 mmol, 2 equiv) in DMF
(2 mL) was added the residue dissolved in DMF (1 mL). After cooling to 0 ◦C, The HATU
(36 mg, 0.1 mmol, 2 equiv) and DIEA (16 µL, 0.1 mmol, 2 equiv) were added to the mixture,
and the solution was stirred at room temperature for 2 h. The mixture was diluted with
CH2Cl2 (50 mL) and washed with water (50 mL). The organic layer was separated, washed
with brine (50 mL), dried over Na2SO4, and concentrated under reduced pressure. The
residue was purified by pre-HPLC eluted with ACN-H2O (50:50 to 60:40, v/v, 0–30 min,
2.0 mL/min) to afford the target compound 1 (10 mg, 20% yield) as a white solid. 1H NMR
(DMSO-d6, 600 MHz) and 13C NMR (DMSO-d6, 150 MHz), see Table 1; HRESIMS: m/z
1053.5137 [M + H]+ (calcd for C52H69N12O12, 1053.5158). [α]25

D −110.0◦ (c 0.08, ACN); UV
(MeOH) λmax (log ε) 242 (4.82), 324 (4.10) nm; IR vmax: 3378, 3312, 2968, 2937, 2877, 1743,
1644, 1517, 1492, 1465, 1408, 1180, 1128, 1014 cm−1.

3.6.7. N-Cbz-D-Ser(N-Boc-N-Me-O-Bn-L-Ser-N-Me-L-Val)-OAll (11)

To a solution of the N-Cbz-D-Ser(N-Boc-N-Me-L-Val)-OAll 5 (3 g, 7.64 mmol), N-Boc-
N-Me-O-Bn-L-Abu-OH (2.36 g, 7.64 mmol, 1 equiv), and DIEA (1.4 mL, 8.41 mmol) in DMF
(25 mL) was added HATU (3.19 g, 8.41 mmol) at 0 ◦C and stirred at room temperature
overnight. The mixture was diluted with EtOAc (150 mL), and the organic layer was
washed with HCl (1 mol/L, 100 mL) and brine (100 mL) and dried over Na2SO4. The
solvent was removed under reduced pressure, and the residue was purified by flash column
chromatography on silica gel eluted with n-hexane: EtOAc (70:30, v/v) to afford the target
compound 11 as a white solid (3.5 g, 66.9% yield).

3.6.8. N-Cbz-D-Ser[N-Boc-N-L-Ala-N-Boc-N-Me-O-Bn-L-Ser-N-Me-L-Val]-OAll (12)

To a solution of N-Cbz-D-Ser[N-Boc-N-Me-O-Bn-L-Ser-N-Me-L-Val]-OAll 11 (2.6 g,
4.52 mmol) in DCM (9 mL) was added TFA (3 mL) at 0 ◦C. Then the resulting solution was
warmed to room temperature and stirred for 1 h. The solvent was removed under reduced
pressure, and then the residue was diluted with EtOAc (200 mL) and sat. NaHCO3 aq.
(100 mL). The two layers were separated, and the organic layer was washed with brine
(100 mL) and dried over Na2SO4, and the solvent was removed under reduced pressure to
get the residue as a white solid. Then to a solution of the residue (2.2 g), N-Boc-N-L-Ala-OH
(942 mg, 4.98 mmol, 1 equiv), and DIEA (0.82 mL, 4.98 mmol) in DMF (15 mL) was added
HATU (1.89 g, 4.98 mmol) at 0 ◦C and stirred at room temperature overnight. The mixture
was diluted with EtOAc (150 mL), and the organic layer was washed with HCl (1 mol/L,
100 mL) and brine (100 mL) and dried over Na2SO4. The solvent was removed under
reduced pressure, and the residue was purified by flash column chromatography on silica
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gel eluted with n-hexane: EtOAc (50:50, v/v) to afford the target compound 12 as a colorless
oil (2.5 g, 72.0% yield).

3.6.9. N-Cbz-D-Ser(N-Boc-L-Ala-N-Boc-N-Me-O-Bn-L-Ser-N-Me-L-Val)-OH (13)

To a solution of N-Cbz-D-Ser(N-Boc-L-Ala-N-Boc-N-Me-O-Bn-L-Ser-N-Me-L-Val)-OAll
12 (1.5 g, 1.51 mmol), Pd(PPh3)4 (26 mg) in DCM (10 mL) was added morpholine (0.21 mL,
2.31 mmol) and stirred at room temperature for 1 h. Then the mixture was diluted with
EtOAc (100 mL) and sat. NH4Cl aq. (100 mL). The two layers were separated, and the
water layer was extracted with EtOAc (100 mL). The combined organic layers were washed
with brine (100 mL) and dried over Na2SO4. The solvent was removed under reduced
pressure, and the residue was purified by flash column chromatography on silica gel eluted
with DCM: MeOH (100:1, v/v) to afford the target compound 13 (1.3 g, 91.5% yield).

3.6.10. N-Cbz-D-Ser[N-Cbz-D-Ser(N-Boc-L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val)-
L-Ala-N-Boc-N-Me-L-Abu-N-Me-L-Val]-OAll (14)

Target compound 14 (1.1 g, 0.44 mmol, 46.8% yield over two steps) was synthesized
according to the procedure for the synthesis of compound 1 by using N-Cbz-D-Ser(N-Boc-L-
Ala-N-Boc-N-Me-O-Bn-L-Ser-N-Me-L-Val)-OH 13 (1.2 g, 1.93 mmol), N-Cbz-D-Ser(N-Me-L-
Abu-N-Me-L-Val)-OAll 12 (1.38 g, 1.93 mmol, 1 equiv), DIEA(0.32 mL, 1.93 mmol, 1 equiv),
DMF (10 mL) in step one and morpholine (0.19 ml, 1.93 mmol, 1 equiv), Pd(PPh3)4 (22.3 mg,
1%), CH2Cl2 (20 mL) in step two.

3.6.11. Cbz-Cyclic Peptide (15)

Target compound 15 (270.6 mg, 0.25 mmol, 30% yield over two steps) was syn-
thesized according to the procedure for the synthesis of compound 1 by using N-Boc-
octadepsipeptide-OAll 14 (1 g, 0.82 mmol), TFA (2 mL) and CH2Cl2 (6 mL) in step one
and HOAt (111.5 mg, 0.82 mmol, 1 equiv), CH2Cl2 (350 mL), DIPEA (0.14 mL, 0.82 mmol,
1 equiv) and EDCI·HCl (157.1 mg, 0.82 mmol, 1 equiv) in step two.

3.6.12. Cyclic Peptide (2)

Target compound 2 (white solid, 30 mg, 0.03 mmol, 15.6% yield over two steps) was
synthesized according to the procedure for the synthesis of compound 1 by using Cbz-
bicyclic peptide 15 (200 mg, 0.18 mmol), Pd/C (20 mg, 10%) and methanol (10 mL) in step
one and quinoxaline-2-carboxylic acid (126.6 mg, 0.73 mmol, 4 equiv), DMF (5 mL), DIPEA
(0.13 mL, 0.73 mmol, 4 equiv) and HATU (275.7 mg, 0.73 mmol, 4 equiv) in step two. 1H
NMR (DMSO-d6, 600 MHz) and 13C NMR (DMSO-d6, 150 MHz), see Table 4; HRESIMS:
m/z 1055.4944 [M + H]+ (calcd for C51H67N12O13, 1055.4951). [α]25

D −155.0◦ (c 0.05, ACN);
UV (MeOH) λmax (log ε) 242 (4.54), 317 (3.83) nm; IR vmax: 3304, 2938, 2872, 1741, 1640,
1536, 1492, 1462, 1412, 1261, 1109, 1052 cm−1.

3.7. Biological Activity Test
3.7.1. Antibacterial Assay

The MIC values of the synthetic-1 and synthetic-2 were determined by using the agar
dilution assay at various concentrations of 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.12, 0.06, and
0.03 µg/mL described by the Clinical Laboratory Standards Institute (CLSI) [37]. Bacterial
strains were purchased from the ATCC collection or isolated from the hospitals in China,
including Staphylococcus epidermidis (ATCC 12228, 18-1, and 17-13), Staphylococcus aureus
(ATCC 29213, ATCC 33591, ATCC 43300, ATCC 700698, 15, 18-2, and 18-3), Enterococcus
faecalis (ATCC 29212, ATCC 51299, ATCC 51575, and 18-6), Enterococcus faecium (ATCC
700221, 18-4, and 15-6), Escherichia coli (ATCC 25922, ATCC 35218, 1515, 18-1, and 18-4),
Klebsiella pneumoniae (ATCC 700603, ATCC BAA-2146, 7, 18-2, and 18-8), Pseudomonas aerugi-
nosa (ATCC 27853 and PAO1), Acinetobacter baumannii (ATCC 19606 and 16-33), Enterobacter
cloacae ATCC 43560, Enterobacter aerogenes ATCC 13048, Serratia marcescens ATCC 21074, Pro-
teus mirabilis ATCC 49565, Stenotrophomonas maltophilia ATCC 13636, Shigella flexneri ATCC
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12022. Levofloxacin and echinomycin were used as the positive controls. The medium of
the agar dilution method was Mueller–Hinton agar. Suspensions of each microorganism
were prepared to contain approximately 106 colony forming units (CFU)/mL and applied
to plates with serially diluted compounds to be tested by multipoint inoculator and then
incubated at 37 ◦C overnight. The MIC was considered as the lowest concentration that
completely inhibited the growth on agar plates.

3.7.2. Cytotoxicity Assay

H460 lung cancer cells were obtained from the Department of Oncology, Institute
of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union
Medical College. The 4.0 × 103 H460 lung cancer cells suspended in 100 µL 1640 medium
were plated in 96-well plates. After 24 h of growth, cells were treated with different
concentrations of echinomycin, synthetic-1, and synthetic-2 for 72 h. Then, cells were
incubated with MTT solution (10 µL, 5 mg/mL) for an additional 4 h. After removing
the solution, 150 µL of dimethyl sulfoxide (DMSO) was added to each well for 10 min.
The absorbance (A) was detected at 570 nm. Untreated cells served as control. Statistical
analysis was performed using SPSS software version 26.0 (IBM, Amonk, NY, USA).

4. Conclusions

In conclusion, chemical investigation of the Beibu Gulf mangrove-derived Streptomyces
sp. B475 led to the isolation of two novel quinomycin-type octadepsipeptides, quinomycins
K (1) and L (2), which were characterized by the loss of intra-peptide disulfide or thioacetal
bridge. Their planar structures and absolute configurations were elucidated by detailed
NMR, MS spectroscopic analyses, calculated ECD analyses, advanced Marfey’s method,
and total syntheses. Compounds 1 and 2 did not show potent antibacterial and antitumor
activities but displayed the structure–activity relationship of quinomycins. The presence of
cross-linking through a bridge bond should contribute to the potent biological activity of
quinomycin-type octadepsipeptides.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21030143/s1, Figures S1–S10: The HRESIMS, UV, IR, ECD, 1D
and 2D NMR spectra of compound 1; Figure S11: The extracted ion chromatogram (EIC) of L-FDLA
and D-FDLA derivatives of amino acid standards. Figures S12–S20: The HRESIMS, UV, IR, ECD, 1D
and 2D NMR spectra of compound 2; Figures S21–S30: The HRESIMS, UV, IR, 1H and 13C NMR
spectra of synthetic-1 and 2; Figures S31–S38: Comparison of 1H spectra, 13C NMR spectra, and
UPLC-UV-MS chromatograms of natural and synthetic of 1 and 2; Table S1: The physicochemical
properties of natural and synthetic of 1 and 2; Tables S2–S3: The antibacterial and cytotoxic activities
of synthetic-1 and synthetic-2.
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