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Abstract: Progressive aging harms bone tissue structure and function and, thus, requires effective
therapies focusing on permanent tissue regeneration rather than partial cure, beginning with regener-
ative medicine. Due to advances in tissue engineering, stimulating osteogenesis with biomimetic
nanoparticles to create a regenerative niche has gained attention for its efficacy and cost-effectiveness.
In particular, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has gained significant interest in orthope-
dic applications as a major inorganic mineral of native bone. Recently, magnetic nanoparticles
(MNPs) have also been noted for their multifunctional potential for hyperthermia, MRI contrast
agents, drug delivery, and mechanosensitive receptor manipulation to induce cell differentiation,
etc. Thus, the present study synthesizes HAP-decorated MNPs (MHAP NPs) via the wet chem-
ical co-precipitation method. Synthesized MHAP NPs were evaluated against the preosteoblast
MC3T3-E1 cells towards concentration-dependent cytotoxicity, proliferation, morphology staining,
ROS generation, and osteogenic differentiation. The result evidenced that MHAP NPs concentration
up to 10 µg/mL was non-toxic even with the time-dependent proliferation studies. As nanoparticle
concentration increased, FACS apoptosis assay and ROS data showed a significant rise in apoptosis
and ROS generation. The MC3T3-E1 cells cocultured with 5 µg/mL MHAP NPs showed significant
osteogenic differentiation potential. Thus, MHAP NPs synthesized with simple wet chemistry could
be employed in bone regenerative therapy.

Keywords: hydroxyapatite; magnetic nanoparticles; MC3T3-E1 cells; magnetic hydroxyapatite;
osteogenic differentiation

1. Introduction

Of the emerging fields in medical science, regenerative medicine is one that has
evolved recently. The stability of an organism depends on the bone, and it also helps
in several functions in the human body [1]. Although bone can regenerate itself, which
is adequate for small cracks or minor damage, there is a chance that with aging, the
structural and functional efficiency of the bone tissues will be altered [2,3] and could lead
to osteoporosis, which exhibits a decrease in bone mass and quality and thus leads to
osteoporotic fracture [4,5]. So far, the clinically available treatments for these diseases
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utilize autografts (osteoinductive) and allografts (osteoconductive) [6–8]. However, using
these grafts may lead to challenges such as reduced bioactivity, inflammation, lack of
availability, additional surgery, unsuitable shape and size, and donor-site injury [9,10].
These limitations can be tackled by developing novel biomaterials to repair and regenerate
damaged tissues [4]. The most common biomaterials for bone tissue engineering are
bioceramics, polymers, metals, and composite materials. Bioceramics are a type of inorganic
biomaterial that has been widely employed in bone treatment due to their compositional
similarities to human bone, high compressive modulus, biocompatibility, and ability to
transfer bioactive ions [2,11].

In the bone extracellular matrix (ECM) component, the major inorganic material,
which comprises approximately 60%, is composed of calcium phosphate minerals in the
form of hydroxyapatite (HAP; Ca10(PO4)6(OH)2) [12,13]. Therefore, numerous studies
have utilized synthetic bioceramics composted with calcium phosphate minerals such
as hydroxyapatite, tricalcium phosphate, and whitlockite or their composite scaffolds to
partially mimic native inorganic bone regenerative microenvironment to achieve tissue
mineralization, integrity, and recruited stem cell regulation for bone turnover [14–16].

Recently, many researchers have used scallop shells to synthesize various inorganic ma-
terials such as calcium oxide (CaO) [17], calcium hydroxide (Ca(OH)2) [18], and HAP [19].
Takahashi et al. reported that there is about 98–99% calcium carbonate, trace inorganic
materials, and 1–2% organic content available in scallop shells [20]. The recent study also re-
ports that the scallop-shell-derived, calcium-containing materials are used as catalysts [21]
and antibacterial reagents [22,23]. Among those calcium phosphate bioceramics, HAP and
nano-HAP have been widely utilized for bone and dental implants due to their hexagonal
crystal structure, similar to the mineral structure of bone; excellent biocompatibility; high
mechanical strength; bioactivity; and osteoconductivity. Furthermore, HAP and nano-HAP
are the most stable forms of calcium phosphate minerals with low solubility in physio-
logical environments [24–27]. Although hydroxyapatite has a strong pro-remineralization
impact, it is still limited and cannot replace natural remineralization. A relevant study has
also revealed that crystal hydroxyapatite may not be capable of totally replacing natural
bone [28]. To overcome this issue, ions may thus be doped or integrated to improve the
bioactivity of this material. Recently, it has been reported that incorporating metallic ion
nanoparticles can further enhance osteogenic properties because they are natural elements
in the tissues that participate in bone metabolism. Moreover, these ions can regulate cell be-
havior, are stable, non-toxic, and feasible to track using magnetic resonance imaging (MRI).
This ion-integrated composite scaffold is a promising trend in bone tissue engineering.
Some examples of such ions are Zn, Mg, Fe, (Zn-Ni) ferrite, Na, Sr, Si, etc. [29–31].

Among transition metals, iron (Fe) ions could potentially enhance mechanical strength
and provide magnetic properties to the bone scaffolds, which in turn could stimulate stem
cell signaling pathways. El-Meliegy et al. reported that the Fe2O3 doping enhanced the
bending strength of bioglass (BG) by forming the octahedral coordination with BG struc-
tural network and evidenced better bioactivity and comparatively acceptable cell viability
for Fe-doped scaffolds [32]. Recently, magnetic iron oxide nanoparticles (MNPs) have
been widely employed in bone tissue engineering due to their high coercivity, magnetic
susceptibility, and controllability [33]. Wu et al. evaluated the synergistic effect of MNPs
and exosomes derived from bone mesenchymal stem cells (BMSC-Exos) by applying with
and without a static magnetic field (SMF) and demonstrated superior osteogenesis and
angiogenesis by targeted regulation of exosomal miR-1260 [34]. In terms of promoting
osteogenic differentiation, the addition of superparamagnetic MNPs aids in controlled
growth factor delivery using a magnetic field, regulation of signaling pathways, protein
adsorption by using SMF, and mild magnetic hyperthermia with an alternating magnetic
field (AFM) [35–37]. Therefore, in this study, magnetic iron oxide decorated hydroxya-
patite nanoparticles (MHAP NPs) were prepared by the wet chemical co-precipitation
method and characterized by using field emission scanning electron microscopy (FESEM),
bio-transmission electron microscopy (BioTEM), energy dispersive X-ray Spectroscopy
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(EDS) elemental mapping, X-ray diffraction (XRD), and Fourier transform infrared (FT-IR)
spectroscopy. Invitro studies were performed using the mouse calvaria-derived osteogenic
progenitor MC3T3-E1 cell line, which could only differentiate into osteoblast [38]. Thus, the
MHAP NPs were evaluated against MC3T3-E1 cells for toxicity, ROS activity, proliferation,
and osteogenic differentiation potentials.

2. Results and Discussion
2.1. Physicochemical Characterization of Nanoparticles

The HAP NPs were synthesized by the wet chemical method. Initially, Ca(OH)2
(0.5 M) was mixed in double-distilled water (100 mL) at 90 ◦C. Then, while the solution
was being vigorously stirred, an 0.3 M aqueous solution of H3PO4 was added slowly using
a burette at a rate of 10 mL min−1. After 24 h of aging, the milky white precipitates were
collected using the filter press, washed, and dried at 80 ◦C [15]. Later, to synthesize the
MHAP NPs, the as-obtained HAP nanoparticles were added to the polyvinyl pyrrolidone
(PVP) solution to form an interfacial binder between the surface of the HAP and MNPs
formed by the co-precipitation of the Fe3+ and Fe2+ precursor solution (Figure 1A), and
this process was followed by the MNPs formation. APTES was used as a capping agent
to prevent oxidation and enhance the stability of nanoparticles [39]. From the Bio TEM
image (Figure 1B), the synthesized HAP showed evidence for the homogenous-sized rod-
shaped NPs which were 30 ± 2 nm in width and 120 ± 7 nm in length, and the EDS
elemental mapping (Figure 1C) of HAP NPs confirmed the Ca and P signals. DLS results
of HAP NPs, MNPs, and MHAP NPs showed an average particle size (Figure 1G) of
600 ± 39 nm, 165 ± 45 nm, and 480 ± 40 nm with an average zeta potential (Figure 1F)
of −14.11 ± 7.57 mV, 30.93 ± 4.75 mV, and −5.99 ± 3.39 mV, respectively. Compared to
TEM results, DLS results showed the increased size of the nanoparticle, which could be
due to the aggregated HAP nanorods in the solution, could have increased the ensemble
hydrodynamic diameter [40]. Meanwhile, MHAP NPs showed reduced hydrodynamic
diameter compared to HAP NPs, which could be due to the better dispersion and steric
stability achieved by APTES functionalization [41]. A similar hydrodynamic size reduction
was recently noted because of APTES surface modification [42,43]. The zeta potential
results evidenced the negatively charged HAP NPs, which could be correlated to early
published reports that the HAP nanoparticles have evidenced a negative surface in the
range of −7.3 to −17.7 mV [44]. The high positive charge of MNPs was due to APTES
functionalization [45], and MHAP NPs negative surface charge was reduced compared to
HAP NPs, due to the positive charge exhibited by MNPs. In this work, rod-shaped HAP
nanoparticle was taken into consideration because natural bone is an inorganic material
with nanocrystalline rod-like structures. Additionally, rod-shaped nanoparticles could
provide better interaction via Van der Waals forces due to their higher superficial area. It
has also been reported that rod-shaped HAP nanoparticles have high cell internalization
rates and more prolonged blood circulation than spherical nanoparticles [46]. Similarly,
Figure 1D,E showed the formation of MNPs on the surface of HAP NPs, and the EDS
elemental mapping of MHAP NPs showed the Fe signals on the surface of Ca and P signals.
The elemental composition of the composite MHAP NPs is identified as follows: O (59.16%),
P (10.82%), Ca (22.37%), and Fe (7.65%).

The XRD pattern (Figure 2A) evidenced that the synthesized HAP NPs have a single
phase with a hexagonal crystal structure. Furthermore, all the diffraction peaks were
indexed, corresponding to reported pure HAP phase JCPDS No. 09-0432 data [47]. The
XRD of MHAP NPs was also analyzed, and it found that MHAP NPs retained all the peaks
of hexagonal HAP NPs with an extra peak at 2θ = 30.2◦ and 35.5◦, which corresponds to
the miller index (2 2 0) and (3 1 1) of (Fe3O4) MNPs, respectively [48]. The other extra peaks
of the MNPs in MHAP NPs were not visible due to the interference of HAP NPs. However,
all the major diffraction peaks of pristine MNPs synthesized without HAP were noted,
corresponding to the JCPDS NO. 19-0629, which reported the pure phase of MNPs [49].
Furthermore, the FTIR spectra of HAP, MNPs, and the composite MHAP NPs are shown
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in Figure 2B. The MHAP NPs exhibited the characteristic peaks of HAP at 567 cm−1

and 602 cm−1 (triply degenerated ν4 bending of O–P–O bonds); 962 cm−1 (symmetric
nondegenerate ν1 stretching mode of P–O); 1037 cm−1 and 1092 cm−1 (antisymmetric triply
degenerate ν3 stretching vibration of PO4

3−); 634 cm−1 (librational νL (O–H)); 3575 cm−1

(stretching vibration of νS (O-H)) [50] and characteristic peaks of MNPs at 3445 cm−1 (O–H
stretching vibration); 1632 cm−1 (O–Hbending vibration); and 544 cm−1 (Fe-O stretching
vibration), respectively [51]. Furthermore, APTES N-H bending and stretching modes of
the terminal primary amine group could not be noted due to the peak overlap hydroxyl
group stretching vibration at 3445 cm−1. However, the APTES grafting could be confirmed
with the presence of C–H bond stretching vibrational peaks at 2851 cm−1 and 2927 cm−1,
corresponding to the propyl group [52]. The magnetic properties of the synthesized MHAP
NPs were noticed (Figure 2C) via a digital image of a magnetic response to a static magnetic
field using a mini-round magnet bar. Furthermore, the magnetic properties of the MNPs
and MHAP NPs were analyzed using a VSM (Figure 2D), and the results evidenced that
MNPs and MHAP NPs exhibited saturation magnetization values of 58.53 and 16.49 emu/g,
respectively. The decrease in MHAP NPs saturation magnetization to the pristine MNPs
was due to the reduction in the volume of the magnetic component in the composite
MHAP·NPs. Both samples exhibited negligible coercive field and remanence, as evidenced
by the absence of hysteresis in the variation of magnetization for the applied field, which
confirms the superparamagnetic features [53,54].

Figure 1. (A) Schematic illustration of HAP and MHAP NPs synthesis. (B,D) BioTEM images of HAP
and MHAP NPs, respectively. (C,E) EDS and EDAX mapping of HAP and MHAP NPs, respectively.
(F) Zeta potential and (G) size of HAP, MNPs, and MHAP NPs measured by the DLS method.
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Figure 2. (A) XRD and (B) FTIR of synthesized HAP, MNPs, and MHAP NPs. (C) Digital images of the
MHAP NPs show magnetic response to a static magnetic field using a mini magnet. (D) Field-dependent
magnetization of MNPs and MHAP NPs.

2.2. MHAP NPs Induced Cell Viability and Morphology

To study the effect of MHAP NPs on the viability of MC3T3-E1 cells, the cells were
cultured with wide concentrations of NPs (10, 25, 50, 100, 200, 400, and 600 µg/mL)
for 24 h. The viability of the cells was assessed through an MTT assay, as shown in
Figure 3A. Considering a control exhibiting 100% cell viability, MHAP NPs samples with
the concentrations of 10, 25, 50, 100, 200, 400, and 600 µg/mL exhibited approximately
90.81%, 89.50%, 84.91%, 76.72%, 64.91%, 58.36%, and 52.13% of cell viability, respectively,
for 24 h. The results evidenced a significant increase in cytotoxicity with an increasing
concentration of MHAP NPs. Cell viability was significantly reduced by ≈23.28% at
100 µg/mL and ≈47.87% at 600 µg MHAP NPs/mL. However, at an initial concentration
of 10 µg/mL, no significant cytotoxicity was noted for 24 h of NPs treatment. Following the
wider NPs treatment concentrations, we have narrowed down concentrations of MHAP
NPs for long-term viability assessment. Thus, after narrowing down the concentration
from 0 to 20 µg/mL of MHAP NPs, the cell viability result was noted as 93.30%, 90.07%,
88.0%, and 83.05% for 2, 5, 10, and 20 µg/mL, respectively, following the 24 h of MHAP
NPs treatment (Figure S1). These findings could be correlated with the cytotoxicity results
of MNPs reported earlier, which demonstrated that irrespective of MNPs size, increased
cytotoxicity was noted at concentrations above 50 µg/mL [55]. Furthermore, the viability
studies performed on the second day, fifth day, and seventh day were evidenced by cell
viabilities of 74%, 61%, and 52% for 20 µg/mL of MHAP NPs (Figure 3B–D), respectively.
The results indicated that the viability of preosteoblast MC3T3-E1 cells was significantly
inhibited dose-dependently with time. In particular, 10 and 20 µg/mL MHAP NPs showed
significant inhibition of mitochondrial function compared to the control. These results could
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be related to the lactate dehydrogenase (LDH; stable cytosolic enzyme from mitochondria
released during cell lysis) cytotoxicity assay reported by Wu Hsi-Chin et al., who cocultured
magnetic HAP NPs with rat-derived MSCs [56]. However, low concentrations (2 and
5 µg/mL) did not affect the viability.

Figure 3. (A) Concentration-dependent (10–600 µg/mL) effect of MHAP NPs on cell viability of
MC3T3-E1 cells for 24 h and the time-dependent effect of MHAP NPs on the viability of MC3T3-E1
cells. In addition, a single dose of NPs was treated with cells, and the viability of cells was analyzed
on (B) day 2, (C) day 5, and (D) day 7, respectively, using MTT assay. Data were presented as mean
± standard deviation (n = 4) and significance (* p < 0.05; ** p < 0.01).

Following the cell viability results, inverted fluorescence microscope imaging was car-
ried out to provide evidence for the morphological changes of the preosteoblast cells follow-
ing the treatment with NPs on days 1 and 5 using rhodamine-phalloidin (cytoskeleton) and
DAPI (nuclei) staining. The results of inverted fluorescence microscope images (Figure 4)
showed no apparent changes in the cytoskeletal architecture of MC3T3-E1 cells after being
cocultured with nanoparticles. Compared to the control cells, the cells treated with the
5 and 10 µg/mL of MHAP NPs evidenced slightly more elongation on day 5 compared to
day 1. These results indicate that cell proliferation and expanded focal adhesion over the
MHAP NPs treatment. A clustered and confluent morphology has also been evidenced
with adjacent cells. The findings are consistent with MTT cell viability studies. Similar
topology and architecture on HA/Ca/Mg scaffolds were also seen in prior research. Our
results are consistent with those made in earlier research on HA/Ca/Mg scaffold reported
by Chu et al., in which a similar morphology was shown [57].
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Figure 4. The inverted fluorescence microscope images show the morphological staining of MC3T3-
E1 cells after being treated with MHAP NPs with varying concentrations (0–20 µg/mL) on days 1
and 5, respectively. The cytoplasm was stained with rhodamine-phalloidin (red), and nuclei were
stained with DAPI (blue). The images were acquired at 20×magnification.

2.3. MHAP NPs Induced ROS Production and Apoptosis

It is known that nanoparticles could induce cell death via necrosis or apoptosis.
Necrosis is associated with extensive damage and intense inflammatory response, whereas
apoptosis is programmed cell death [58]. In our in vitro study, we checked whether the
reduced viability in the preosteoblast cells following MHAP NPs treatment was not due to
apoptotic induction. We performed an annexin V/Propidium iodide assay to assess the
apoptotic cell population following the MHAP NPs treatment for 24 h. The results indicated
that the cells that were treated with a lower concentration (2 µg/mL) of MHAP NPs showed
evidence for cell viability of 90.1 ± 3.2% when compared to the control (85.3 ± 1.6%).
However, when the concentrations exceeded 10 µg/mL (70 ± 2.5%), it caused significant
apoptosis, as shown in (Figure 5A). These FACS results were also in correlation with the
MTT assay cell viability studies. A previous survey of HAP nanoparticles reported that the
NPs could induce cell death at a concentration above 10 µg/mL in MC3T3 cells, which is in
line with our current findings [59].

Reactive oxygen species (ROS) are secondary products generated during oxygen
utilization and cellular metabolism. ROS production at low levels can support cell prolifer-
ation and differentiation; in contrast, high levels of ROS generation lead to apoptosis [60].
The mean fluorescence intensity of CellROX was increased to 105.2 ± 2%, 110.7 ± 1.9%,
132.4 ± 8.2%, and 140.5 ± 7.3% for the concentrations 2, 5, 10, and 20 µg/mL of MHAP
NPs compared to control (100 ± 4.1%) after 24 h. These results indicate that MHAP NPs at
an increasing concentration significantly enhanced ROS production (Figure 5B). However,
the ROS production was in a low concentration for 2 and 5 µg/mL of MHAP NPs com-
pared to 20 µg/mL, which could also aid in low ROS-induced osteogenic differentiation of
MC3T3-E1 cells. Recent research showed that MNPs produced ROS after internalization
into the cells and orchestrated various signaling pathways [61]. The size of the nanoparticle
is critical in inducing ROS production and cytotoxicity; smaller NPs <100 nm were shown
to have enhanced toxicity compared to large-sized particles [62]. The synthesized MHAP
NPs are <100 nm in size in the present study.
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Figure 5. (A) Live and dead apoptosis FACS analysis; (B) mean fluorescence intensity (MFI) of
CellROX of MC3T3-E1 cells. (Data were presented as mean ± standard deviation (n = 4) and
significance (* p < 0.05; ** p < 0.01).

2.4. Effect of MHAP NPs on Osteoblast Differentiation

To investigate the efficacy of MHAP NPs in osteoblast differentiation, we evaluated the
ALP and calcification, which are known as phenotypic markers of osteoblast differentiation.
Trace elements are required to function in regular biological processes in living systems.
Specifically, Fe and Zn are regarded as essential components. They serve as cofactors
in several metabolic reactions, and their concentrations are tightly regulated to ensure
homeostasis [63]. In the current study, we investigated the potential of the MHAP NPs
to promote bone differentiation, which could also modulate the level of ROS within the
cell, which in turn alters the activity of the enzymes and could encourage the deposition
of calcium on the cell surface’s matrix. The MHAP NPs treatments at less than 10 µg/mL
significantly increased the ALP activity (Figure 6A,B) compared to the untreated control
on day 14. In MC3T3-E1 cells, elevated ALP enzyme activity is considered characteristic
of the initial stage of osteoblast development [64]. The outcomes are highly correlated
and in agreement with those of the control samples. It is clear from prior research that
less ROS impacts the expression of genes related to bone development, including ALP
expression [65]. In contrast to the ALP assay, the calcification (Alizarin red staining) is
considerably higher in all the treated concentrations (Figure 6C,D). MC3T3-E1 cells cultured
with MHAP NPs (all concentrations) had more calcium deposition than the control. After
21 days of incubation with various concentrations of MHAP NPs, 5 µg/mL treatment was
found to be optimal in the ALP and calcification assay. Thus, the current study evidenced
that the synergistic effect of MHAP NPs (5 µg/mL), even at a low concentration, could
promote osteogenic differentiation and adequate calcium mineralization for bone tissue
reconstruction. Supporting the above results, HAP and MNPs are known for physical
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and biochemical stimuli, which elicit chromosomal responses which regulate the mitogen-
activated protein kinase (MAPK) pathway, which in turn leads to upregulation of ALP,
BMP2, and Smad proteins, resulting in the expression of RUNX2, an early osteogenic
differentiation marker that plays a vital role in multiple major signaling pathways that
promote osteogenesis [66–69].

Figure 6. Osteogenic differentiation potential of MHAP NPs with different concentrations. (A) The
optical microscopic images of ALP-stained samples, and (B) the ALP enzymatic activity of MC3T3-E1
cells on days 7 and 14. (C) The optical microscopic image of ARS stained samples, and (D) ARS
calcium quantification of MC3T3-E1 cells on days 14 and 21. Data were presented as mean± standard
deviation (n = 4) and significance (* p < 0.05).

3. Materials and Methods
3.1. Materials

The materials used in the present study include scallop-shell-derived calcium hy-
droxide (Ca(OH)2 ≥ 96%, Natural Japan Co Ltd., Hokkaido, Japan), phosphoric acid
(H3PO4, 85%, Sigma-Aldrich, St. Louis, MO, USA), iron(III) chloride hexahydrate (97%,
Sigma-Aldrich, St. Louis, MO, USA), iron(II) sulfate heptahydrate (≥ 99%, Sigma-Aldrich,
St. Louis, MO, USA), sodium hydroxide (Samchun chemicals, Pyeongtaek, Republic of
Korea), 3-aminopropyltriethoxysilane (APTES, 98%, Sigma-Aldrich, St. Louis, MO, USA),
MC3T3-E1 (ATCC® CRL-2593™, Seoul, Republic of Korea).

3.2. Preparation of Hydroxyapatite Nanoparticles (HAP NPs)

As reported earlier, the precipitation technique synthesized the HAP nanoparticles
in an aqueous system with a slight modification [15]. Briefly, calcium hydroxide (0.5 M,
100 mL) was mixed in DI water and maintained at 90 ◦C. After 1 h, phosphoric acid (0.3 M,
100 mL) was added dropwise into the aqueous hydroxide solution at a rate of 10 mL min−1.
White precipitates formed were allowed 24 h of aging and collected by centrifugation (at
7000 rpm for 10 min, Fleta, Hanil, Gimpo, Republic of Korea). After washing 5 times with
excess water, the collected particles were dried for 24 h at 80 ◦C to obtain crystalline HAP
nanoparticles.

3.3. Preparation of Magnetic Nanoparticle Decorated HAP NPs (MHAP NPs)

The MHAP nanoparticles were synthesized by the co-precipitation wet chemical
method. Briefly, 1 g of HAP nanoparticles was dispersed in the mixture of 1.5 mM
FeSO4·7H2O and 3 mM FeCl3·6H2O aqueous solution. Followed by sonication for 30 min,
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the mixture was stirred at 70 ◦C with N2 bubbling for 30 min, and then 3M sodium hy-
droxide was added to the reaction mixture to adjust the pH 11. After 40 min, 150 µL of
APTES (250 mg/mL) is added as a capping agent and continued the reaction for 1 h [70].
Finally, the obtained MHAP precipitates were centrifuged, washed several times, and dried
at 60 ◦C for 24 h, followed by mortar and pestled to obtain finely granulated nanoparticles.

3.4. Physicochemical Characterization

The particle size and morphology of HAP and MHAP NPs were analyzed using a
Field Emission Scanning Electron Microscope (FESEM, ZEISS SUPRA 40VP). Additionally,
the size and the surface charge of HAP, MNPs, and MHAP NPs were analyzed using a
Zetasizer instrument (NanoZ590, Malvern Instruments, Worcestershire, UK). The Energy
Dispersive X-ray Spectroscopy (EDS) elemental mapping and composition analysis were
also performed with FESEM. TEM images were acquired by Transmission Electron Mi-
croscopy (TEM, JEOL, JEM-2010). The crystallinity of HAP and MHAP NPs were analyzed
using X-ray powder diffraction (XRD, PANalytical X′pert Pro Powder, Worcestershire,
UK) with monochromatic Cu Kα (λ = 1.5405 Å) over the range of Bragg angle (10–80◦).
Fourier transform infrared spectroscopy (FT-IR, Perkin Elmer Frontier, Waltham, MA, USA)
analysis was performed at a frequency range of 4000–500 cm−1 to confirm the characteristic
spectra of synthesized HAP and MHAP nanoparticles. Magnetic characterization was
performed on a vibrating sample magnetometer (8600 Series VSM, Lake Shore Cryotronics,
Inc., Westerville, OH, USA). The magnetic hysteresis loop measurement was performed at
room temperature under external magnetic fields from −10 to 10 KOe.

3.5. Viability Assay

The preosteoblast MC3T3-E1 cells were cultured in alpha MEM medium supplemented
with heat-inactivated 10% fetal bovine serum (FBS) and 1% antibiotic-penicillin/streptomycin
solution and incubated at 37 °C with 5% CO2 in a humidified incubator. Briefly, in a 96-well
plate, 5× 103 cells per well were seeded and incubated for 12 h. Followed by the incubation,
different concentrations (10, 25, 50, 100, 200, 400, and 600 µg/mL) of MHAP NPs were
added into respective wells. After 12 h MHAP NPs treatment, the excess NPs were carefully
removed with PBS wash. Meanwhile, NPs untreated wells served as the control. After
24 h of MHAP NPs treatment, the cytotoxicity was evaluated using cell proliferation kit I
(MTT) (Sigma-Aldrich, St. Louis, MO, USA). In short, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5
diphenyl tetrazolium bromide) was added to the cells at a final concentration of 0.5 mg/mL
and incubated for 4 h to form insoluble formazan crystals. Later, using a solubilizing
solution from the kit, the formazan was solubilized and analyzed using a microplate reader
at 570 nm absorbance [71,72].

The proliferation study of the preosteoblast MC3T3-E1 cells, which was followed
by the cytotoxicity assay, was analyzed within the limit of 20% inhibitory concentrations
(IC20) with different concentrations (2, 5, 10, and 20 µg/mL) of MHAP NPs. Briefly, for the
proliferation assay, after 24 h of MHAP NPs addition, the culture medium was changed
once, then it was changed every two days once the culture medium was replaced with
fresh medium. On the 2nd, 5th, and 7th day, the MTT assay was performed as mentioned
above. All the experiment was replicated three times and plotted.

3.6. Apoptosis Analysis

The preosteoblast MC3T3-E1 cells were treated with different concentrations of MHAP
NPs (0–20 µg/mL) for 24 h and were washed with PBS. Later, the cells were trypsinized
and collected by centrifugation and stained using the FITC Annexin V apoptosis detection
kit (BD Biosciences) according to the manufacturer’s instruction and analyzed using a flow
cytometer (BD Accuri C6 cytometer) [73,74].
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3.7. ROS Production

Reactive oxygen species (ROS) production following the MHAP NPs treatment was
analyzed with an ROS detection kit with CellROX Green reagent (ThermoFisher, Waltham,
MA, USA) according to the manufacturer’s instructions. Briefly, 1 × 104 MC3T3-E1 cells
were seeded into a 48 well-plate and incubated with various concentrations of MHAP NPs
(2, 5, 10, 20 µg/mL) for 24 h. Following the incubation, the cells were trypsinized, washed
with PBS, and incubated with 5 µM CellROX Green reagent for 60 min at 37 ◦C in the dark.
After washing with PBS, fluorescence was measured immediately using flow cytometry
(BD Accuri) [75].

3.8. Morphological Analysis

To study any morphological changes induced by MHAP NPs, the MC3T3-E1 cells
were treated with various concentrations (2, 5, 10, and 20 µg/mL) of NPs, and the cells’
morphological analyses were conducted on days 1 and 5. After incubation with NPs, the
cells were washed with PBS and fixed using 4% paraformaldehyde for 10 min at room
temperature. Next, the fixed cells were permeabilized using 0.1% Triton-X 100 in PBS for
5 min. Later, the cells were blocked with 0.5% Bovine serum albumin (BSA) for 15 min,
incubated with rhodamine-phalloidin for actin filament staining (30 min), and washed with
PBS. Following the incubation, the cells were stained for nuclei using DAPI (4′,6-diamidino-
2-phenylindole) fluorescence staining for 5 min at RT in the dark, and the cells were washed
with PBS. Finally, the fluorescence signals were measured using an inverted fluorescence
microscope [76]. The images were acquired at a magnification of 20× from three different
spots on the stained samples.

3.9. Alkaline Phosphatase Assay

Alkaline phosphatase levels following MHAP NPs treatment in MC3T3-E1 cells were
analyzed using an alkaline phosphatase detection kit (Millipore) as per the manufac-
turer’s instructions. Briefly, cells were seeded into a 48 well-plate; once the growth conflu-
ence reached above 80%, the medium was replaced with osteogenic induction medium
(OIM) containing 10 mM β-Glycerol phosphate (Sigma-Aldrich, St. Louis, MO, USA) and
50 µg/mL ascorbic acid in complete growth medium. Every 2 days once, the OIM was
replaced until the analysis. On days 7 and 14, all the samples were rinsed with PBS several
times before being fixed in the 4% paraformaldehyde, and the samples were displayed
for 30 min and incubated at 37 ◦C for 15 min, followed by adding 330 µL BCIP/NBT
solution. Then, the staining sample could be observed after washing, and the images were
acquired at a magnification of 20× from three different spots for each sample. Furthermore,
a quantitative analysis of ALP secretion was performed through an alkaline phosphatase
assay kit. Briefly, the protein samples were collected by RIPA lysis buffer, and then the
total protein volume was detected with a BCA Protein Assay Kit (ThermoFisher, Seoul,
Republic of Korea). The ALP secretion was expressed by the fold change in the OD value
of ALP/total proteins [77].

3.10. Calcium Deposition Assay (Alizarin Red Staining)

Alizarin staining kit was used to observe the calcium deposition in MC3T3-E1 cells
after adding various concentrations (2, 5, 10, and 20 µg/mL) of MHAP NPs. The cells were
cultured in OIM, and the medium was changed every 2 days until analysis. On day 21, the
cells were washed with phosphate-buffered saline and fixed with 4% paraformaldehyde at
room temperature. Later, the fixed cells were washed thrice with distilled water and treated
with an alizarin red staining solution for 30 min, followed by two distilled water washes,
and the cells were air-dried. The calcium nodules in each condition were observed using
an inverted microscope, and the images were acquired at a magnification of 20× from
three different spots on the cell culture plates for each sample. The cells stained with ARS
were subjected to cetylpyridinium chloride digestion, and the absorbance was measured
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at 540 nm using spectrophotometry according to the published methodology, with minor
alterations [78].

3.11. Statistical Analysis

One-way analysis of variance and a post-hoc Tukey comparison test with a 95%
confidence level was used for all statistical analyses, with mean ± standard deviation (S.D.,
n = 3 (* p < 0.05, ** p < 0.01, *** p < 0.001)).

4. Conclusions

Developing smart biomaterials could aid in regenerating osteoporotic bone in situ.
Magnetic ferrite-based materials are gaining appeal in regenerative medicine for MRI
contrasts, magnetically driven hyperthermia, drug delivery, and tissue regeneration. In
this study, hydroxyapatite bone-mimicking bioceramics were decorated with magnetic
nanoparticles using a simple wet chemical co-precipitation method, and their synergistic
effect was investigated for cytotoxicity, proliferation, ROS activity, and osteogenic differenti-
ation potentials in MC3T3-E1 cells. Furthermore, the concentration-dependent ROS activity
was noted with potential osteogenic differentiation by facilitating ALP activity and calcium
deposition compared to control cells. The in vitro results showed that an optimal concen-
tration of 5 µg/mL of synthesized MHAP NPs showed no toxicity with higher osteogenic
differentiating potentials. Therefore, the synthesized magnetic hydroxyapatite composite
nanomaterial could potentially be applied in regenerative medicine, especially in bone
tissue engineering. In the future, the developed magnetic hydroxyapatite nanoparticles
could be employed to deliver magnetically triggered biomechanical cues in combination
with 3D scaffolds and in vivo evaluation for bone tissue regeneration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21020085/s1, Figure S1: MTT assay showing % of MC3T3-E1
cell viability treated with varying concentrations (0–20 µg/mL) of MHAP NPs for 24 h, respectively.
Data were presented as mean ± standard deviation (n = 4) and significance print (* p < 0.05).
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